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In this paper we present an ab initio scheme based on linear response theory of exchange torque correlation,
implemented into the real-space Korringa-Kohn-Rostoker (RS-KKR) framework to calculate diagonal elements
of the atomic-site-dependent intrinsic Gilbert damping tensor. The method is first applied to bcc iron and fcc
cobalt bulk systems. Besides reproducing earlier results from the literature for those bulk magnets, the effect
of the lattice compression is also studied for Fe bulk, and significant changes for the Gilbert damping are
found. Furthermore, (001)-oriented surfaces of Fe and Co are also investigated. It is found that the on-site
Gilbert damping increases in the surface atomic layer and decreases in the subsurface layer, and approaches
the bulk value moving further inside the magnets. Realistic atomic relaxation of the surface layers enhances
the identified effects. The first-neighbor damping parameters are extremely sensitive to the surface relaxation.
Despite their inhomogeneity caused by the surface, the transverse Gilbert damping tensor components remain
largely insensitive to the magnetization direction.
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I. INTRODUCTION

It is highly demanded to understand and control the dy-
namical processes governing the manipulation of various
magnetic textures, such as atomic chains [1,2], magnetic
skyrmions [3,4] or domain walls [5], which can be poten-
tially used in future magnetic recording and logic devices.
These processes are often described by the phenomenological
Landau-Lifshitz-Gilbert (LLG) equation [6,7],

∂ �mi

∂t
= −γ �mi × �Beff

i + α

mi
�mi × ∂ �mi

∂t
, (1)

where �mi is the magnetic moment at site i, mi = | �mi| is its
length, and γ is the gyromagnetic ratio. The first term on
the right-hand side of Eq. (1) describes the precession of �mi

around the effective magnetic field �Beff
i , while the second term

is the Gilbert damping due to the energy dissipation to the
lattice. Clearly, this latter term causes the relaxation of the
magnetization to its equilibrium value, which is controlled
by the damping constant α and plays a crucial role in the
realization of high-speed spintronic devices.

The Gilbert damping constant α can be determined
experimentally from the ferromagnetic resonance (FMR)
spectroscopy where the damping parameter is related to the
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line-width in the measured spectra [8]. FMR spectroscopy is
a well-established method for bulk materials [9,10], but espe-
cially in the low-temperature measurement it is controversial
because the intrinsic Gilbert damping needs to be separated
from various extrinsic sources of the line-width, e.g., two-
magnon scattering, eddy-current damping, radiative damping,
spin-pumping, or the slow relaxer mechanism [11–16]. The
comparison of experimental measurement to theoretical cal-
culations is also made difficult by the sample properties like
the exact atomic structure.

From a theoretical perspective the ultimate goal is to
develop a method to calculate the Gilbert damping parame-
ters from the electronic structure of the material. In the last
decades there have been several efforts to understand the
damping process. The first successful method was developed
by Kamberský who related the damping process to the spin-
orbit coupling (SOC) in terms of the breathing Fermi surface
model [17], while he also proposed the spin-orbit torque cor-
relation model [18,19]. Later on several other methods were
introduced such as the spin-pumping [20] and linear-response
approaches [11,21,22]. A recent summary of these methods
was published by Guimarães et al. [23].

Due to the increased interest in noncollinear magnetism
Fähnle et al. [24] suggested an inhomogeneous tensorial
damping. The replacement of a scalar α by a damping ma-
trix α means that the damping field in Eq. (1) is no longer
proportional to the time derivative of �mi, it becomes a linear
function of ∂ �mi/∂t . Moreover, nonlocality of the damping
process implies that the damping field at site i experiences

2469-9950/2024/109(9)/094417(8) 094417-1 ©2024 American Physical Society

https://orcid.org/0000-0003-3875-2059
https://orcid.org/0000-0002-1914-2901
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.109.094417&domain=pdf&date_stamp=2024-03-12
https://doi.org/10.1103/PhysRevB.109.094417


NAGYFALUSI, SZUNYOGH, AND PALOTÁS PHYSICAL REVIEW B 109, 094417 (2024)

∂ �mj/∂t for any site j. The LLG equation (1) is then replaced
by the set of equations [25],

∂ �mi

∂t
= �mi ×

⎛
⎝−γ �Beff

i +
∑

j

α
i j

1

mj

∂ �mj

∂t

⎞
⎠ , (2)

where the damping term is unfolded to pairwise contributions
of strength α

i j
. The appearance of nonlocal damping terms

was evidenced for magnetic domain walls [26,27] by linking
the Gilbert damping to the gradients of the magnetization. In
NiFe, Co, and CoFeB thin films Li et al. [28] measured wave-
number-dependent dissipation using perpendicular spin wave
resonance, validating thus the idea of nonlocal damping terms.
Different analytical expressions for α

i j
are already proposed

[22,25,29,30], and the nonlocal damping is found for bulk
materials [25,31] as well as its effect on magnon properties of
ferromagnets have been discussed [32]. Recent studies went
further and, analogously to the higher-order spin-spin interac-
tions in spin models, introduced multi-body contributions to
the Gilbert damping [33].

The calculation of the Gilbert damping properties of ma-
terials has so far been mostly focused on 3D bulk magnets,
either in chemically homogeneous [11,19,23,25,34–36] or
heterogeneous (e.g., alloyed) [11,22,31] forms. There are
a few studies available reporting on the calculation of the
Gilbert damping in 2D magnetic thin films [12,23,37,38],
or at surfaces and interfaces of 3D magnets [31,35,37]. The
calculation of the Gilbert damping in 1D or 0D magnets is,
due to our knowledge, not reported in the literature. Following
the trend of approaching the atomic scale for functional mag-
netic elements in future spintronic devices, the microscopic
understanding of energy dissipation through spin dynamics
in magnets of reduced dimensions is inevitable and proper
theoretical methods have to be developed.

Our present paper proposes a calculation tool for the diag-
onal elements of the nonlocal intrinsic Gilbert damping tensor
covering the 3D to 0D range of magnetic materials on an equal
footing, employing a real-space embedding Green’s function
technique [39]. For this purpose, the linear response theory
of the Gilbert damping obtained by the exchange torque cor-
relation is implemented in the real-space KKR method. As a
demonstration of the method, elemental Fe and Co magnets
in their 3D bulk form and their (001)-oriented surfaces are
studied.

The paper is organized as follows. In Sec. II the calculation
of the Gilbert damping parameters within the linear response
theory of exchange torque correlation using the real-space
KKR formalism is given. Section III reports our results on
bulk bcc Fe and fcc Co materials and their (001)-oriented
surfaces. We draw our conclusions in Sec. IV.

II. METHOD

A. Linear response theory within real-space KKR

The multiple-scattering of electrons in a finite clus-
ter consisting of NC atoms embedded into a 3D or 2D
translation-invariant host medium is fully accounted for by the

equation [39]

τC = τH
[
I − (

t−1
H − t−1

C

)
τH

]−1
, (3)

where τC and τH are the scattering path operator matrices
of the embedded atomic cluster and the host, respectively, tC

and tH are the corresponding single-site scattering matrices,
all in a combined atomic site ( j, k ∈ {1, ..., NC}) and angu-
lar momentum (�,�′ ∈ {1, ..., 2(�max + 1)2}) representation
τ = {τ jk} = {τ jk

��′ } and t = {t j
��′δ jk}, where �max is the an-

gular momentum cutoff in describing the scattering events,
and for simplicity we dropped the energy dependence of the
above matrices.

For calculating the diagonal Cartesian elements of the non-
local Gilbert damping tensor connecting atomic sites j and k
within the finite magnetic atomic cluster, we use the formula
derived by Ebert et al. [22],

α
μμ

jk = 2

πm j
s

Tr
(
T j

μτ̃
jk
C T k

μτ̃
k j
C

)
, (4)

where μ ∈ {x, y, z}, the trace is taken in the angular-
momentum space and the formula has to be evaluated
at the Fermi energy (EF ). Here, m j

s is the spin moment
at the atomic site j, τ̃

jk
C,��′ = (τ jk

C,��′ − (τ k j
C,�′�)∗)/2i, and

T j
μ is the torque operator matrix, which has to be cal-

culated within the volume of atomic cell j, 
 j : T j
μ;��′ =∫


 j
d3rZ j

�(�r)×βσμBxc(�r)Z j
�′ (�r), where the notation of the en-

ergy dependence is omitted again for simplicity. Here, β is
a standard Dirac matrix entering the Dirac Hamiltonian, σμ

are Pauli matrices, and Bxc(�r) is the exchange-correlation field
in the local spin density approximation (LSDA), while Z j

�(�r)
are right-hand side regular solutions of the single-site Dirac
equation and the superscript × denotes complex conjuga-
tion restricted to the spinor spherical harmonics only [22].
We should emphasize that Eq. (4) applies to the diagonal
(μμ) elements of the Gilbert tensor only. To calculate the
off-diagonal tensor elements one needs to use, e.g., the more
demanding Kubo-Bastin formula [40,41]. Note also that in
noncollinear magnets the exchange field Bxc(�r) is sensitive to
the spin noncollinearity [42], which influences the calculated
torque operator matrix elements; however, this aspect does
not concern our present study including collinear magnetic
states only.

Note that the nonlocal Gilbert damping is, in general, not
symmetric in the atomic site indices, α

μμ

jk �= α
μμ

k j , instead

α
μμ

k j = m j
s

mk
s

α
μμ

jk (5)

holds true. This is relevant in the present paper for the fer-
romagnetic surfaces. On the other hand, in ferromagnetic
bulk systems α

μμ

jk = α
μμ

k j since m j
s = mk

s = ms for any pair of
atomic sites.

In practice, the Gilbert damping formula in Eq. (4) is not
directly evaluated at the Fermi energy, but a small imag-
inary part (η) of the complex energy is applied, which is
called broadening in the following, and its physical effect
is related to the scattering rate in other damping theories
[19,25,37,43]. Taking into account the broadening η, the
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Gilbert damping reads

α
μμ

jk (η) = − 1
4

[
α̃

μμ

jk (E+, E+) + α̃
μμ

jk (E−, E−)

− α̃
μμ

jk (E+, E−) − α̃
μμ

jk (E−, E+)
]
, (6)

where E+ = EF + iη and E− = EF − iη, and the individual
terms are

α̃
μμ

jk (E1, E2)

= 2

πm j
s

Tr
(
T j

μ(E1, E2)τ jk
C (E2)T k

μ(E2, E1)τ k j
C (E1)

)
(7)

with E1,2 ∈ {E+, E−}, and the explicitly energy-dependent
torque operator matrix elements are T j

μ;��′ (E1, E2) =∫

 j

d3rZ j×
� (�r, E1)βσμBxc(�r)Z j

�′ (�r, E2).

B. Effective damping and computational parameters

Equation (6) gives the broadening-dependent spatially di-
agonal elements of the site-nonlocal Gilbert damping tensor:
αxx

jk (η), α
yy
jk (η), and αzz

jk (η). Since no longitudinal variation of
the spin moments is considered, the two transversal compo-
nents perpendicular to the assumed uniform magnetization
direction are physically meaningful. Given the bulk bcc Fe
and fcc Co systems and their (001)-oriented surfaces with C4v

symmetry under study in the present paper, in the following
the scalar α refers to the average of the xx and yy Gilbert
damping tensor components assuming a parallel magnetiza-
tion with the surface normal z[001] direction, α jk = (αxx

jk +
α

yy
jk )/2 = αxx

jk = α
yy
jk . From the site-nonlocal spatial point of

view in this work we present results on the on-site (“00”),
first-neighbor (denoted by “01”) and second-neighbor (de-
noted by “02”) Gilbert damping parameters, and an effective,
so-called total Gilbert damping (αtot), which can be defined as
the Fourier transform of α jk at �q = 0. The Fourier transform
of the Gilbert damping reads

α�q =
∞∑
j=0

α0 j exp (−i �q(�r0 − �r j ))

≈
∑

r0 j�rmax

α0 j exp (−i �q(�r0 − �r j )) , (8)

where r0 j = |�r0 − �r j | and the effective damping is defined as

αtot = α�q=�0 =
∞∑
j=0

α0 j ≈
∑

r0 j�rmax

α0 j . (9)

Since we have a real-space implementation of the Gilbert
damping, the infinite summation for both quantities is re-
placed by an approximative summation for neighboring atoms
up to an rmax cutoff distance measured from site “0”. More-
over, note that for bulk systems the effective damping αtot is
directly related to the �q = 0 mode of FMR experiments.

The accuracy of the calculations depends on many nu-
merical parameters such as the number of �k points used
in the Brillouin zone integration, the choice of the angular
momentum cutoff �max, and the spatial cutoff rmax used for
calculating α�q and αtot. Previous research [25] showed that
the Gilbert damping heavily depends on the broadening η,
so we extended our studies to a wider range of η = 1 meV

to 1 eV. The sufficient k-point sampling was tested at the
distance of rmax = 7a0 (where a0 is the corresponding 2D
lattice constant) from the reference site with the broadening
set to 1 mRy, and the number of �k points was increased up
to the point, where the fifth digit of the damping became
stable. Maximally, 320 400 �k points were used for the 2D
layered calculation but the requested accuracy was reached
with 45 150 and 80 600 �k points for bulk bcc Fe and fcc Co
systems, respectively.

The choice of �max was tested through the whole η range
for bcc Fe, and it was based on the comparison of damping
calculations with �max = 2 and �max = 3. The maximal de-
viation for the on-site Gilbert damping was found at around
η = 5 mRy, but it was still less than 10%. The first and
second neighbor Gilbert damping parameters changed in a
more significant way (by ≈50%) in the whole η range upon
changing �max, yet the effective total damping was practically
unchanged, suggesting that farther nonlocal damping contri-
butions compensate this effect. Since αtot is the measurable
physical quantity we concluded that the lower angular mo-
mentum cutoff of �max = 2 is sufficient to be used further on.

The above choice of �max = 2 for the angular momen-
tum cutoff, the mathematical criterion of positive-definite α jk

(which implies α�q > 0 for all �q vectors), and the prescribed
accuracy for the effective Gilbert damping in the full consid-
ered η = 1 meV to 1 eV range set rmax to 20 a0 for both bcc
Fe and fcc Co. It is worth mentioning that the consideration
of lattice symmetries made possible to decrease the number of
atomic sites in the summations for calculating α�q and αtot by
an order of magnitude.

III. RESULTS AND DISCUSSION

Our method was employed to study the Gilbert damping
properties of Fe and Co ferromagnets in their bulk and (001)-
oriented surfaces. In these cases only unperturbed host atoms
form the atomic cluster, and the so-called self-embedding pro-
cedure [44] is employed, where Eq. (3) reduces to τC = τH for
the 3D bulk metals and 2D layered metal-vacuum interfaces.

A. Bulk Fe and Co ferromagnets

First we calculate and analyze the nonlocal and effective
dampings for bulk bcc Fe by choosing a 2D lattice constant
of a0 = 2.863 Å. The magnitude of the magnetic moments
are obtained from the self-consistent calculation. The spin
and orbital moments are ms = 2.168 μB and mo = 0.046 μB,
respectively. The broadening is set to η = 68 meV. The inset
of Fig. 1(a) shows the typical function of the nonlocal Gilbert
damping α0 j depending on the normalized distance r0 j/a0

between atomic sites “0” and “ j”. In accordance with Ref.
[25] the nonlocal Gilbert damping quickly decays to zero with
the distance, and can be well approximated with the following
function:

α(r) ≈ A
sin (kr + φ0)

r2
exp(−βr). (10)

To test this assumption we assorted the atomic sites lying in
the [110] crystallographic direction and fitted Eq. (10) to the
calculated data. In practice, the fit is made on the data set
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(a)

(b)

FIG. 1. (a) Nonlocal Gilbert damping in bulk bcc Fe as a func-
tion of distance r0 j between atomic sites “0” and “ j” shown up
to a distance of 20 a0 (the 2D lattice constant is a0 = 2.863 Å).
The black squares are calculated α0 j values times the normalized
squared-distance along the [110] crystallographic direction, and the
red line is the corresponding fitted curve based on Eq. (10). The
inset shows the nonlocal Gilbert damping α0 j values in the given
distance range. (b) Convergence of the effective damping parameter
αtot , partial sums of α0 j up to rmax based on Eq. (9), where rmax is
varied. The broadening is chosen to be η = 68 meV.

of α0 j (r0 j/a0)2, and is plotted in Fig. 1(a). Although there
are obvious outliers in the beginning, the magnitude of the
Gilbert damping asymptotically follows the ∝ exp(−βr)/r2

distance dependence. The physical reason for this decay is the
appearance of two scattering path operators (Green’s func-
tions) in the exchange torque correlation formula in Eq. (4)
being broadened due to the finite imaginary part of the energy
argument.

In our real-space implementation of the Gilbert damping,
an important parameter for the effective damping calculation
is the real-space cutoff rmax in Eq. (9). Figure 1(b) shows
the evolution of the effective (total) damping depending on
the rmax distance, within which all nonlocal damping terms
α0 j are summed up according to Eq. (9). An oscillation can
similarly be detected as for the nonlocal damping itself in
Fig. 1(a), and this behavior was fitted with a similar expo-
nentially decaying oscillating function as reported in Eq. (10)
in order to determine the expected total Gilbert damping αtot

value in the asymptotic r → ∞ limit. In the total damping
case it is found that the spatial decay of the oscillation is
much slower compared to the nonlocal damping case, which

makes the evaluation of αtot more cumbersome. Our detailed
studies evidence that for different broadening η values the
wavelength of the oscillation stays the same but the spatial
decay becomes slower as the broadening is decreased (not
shown). This slower decay together with the fact that the ef-
fective (total) damping value itself is also decreasing with the
decreasing broadening results that below the 10-meV range
of η the amplitude of the oscillation at the distance of 20 a0

is much larger than its asymptotic limit. In practice, since
the total damping is calculated as the r → ∞ limit of such a
curve as shown in Fig. 1(b), this procedure brings an increased
error for αtot below η = 10 meV, and this error could only be
reduced by increasing the required number of atomic sites in
the real-space summation in Eq. (10).

Figure 2 shows the dependence of the calculated on-site,
first- and second-neighbor and effective total Gilbert damping
parameters on the broadening η. The left column shows on-
site (α00) and total (αtot) while the right one the first (α01)
and second (α02) neighbor Gilbert dampings. We find very
good agreement with the earlier reported results of Thonig
et al. [25], particularly that the on-site damping has the largest
contribution to the total damping being in the same order of
magnitude, while the first and second neighbors are smaller by
an order of magnitude. The obtained dependence on η is also
similar to the one published by Thonig et al. [25]: α00 and αtot

are increasing with η, and α01 and α02 do not follow a common
trend, and they are material dependent, see, e.g., the opposite
trend of α02 with respect to η for Fe and Co. The observed
negative values of some of the site-nonlocal dampings are still
consistent with the positive-definiteness of the full (infinite)
α jk matrix, which has also been discussed in Ref. [25].

The robustness of the results was tested against a small
change of the lattice constant simulating the effect of
an external pressure for the Fe bulk. These results are pre-
sented in the second row of Fig. 2, where the lattice constant of
Fe is set to a0 = 2.789 Å. In this case the magnetic moments
decrease to ms = 2.066 μB and mo = 0.041 μB. It can clearly
be seen that the on-site, first and second neighbor Gilbert
dampings become smaller upon the assumed 2.5% decrease
of the lattice constant, but the total damping remains practi-
cally unchanged in the studied η range. This suggests that the
magnitudes of more distant nonlocal damping contributions
are increased.

The third row of Fig. 2 shows the selected damping re-
sults for fcc Co with a 2D lattice constant of a0 = 2.507 Å.
The spin and orbital moments are ms = 1.654 μB and mo =
0.078 μB, respectively. The increase of the total, the on-site,
and the first-neighbor dampings with increasing η is similar to
the Fe case, and the on-site term dominates αtot. An obvious
difference is found for the second-neighbor damping, which
behaves as an increasing function of η for Co unlike it is found
for Fe.

Concerning the calculated damping values, there is a large
variety of theoretical methods and calculation parameters,
as well as experimental setups used in the literature, which
makes ambiguous to compare our results with others. Re-
cently, Miranda et al. [31] reported a comparison of total
and on-site damping values with the available theoretical and
experimental literature in their Table S1. For bcc Fe bulk they
reported total damping values in the range 1.3–4.2×10−3 and
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FIG. 2. (Left column) Local on-site (α00, black square) and total
(αtot , red triangle) Gilbert damping as a function of the broadening η

for bcc Fe(001) with a0 = 2.863 Å, bcc Fe(001) with a0 = 2.789 Å,
and fcc Co(001) with a0 = 2.507 Å. (Right column) Nonlocal first-
nearest-neighbor (α01, black square) and second-nearest-neighbor
(α02, red triangle) Gilbert damping for the same systems.

for fcc Co bulk within the range 3.2–11×10−3, and our results
fit very well within these ranges around η ≈ 100 meV for
Fe and for η > 100 meV for Co. Moreover, we find that our
calculated on-site damping values for bcc Fe are larger (>5 ×
10−3) than the reported values of Miranda et al. (1.6×10−3

and 3.6 × 10−3), but for fcc Co the agreement with their
reported total (3.2×10−3) and on-site damping (5.3×10−3)
values is very good at our η = 136 meV broadening value.

Next, we investigate the spin-orbit-coupling-(SOC)-
originated contribution to the Gilbert damping. Our method
makes it inherently possible to include a SOC-scaling factor

FIG. 3. Effective (total) Gilbert damping for bcc Fe (left) and
fcc Co (right) as a function of broadening η on a log-log scale. The
error bars are estimated from the fitting procedure of Eq. (10). The
red triangles show the case with normal SOC (αSOC=1), and the blue
diamonds where SOC is switched off (αSOC=0).

in the calculations [45]. Figure 3 shows the obtained total
Gilbert damping as a function of the broadening η with SOC
switched on/off for bcc Fe and fcc Co. It can be seen that
the effect of SOC is not dominant at larger η values, but the
SOC has an important contribution at small broadening values
(η < 10−2 eV), where the calculated total Gilbert damping
values begin to deviate from each other with/without SOC.
As discussed in Ref. [23], without SOC the damping should
go toward zero for zero broadening, which is supported by our
results shown in Fig. 3.

B. (001)-oriented surfaces of Fe and Co ferromagnets

In the following, we turn to the investigation of the Gilbert
damping parameters at the (001)-oriented surfaces of bcc
Fe and fcc Co. Both systems are treated as a semi-infinite
ferromagnet interfaced with a semi-infinite vacuum within
the layered SKKR method [46]. In the interface region nine
atomic layers of the ferromagnet and three atomic layers of
vacuum are taken, which is sandwiched between the two
semi-infinite (ferromagnet and vacuum) regions. Two types
of surface atomic geometries were calculated: (i) all atomic
layers having the bulk interlayer distance, and (ii) the surface
and subsurface atomic layers of the ferromagnets have been
relaxed in the out-of-plane direction using the Vienna Ab initio
Simulation Package (VASP) [47] within LSDA [48]. For the
latter case the obtained relaxed atomic geometries are given in
Table I.

Figure 4 shows the calculated layer-resolved on-site and
first-neighbor Gilbert damping values (with η = 0.68 eV
broadening) for the bcc Fe(001) and fcc Co(001) surfaces. It
can generally be stated that the surface effects are significant
in the first four atomic layers of Fe and in the first three atomic
layers of Co. We find that the on-site damping (α00) increases
above the bulk value in the surface atomic layer (layer 1: L1),
and decreases below the bulk value in the subsurface atomic
layer (L2) for both Fe and Co. This finding is interesting since
the spin magnetic moments (ms, shown in the insets of Fig. 4)
are also considerably increased compared to their bulk values
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TABLE I. Geometry relaxation at the surfaces of the ferromag-
nets: change of interlayer distances relative to the bulk interlayer
distance at the surfaces of bcc Fe(001) and fcc Co(001), obtained
from VASP calculations. “L1” denotes the surface atomic layer, “L2”
the subsurface atomic layer, and “L3” the sub-subsurface atomic
layer. All other interlayer distances are unchanged in the geometry
optimizations.

L1-L2 L2-L3

bcc Fe(001) –13.7% –7.7%
fcc Co(001) –12.4% –6.4%

in the surface atomic layer (L1), and the spin moment enters
the denominator when calculating the damping in Eq. (4).
α00 increases again in L3 compared to its value in L2, thus
it exhibits a nonmonotonic layer dependence in the vicinity
of the surface. The damping results obtained with the ideal
bulk interlayer distances and the relaxed surface geometry
(“R”) are also compared in Fig. 4. It can be seen that the
on-site damping is increased in the surface atomic layer (L1),
and decreased in the subsurface (L2) and sub-subsurface (L3)
atomic layers upon atomic relaxation (“R”) for both Fe and
Co. The first-neighbor dampings (α01) are of two types for
the bcc Fe(001) and three types for the fcc Co(001), see
caption of Fig. 4. All damping values are approaching their
corresponding bulk value moving closer to the semi-infinite
bulk (toward L9). In absolute terms, for both Fe and Co the
maximal surface effect is about 10−3 for the on-site damp-
ing, and 2 × 10−4 for the first-neighbor dampings. Given the
damping values, the maximal relative change is about 15% for
the on-site damping, and the first-neighbor dampings can vary
by more than 100% (and can even change sign) in the vicinity
of the surface atomic layer. Note that Thonig and Henk [35]
studied layer-resolved (effective) damping at the surface of
fcc Co within the breathing Fermi surface model combined
with a tight-binding electronic structure approach. Although
they studied a different quantity compared to us, they also
reported an increased damping value in the surface atomic
layer, followed by an oscillatory decay toward bulk Co.

So far the presented Gilbert damping results correspond
to spin moments pointing to the crystallographic [001] (z)
direction, and the transverse components of the damping
αxx and αyy are equivalent due to the C4v symmetry of the
(001)-oriented surfaces. In order to study the effect of a
different orientation of all spin moments on the transverse
components of the damping, we also performed calculations
with an effective field pointing along the in-plane (x) direc-
tion: [100] for bcc Fe and [110] for fcc Co. In this case, due to
symmetry breaking of the surface one expects an anisotropy
in the damping, i.e., that the transverse components of the
damping tensor, αyy and αzz, are not equivalent any more.
According to our calculations, however, the two transverse
components of the on-site (αyy

00 and αzz
00) and nearest-neighbor

(αyy
01 and αzz

01) damping tensor, at the Fe surface differed by
less than 0.1% and at the Co surface by less than 0.2%,
i.e., despite the presence of the surface the damping tensor
remained highly isotropic. The change of the damping with re-
spect to the orientation of the spin moments in z or x direction

FIG. 4. Evolution of the layer-resolved Gilbert damping from the
surface atomic layer (L1) of bcc Fe(001) and fcc Co(001) toward
the bulk (L9), depending also on the out-of-plane atomic relaxation
“R”. On-site (α00) and first-neighbor (α01) Gilbert damping values
are shown in the top two and bottom two panels, respectively. The
broadening is η = 0.68 eV. The empty symbols belong to the calcula-
tions with the ideal bulk interlayer distances, and the full symbols to
the relaxed surface geometry, denoted with index “R”. Note that α01

is calculated for nearest neighbors of atomic sites in the neighboring
upper, lower, and the same atomic layer (for fcc Co only), and they
are respectively denoted by “+” [L-(L+1)], “−” [L-(L−1)], and no
extra index (L-L). The insets in the top two panels show the evolution
of the magnitudes of the layer-resolved spin magnetic moments ms.
The horizontal-dashed line in all cases denotes the corresponding
bulk value.

(damping anisotropy) turned out to be very small as well: the
relative difference in α

yy
00 was 0.1% and 0.3%, while 0.5% and

0.1% in α
yy
01 for the Fe and the Co surfaces, respectively. For

the farther neighbors, this difference was less by at least two
orders of magnitude.
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IV. CONCLUSIONS

We implemented an ab initio scheme of calculating diag-
onal elements of the atomic-site-dependent Gilbert damping
tensor based on linear response theory of exchange torque cor-
relation into the real-space Korringa-Kohn-Rostoker (KKR)
framework. To validate the method, damping properties of
bcc Fe and fcc Co bulk ferromagnets are reproduced in good
comparison with the available literature. The lattice compres-
sion is also studied for Fe bulk, and important changes for
the Gilbert damping are found, most pronounced for the site-
nonlocal dampings. By investigating (001)-oriented surfaces
of ferromagnetic Fe and Co, we point out substantial vari-
ations of the layer-resolved Gilbert damping in the vicinity
of the surfaces depending on various investigated parame-
ters. The effect of such inhomogeneous dampings should
be included into future spin dynamics simulations aiming at
an improved accuracy, e.g., for 2D surfaces and interfaces.
We anticipate that site-nonlocal damping effects become

increasingly important when moving toward physical systems
with even more reduced dimensions (1D).

ACKNOWLEDGMENTS

The authors acknowledge discussions with Danny Thonig.
Financial support of the National Research, Development,
and Innovation (NRDI) Office of Hungary under Projects
No. FK124100 and No. K131938, the János Bolyai Research
Scholarship of the Hungarian Academy of Sciences (Grant
No. BO/292/21/11), the New National Excellence Program
of the Ministry for Culture and Innovation from NRDI Fund
(Grant No. ÚNKP-23-5-BME-12), and the Hungarian State
Eötvös Fellowship of the Tempus Public Foundation (Grant
No. 2016-11) are gratefully acknowledged. Further support
was provided by the Thematic Area Excellence Program of
the Ministry for Culture and Innovation from NRDI Fund
through the Grant No. TKP2021-NVA-02.

[1] B. Újfalussy, B. Lazarovits, L. Szunyogh, G. M. Stocks, and P.
Weinberger, Phys. Rev. B 70, 100404(R) (2004).

[2] C. Etz, L. Bergqvist, A. Bergman, A. Taroni, and O. Eriksson,
J. Phys.: Condens. Matter 27, 243202 (2015).

[3] J. Iwasaki, M. Mochizuki, and N. Nagaosa, Nat. Nanotechnol.
8, 742 (2013).

[4] A. Fert, V. Cros, and J. Sampaio, Nat. Nanotechnol. 8, 152
(2013).

[5] C. Schieback, M. Kläui, U. Nowak, U. Rüdiger, and P. Nielaba,
Eur. Phys. J. B 59, 429 (2007).

[6] L. D. Landau and E. Lifshitz, Phys. Z. Sowjet. 8, 153 (1935).
[7] T. Gilbert, IEEE Trans. Magn. 40, 3443 (2004).
[8] C. Kittel, Phys. Rev. 73, 155 (1948).
[9] S. M. Bhagat and P. Lubitz, Phys. Rev. B 10, 179 (1974).

[10] J. F. Cochran, J. M. Rudd, W. B. Muir, G. Trayling, and B.
Heinrich, J. Appl. Phys. 70, 6545 (1991).

[11] S. Mankovsky, D. Ködderitzsch, G. Woltersdorf, and H. Ebert,
Phys. Rev. B 87, 014430 (2013).

[12] A. T. Costa and R. B. Muniz, Phys. Rev. B 92, 014419
(2015).

[13] J. M. Lock, Br. J. Appl. Phys. 17, 1645 (1966).
[14] J. F. Dillon and J. W. Nielsen, Phys. Rev. Lett. 3, 30 (1959).
[15] M. Gloanec, S. Rioual, B. Lescop, R. Zuberek, R. Szymczak,

P. Aleshkevych, and B. Rouvellou, Phys. Rev. B 80, 220404(R)
(2009).

[16] M. A. W. Schoen, D. Thonig, M. L. Schneider, T. J. Silva, H. T.
Nembach, O. Eriksson, O. Karis, and J. M. Shaw, Nat. Phys.
12, 839 (2016).

[17] V. Kamberský, Can. J. Phys. 48, 2906 (1970).
[18] V. Kamberský, Czech J. Phys. 26, 1366 (1976).
[19] K. Gilmore, Y. U. Idzerda, and M. D. Stiles, Phys. Rev. Lett. 99,

027204 (2007).
[20] A. A. Starikov, P. J. Kelly, A. Brataas, Y. Tserkovnyak, and

G. E. W. Bauer, Phys. Rev. Lett. 105, 236601 (2010).
[21] A. Brataas, Y. Tserkovnyak, and G. E. W. Bauer, Phys. Rev.

Lett. 101, 037207 (2008).
[22] H. Ebert, S. Mankovsky, D. Ködderitzsch, and P. J. Kelly, Phys.

Rev. Lett. 107, 066603 (2011).

[23] F. S. M. Guimarães, J. R. Suckert, J. Chico, J. Bouaziz, M.
dos Santos Dias, and S. Lounis, J. Phys.: Condens. Matter 31,
255802 (2019).

[24] M. Fähnle and D. Steiauf, Phys. Rev. B 73, 184427 (2006).
[25] D. Thonig, Y. Kvashnin, O. Eriksson, and M. Pereiro, Phys.

Rev. Mater. 2, 013801 (2018).
[26] Z. Yuan, K. M. D. Hals, Y. Liu, A. A. Starikov, A. Brataas, and

P. J. Kelly, Phys. Rev. Lett. 113, 266603 (2014).
[27] H. T. Nembach, J. M. Shaw, C. T. Boone, and T. J. Silva, Phys.

Rev. Lett. 110, 117201 (2013).
[28] Y. Li and W. E. Bailey, Phys. Rev. Lett. 116, 117602 (2016).
[29] S. Bhattacharjee, L. Nordström, and J. Fransson, Phys. Rev.

Lett. 108, 057204 (2012).
[30] K. Gilmore and M. D. Stiles, Phys. Rev. B 79, 132407

(2009).
[31] I. P. Miranda, A. B. Klautau, A. Bergman, D. Thonig, H. M.

Petrilli, and O. Eriksson, Phys. Rev. B 103, L220405 (2021).
[32] Z. Lu, I. P. Miranda, S. Streib, M. Pereiro, E. Sjöqvist, O.

Eriksson, A. Bergman, D. Thonig, and A. Delin, Phys. Rev. B
108, 014433 (2023).

[33] S. Brinker, M. dos Santos Dias, and S. Lounis, J. Phys.:
Condens. Matter 34, 285802 (2022).

[34] K. Gilmore, M. D. Stiles, J. Seib, D. Steiauf, and M. Fähnle,
Phys. Rev. B 81, 174414 (2010).

[35] D. Thonig and J. Henk, New J. Phys. 16, 013032 (2014).
[36] H. Ebert, S. Mankovsky, K. Chadova, S. Polesya, J. Minár, and

D. Ködderitzsch, Phys. Rev. B 91, 165132 (2015).
[37] E. Barati, M. Cinal, D. M. Edwards, and A. Umerski, Phys. Rev.

B 90, 014420 (2014).
[38] L. Chen, S. Mankovsky, M. Kronseder, D. Schuh, M. Prager,

D. Bougeard, H. Ebert, D. Weiss, and C. H. Back, Phys. Rev.
Lett. 130, 046704 (2023).

[39] B. Lazarovits, L. Szunyogh, and P. Weinberger, Phys. Rev. B
65, 104441 (2002).

[40] A. Bastin, C. Lewiner, O. Betbeder-matibet, and P. Nozieres,
J. Phys. Chem. Solids 32, 1811 (1971).

[41] V. Bonbien and A. Manchon, Phys. Rev. B 102, 085113
(2020).

094417-7

https://doi.org/10.1103/PhysRevB.70.100404
https://doi.org/10.1088/0953-8984/27/24/243202
https://doi.org/10.1038/nnano.2013.176
https://doi.org/10.1038/nnano.2013.29
https://doi.org/10.1140/epjb/e2007-00062-2
https://cds.cern.ch/record/437299
https://doi.org/10.1109/TMAG.2004.836740
https://doi.org/10.1103/PhysRev.73.155
https://doi.org/10.1103/PhysRevB.10.179
https://doi.org/10.1063/1.349902
https://doi.org/10.1103/PhysRevB.87.014430
https://doi.org/10.1103/PhysRevB.92.014419
https://doi.org/10.1088/0508-3443/17/12/415
https://doi.org/10.1103/PhysRevLett.3.30
https://doi.org/10.1103/PhysRevB.80.220404
https://doi.org/10.1038/nphys3770
https://doi.org/10.1139/p70-361
https://doi.org/10.1007/BF01587621
https://doi.org/10.1103/PhysRevLett.99.027204
https://doi.org/10.1103/PhysRevLett.105.236601
https://doi.org/10.1103/PhysRevLett.101.037207
https://doi.org/10.1103/PhysRevLett.107.066603
https://doi.org/10.1088/1361-648X/ab1239
https://doi.org/10.1103/PhysRevB.73.184427
https://doi.org/10.1103/PhysRevMaterials.2.013801
https://doi.org/10.1103/PhysRevLett.113.266603
https://doi.org/10.1103/PhysRevLett.110.117201
https://doi.org/10.1103/PhysRevLett.116.117602
https://doi.org/10.1103/PhysRevLett.108.057204
https://doi.org/10.1103/PhysRevB.79.132407
https://doi.org/10.1103/PhysRevB.103.L220405
https://doi.org/10.1103/PhysRevB.108.014433
https://doi.org/10.1088/1361-648X/ac699d
https://doi.org/10.1103/PhysRevB.81.174414
https://doi.org/10.1088/1367-2630/16/1/013032
https://doi.org/10.1103/PhysRevB.91.165132
https://doi.org/10.1103/PhysRevB.90.014420
https://doi.org/10.1103/PhysRevLett.130.046704
https://doi.org/10.1103/PhysRevB.65.104441
https://doi.org/10.1016/S0022-3697(71)80147-6
https://doi.org/10.1103/PhysRevB.102.085113


NAGYFALUSI, SZUNYOGH, AND PALOTÁS PHYSICAL REVIEW B 109, 094417 (2024)

[42] F. Ricci, S. Prokhorenko, M. Torrent, M. J. Verstraete, and E.
Bousquet, Phys. Rev. B 99, 184404 (2019).

[43] D. M. Edwards, J. Phys.: Condens. Matter 28, 086004 (2016).
[44] K. Palotás, B. Lazarovits, L. Szunyogh, and P. Weinberger,

Phys. Rev. B 67, 174404 (2003).

[45] H. Ebert, H. Freyer, and M. Deng, Phys. Rev. B 56, 9454 (1997).
[46] L. Szunyogh, B. Újfalussy, and P. Weinberger, Phys. Rev. B 51,

9552 (1995).
[47] G. Kresse and J. Furthmüller, Phys. Rev. B 54, 11169 (1996).
[48] D. M. Ceperley and B. J. Alder, Phys. Rev. Lett. 45, 566 (1980).

094417-8

https://doi.org/10.1103/PhysRevB.99.184404
https://doi.org/10.1088/0953-8984/28/8/086004
https://doi.org/10.1103/PhysRevB.67.174404
https://doi.org/10.1103/PhysRevB.56.9454
https://doi.org/10.1103/PhysRevB.51.9552
https://doi.org/10.1103/PhysRevB.54.11169
https://doi.org/10.1103/PhysRevLett.45.566

