Péter Lévay's Home Page

Main page
Curriculum vitæ
Teaching activity
Research activity


My researcherID page
My profile in Google Scholar
Bercel Boldis, Péter Lévay
Segmented strings and holography
Phys. Rev. D109, 046002 (2024)
82 Balázs Hetényi and Péter Lévay
Fluctuations, uncertainty relations, and the geometry of quantum state manifolds
Phys. Rev. A 108, 032218 (2023)
81 Péter Lévay
Special entangled fermionic systems and exceptional symmetries
Journal of Mathematical chemistry (2022)
80 Bercel Boldis,Péter Lévay
Cluster algebraic description of entanglement patterns for the BTZ black hole
Phys. Rev. D105, 046020 (2022) arXiv: 2108.10638 (2021)
79 Péter Lévay
The associahedron as a holographic entanglement polytope
arXiv: 2101.03823 (2021)
78 Colm Kelleher,Frédéric Holweck,Péter Lévay,Metod Saniga
X-states from a finite geometric perspective
Results in Physics 22, 103859 (2021) arXiv: 2008.03063 (2020)
77 Péter Lévay,Bercel Boldis
Scanning space-time with patterns of entanglement
Phys. Rev. D101, 066021 (2020) arXiv: 2001.07923 (2020)
76 Péter Lévay
Berry curvature, horocycles, and scattering states in AdS$_3$/CFT$_2$
Phys. Rev. D100, 126022 (2019) arXiv: 1909.09442 (2019)
75 Péter Lévay, Frédéric Holweck
A finite geometric toy model of space-time as an error correcting code
Phys. Rev. D99, 086015 (2019) arXiv: 1812.07242 (2018)
74 Péter Lévay, Frédéric Holweck
A fermionic code related to the exceptional group E8
J. Phys. A: Math. Theor. 51 (2018) arXiv: 1801.06998 (2018)
73 Péter Lévay, Frédéric Holweck, Metod Saniga
The magic three-qubit Veldkamp Line: A finite geometric underpinning for form theories of gravity and black hole entropy
Phys. Rev. D96, 026018 (2017) arXiv:1704.01598(2017)
72 Péter Lévay, Zsolt Szabó
Mermin pentagrams arising from Veldkamp lines for three qubits
J. Phys. A: Math. Theor. 50, 095201 (2017) arXiv:1501.03621(2015)
71 Péter Lévay, Szilvia Nagy, János Pipek, Gábor Sárosi
The coupled cluster method and entanglement in three fermion systems
J. Math. Phys. 58 1063 (2017) arXiv:1506.06914(2015)
70 Fréderic Holweck, Péter Lévay
Classification of multipartite systems featuring only $|W\rangle$ and $|GHZ\rangle$ genuine entangled states
J. Phys. A: Math. Theor. 49, 085201 (2016) arXiv:1501.03621 (2015)
69 Péter Lévay, Fréderic Holweck
Embedding qubits into fermionic Fock space: Peculiarities of the four qubit case
Phys. Rev. D91 ,125029 (2015) arXiv:1502.04537(2015)
68 Gábor Sárosi, Péter Lévay
Coffman-Kundu-Wootters inequality for fermions
Phys. Rev. A90 ,052303 (2014) arXiv:1408.6735 (2014)
67 Gábor Sárosi, Péter Lévay
Entanglement classification of three fermions with up to nine single-particle st ates
Phys. Rev. A89 ,042310 (2014) arXiv:1312.2786 (2013)
66 Frederic Holweck, Metod Saniga, Péter Lévay
A notable relation between N-qubit and 2^{N-1}-qubit Pauli groups via binary LGr (N,2N)
SIGMA 10. 041 (2014) arXiv:1311.2408 (2013)
65 Gábor Sárosi, Péter Lévay
Entanglement in fermionic Fock space
J. Phys. A: Math. Theor. 47, 115304 (2014) arXiv:1309.4300 (2013)
64 Péter Lévay, Michel Planat, Metod Saniga
Grassmannian connection between three- and four-qubit observables, Mermin's contextuality and black holes.
Journal of Hi gh Energy Physics 09 , 037 (2013) arXiv:1305.5689 (2013)
63 Péter Lévay, Gábor Sárosi
Hitchin functionals are related to measures of entanglement
Phys. Rev. D86 , 105038 (2012) arXiv:1206.5066 (2012)
62 Leron Borsten, Michael J. Duff, Péter Lévay
The black-hole/qubit correspondence: an up-to-date review
Class.Quantum Grav. 29, 224008 (2012) arXiv:1206.3166 (2012)
61 Metod Saniga, Michel Planat, Petr Pracna, Péter Lévay
"Magic" Configurations of Three-Qubit Observables and Geometric Hyperplanes of the Smallest Split-Cayley Hexagon
SIGMA 8. 083 (2012) arXiv:1206.3436 (2012)
60 Andrea Blunck,Péter Lévay,Metod Saniga and Péter Vrana
Invertible symmetric 3x3 binary matrices and GQ(2,4)
Journal of Linear and M ultilinear Algebra (2012)
59 Metod Saniga, Péter Lévay
Mermin's Pentagram as an Ovoid of PG(3,2)
Europhysics Letters 97,50006 (2012) arXiv:1111.5923 (2011)
58 Metod Saniga, Péter Lévay and Petr Pracna
Charting the Real Four-Qubit Pauli Group via Ovoids of a Hyperbolic quadric of PG(7,2)
J. Phys. A: Math. Theor. 45, 295304 (2012) arXiv:1202.2973 (2012)
57 Péter Lévay
Qubits from extra dimensions
Phys. Rev. D84 ,125020 (2011) arXiv:11090361 (2011)
56 Michel Planat, Péter Lévay, Metod Saniga
Balanced Tripartite Entanglement, the Alternating Group A4 and the Lie Algebra SL(3,C)+u(1)
Reports on Mathematical Physics 67 (2011) 39 arXiv:0912.0172
55 Péter Lévay,
Two-center black holes, qubits and elliptic curves
Phys. Rev. D84 , 025023 (2011) arXiv:11040144
54 Péter Lévay, Szilárd Szalay
STU attractors from vanishing concurrence
Phys. Rev. D83 , 045005 (2011) arXiv:10114180
53 Péter Lévay,
STU black holes as four qubit systems
Phys. Rev. D82 , 026003 (2010) arXiv:10043639
52 Péter Lévay, Szilárd Szalay
The attractor mechanism as a distillation procedure
Phys. Rev. D82 , 026002 (2010) arXiv:10042346
51 Péter Vrana, Péter Lévay,
The Veldkamp space of multiple qubits
Journal of Physics A43, 125303 (2010) arXiv:0906.3655
50 Metod Saniga, Péter Lévay, Michel Planat and Petr Pracna
Geometric Hyperplanes of the Near Hexagon L_3 times GQ(2,2)
Letters in Mathematical Physics 91 (2010) 93-104 arXiv:0908.3363
49 Metod Saniga, Péter Lévay, Petr Pracna and Péter Vrana
The Veldkamp Space of GQ(2,4)
Journal of Geometric Methods in Modern Physics 7 (09140) (2010) arXiv:0903.0715
48 Péter Lévay, Metod Sa niga, Péter Vrana and Petr Pracna
Black Hole Entropy and Finite Geometry
Phys. Rev. D79, 084036 ( 2009) arXiv:0903.0541
47 Péter Vrana and Péter Lévay
Special Entangled Quantum Systems and the Freudenthal Construction
Journal of Physics A42, 285303 (2009) arXiv:0902.2269
46 Péter Lévay, Metod Saniga and Péter Vrana
Three-qubit Operators, the Split Cayley Hexagon of order two, and Black Holes
Phys. Rev. D78, 124022 (2008),arxiv:0808.3849
45 Szilárd Szalay, Péter Lévay, Szilvia Nagy and János Pipek
A study of two-qubit density matrices with fermionic purifications
J. Phys. A: Math. Gen. 41(2008)505304 ,arxiv:0807.1804
44 Péter Lévay, and Péter Vrana
Three fermions with six single-particle states can be entangled in two inequivalent ways
Phys. Rev. A78, 022329 (2008),arxiv:0806.4076
43 Péter Lévay
A three-qubit interpretation of BPS and non-BPS STU black holes
Phys. Rev. D76 , 106011 (2007) arXiv:0708.2799
42 Péter Lévay
Strings, black holes, the tripartite entanglement of seven qubits and the Fano plane
Phys. Rev. D75, 024024 (2007),hep-th/0610314
41 Péter Lévay
On the geometry of four-qubit invariants
J. Phys. A: Math. Gen. 39, 9533 (2006), quant-ph/0605151
40 Péter Lévay
Stringy Black Holes and the Geometry of Entanglement
Phys. Rev. D 74, 024030 (2006),hep-th/0603136
39 Péter Lévay
Geometric Phases
Encyclopedia of Mathematical Physics, eds. J. -P. Francoise, G. L. Naber and Tsou S. T. Oxford: Elsevier, Vol.2 523 (2006), quant-ph/0509064
38 Péter Lévay
On the geometry of a class of N-qubit entanglement monotones
J. Phys. A: Math. Gen. 38 9075-9085 (2005)
37 Péter Lévay, Szilvia Nagy and János Pipek
Elementary formula for entanglement entropies of fermionic systems
Phys. Rev. A 72 022302 (2005)
36 Péter Lévay
Geometry of three-qubit entanglement
Phys. Rev. A 71 012334 (2005)
35 Péter Lévay
Thomas rotation and the mixed state geometric phase
J. Phys. A 37 4593-4605 (2004)
34 Péter Lévay
The geometry of entanglement: metrics, connections and the geometric phase
J. Phys. A: Math. Gen. 37 1821-1841
33 Lévay Péter
Exactly solvable models of scattering with SL(2,C) symmetry
J. Phys. A 35 6431-6457
32 Péter Lévay and Ken Amos
A coupled channel model of scattering with SO(3,1) symmetry
J. Phys. A: Math. Gen. 34 6637-6661
31 Lévay Péter and Ken Amos
An algebraic model of Coulomb scattering with spin
J. Phys. A: Math. Gen. 34 3877-3886
30 Lévay Péter
On Selberg's trace formula: chaos, resonances and time delays
J. Phys. A: Math. Gen. 33 4357-4376
29 Péter Lévay
Chaotic Aharonov-Bohm scattering on surfaces of constant negative curvature
J. Phys. A: Math. Gen. 33 4129-4141
28 Péter Lévay
On the SU(2) Kepler problem
J. Math. Phys. 41 2488 (2000)
27 Péter Lévay
Adiabatic curvature, chaos and the deformations of Riemann surfaces
Operator Theory: Advances and Applications, Vol 108. Birkhauser
26 Péter Lévay
Optical Potentials in algebraic scattering theory
J. Phys. A: Math. Gen. 32 1015-1034 (1999)
25 Péter Lévay
Chaotic Scattering on noncompact surfaces of constant negative curvature
Geometry, Integrability and Quantization, Proceedings of the International conference, Varna, Bulgaria 145 (1999)
24 Péter Lévay
Non-local potentials with LS-terms in Algebraic Scattering Theory
J. Phys. A: Math. Gen. 30 7243-7257 (1997)
23 Péter Lévay
Berry's Phase, chaos, and the deformations of Riemann Surfaces
Phys. Rev. E 56, 6173-6176 (1997)
22 B. Apagyi, G. Endrédi and Péter Lévay
A model independent $^{12}C$-$^{12}C$ potential
Heavy Ion Physics 5 167 (1997)
21 Péter Lévay, Barnabás Apagyi and Werner Scheid
Modified symmetry generators for SO(3,2) and algebraic scattering theory
Inverse and Algebraic Scattering Theory, Proceedings of the conference held at Lake Balaton Hungary 3-7 September 1996 Springer-Verlag (1997)
20 Barnabás Apagyi Péter Lévay and Werner Scheid
Fixed energy inversion of polarization corrected electron-atom scattering phase-shifts into effective potentials
Inverse and Algebraic Scattering Theory, Proceedings of the conference held at Lake Balaton Hungary 3-7 September 1996 Springer-Verlag (1997)
19 Péter Lévay, David McMullan and Izumi Tsutsui
The canonical connection in quantum mechanics
Journal of Mathematical Physics 37 625-636 (1996)
18 Péter Lévay
Scattering potentials with LS-terms from first order Casimir operators
J. Phys. A 28 5919-5929 (1995)
17 Péter Lévay and Barnabás Apagyi
Modified symmetry generators related to solvable scattering problems
Journal of Mathematical Physics 36 6633-6646 (1995)
16 Péter Lévay
Berry Phases for Landau Hamiltonians on deformed tori
Journal of Mathematical Physics 36, 2792-2802 (1995)
15 Péter Lévay
Modified symmetry generators and the geometric phase
J. Phys. A: Math. Gen. 27 2857-2878 (1994)
14 Péter Lévay
Modified symmetry generators and the geometric phase
A. Arima, T. Eguchi and N. Nakanishi eds. Group Theoretical Methods in Physics Proceedings of the XL Yamada Conference, World Scientific (1995)
13 Barnabás Apagyi and Péter Lévay
Electron atom Scattering potentials obtained by inversion at fixed energy
Quantum Inversion Theory and Applications Proceedings Bad-Honnef Springer-Verlag (1993)
12 Péter Lévay and Barnabás Apagyi
Algebraic scattering theory and the geometric phase
Phys. Rev. A 47, 823?830 (1993)
11 Barnabás Apagyi, Károly Ladányi, Péter Lévay and Istváan Nagy
Theoretical models and methods of scattering theory: Developments and applications
Periodica Polytechnica Ser. Phys. and Nucl. Sci. Vol. 1 No 2. 225 (1993)
10 Barnabás Apagyi and Péter Lévay
Elimination of spurious singularities of the generalized Newton variational method in scattering theory
I. R. Afnan and R. T. Cahill (eds.) Book of contributions of the XIII. international conference on Few-Body problems in physics, Institute for atomic studies, Report Fias-R-216 Adelaide, Australia (1992)
9 Péter Lévay
Non0abelian Born-Oppenheimer electric gauge force and the natural metric on Hilbert subspaces
Phys. Rev. A 45, 1339?1346 (1992)
8 Barnabás Apagyi, Péter Lévay and Károly Ladányi
Spurious singularities in the generalized Newton variational method
Phys. Rev. A 44, 7170?7178 (1991)
7 Péter Lévay
Quaternionic gauge fields and the geomeric phase
Journal of Mathematical Physics 32 2347-2357 (1991)
6 Péter Lévay
Geometrical description of SU(2) Berry phases
Phys. Rev. A 41, 2837?2840 (1990)
5 Péter Lévay and Barnabás Apagyi
Numerical comparison of the Kohn and Schwinger variational methods with Ladányi's approach for potential scattering
J. Phys. B: At. Mol. Opt. Phys. 21 3741-3752 (1988)
4 Károly Ladányi, Péter Lévay and Barnabás Apagyi
Finite-basis-set expansion methods for scattering problems
Phys. Rev. A 38, 3365-3371 (1988)
3 Barnabás Apagyi, Péter Lévay and Károly Ladányi
Anomalies of the Schwinger phase shifts in the Static Exchange Approximation
Phys. Rev. A 37, 4577-4581 (1988)
2 Barnabáas Apagyi, Károly Ladányi and Péter Lévay
Application of the multichannel LVM-ST to the modified Huck problem
Supplement to Research Report of Laboratory of Nuclear Science, Tohoku University Vol. 19, 164 (1986)
1 Péter Lévay
Variational methods in scattering theory
Proceedings of the XVI. th International Symposium on Nuclear Physics, edited by R. Reif and R. Schmidt, TU Dresden, 104