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Problem set for the course ”Skálázás és renormálás a statisztikus fizikában”, 2014

Rules: You can choose at wish from problems having the same main number (i.e. from a given section), but you can
collect only 20 points at maximum from the first, and only 30 points at maximum from all other sections.
You are supposed to work alone as much as possible but you are allowed to consult other students and discuss
with them. While discussions among students are encouraged, solving a problem together as a team work is NOT
ALLOWED, and shall not be tolerated. Of course, also feel free to contact me and ask questions; I can help and give
you further hints if you are stuck.
Deadline: 4pm, January 23. Delay penalty: 5points/day. (Days end at 4pm...)
Grades shall be finalized in a few minutes personal conversation once the solutions are corrected (for dates, see Neptun,
but personal arrangement is also possible).
Grading is as follows:

5: 71- points,
4: 56-70 points,
3: 41-55 points,
2: 31-40 points.

I. MEAN FIELD PROBLEMS

1.1 (20 p) Mean field theory of the 3-state Potts model.
In this problem, the mean field free energy of the 3-state Potts model is determined, and it is shown that the
ferromagnetic phase transition in this model is of first order. The N = 3-state Potts model is defined by the following
(dimensionful) Hamiltonian,

H = −J
∑
<r,r′>

δS(r),S(r′) .

Here the index r runs over lattice sites, and the “Potts spin” S(r) takes N different values, S(r) = 1, . . . , N . Neigh-
boring Potts spins interact by a ferromagnetic interaction, and prefer to be aligned in the same direction.

a. (10 p) First compute the free energy within the mean field approximation as follows: Assuming that, inde-
pendently of the other spins, every spin points with probability pi in direction S = i estimate the free energy
density, by computing E = 〈H〉 and using F = E − TS. Express this quantity in terms of the magnetizations,
mi ≡ pi − 1/3. Expanding the free energy density show that it is approximately given by

f ≈ C(T ) +

3∑
i=1

[(3

2
T − Jz/2

)
m2
i −

3T

2
m3
i +

9T

4
m4
i + . . .

]
,

with z the number of nearest neighbors.

b. (5 p) Introduce the variables, α = (m2 −m3)/
√

2, and β = (2m1 −m2 −m3)/
√

6, and express the above free
energy expression in terms of these variables. Evaluate this approximate free energy numerically as a function
of these two variables and show by producing contour plots that the free energy develops three symmetrical
minima in the ordered phase, T < TC , through a first order transition (5p).

c. (5 p) Determine numerically the mean field value of TC . (Hint: consider the mean field free energy obtained in
a. along the special direction, m1 = m, m3 = m2 = −m/2. Plot f(m,T ) and determine TC numerically, up to
four digits.)

d. (5 p) (Bonus!) Introduce the following two variables,

m± ≡ (m1 + e±i2π/3m2 + e∓i2π/3m3)/
√

3 .

Using only symmetry arguments, construct the (Ginzburg-Landau) free energy as a function of these variables
up to fourth order, and show that it takes on the form:

f(T ) = a(T )m+m− + b(m3
+ +m3

−) + c (m+m−)2 + . . . .
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Show that introducing the real variables, (m+ + m−)/
√

2 and (m+ −m−)/(i
√

2), this is precisely of the form
one gets by expanding the mean field free energy. (Notice that now no symmetry forbids the third order term.)

1.2 (20p) Exercise 2.4 from Cardy’s book: Mean field theory of antiferromagnetic Ising model.
Let us consider the following antiferromagnetic Ising Hamiltonian:

H =
1

2

∑
r,r′

J(r − r′) S(r)S(r′)−H
∑
r

S(r) ,

where r and r′ run over a d-dimensional cubic lattice, J(r − r′) = J > 0 for nearest neighbor sites, and it vanishes
otherwise. Notice that J and H have now dimension of temperature (energy). We shall construct the mean field
phase diagram of this model as a function of T and H/J .

a. (5 p) First construct the T = 0 part of the phase diagram by comparing the energy of the ferromagnetic and
antiferromagnetic states. What is the order of the phase transition found?

b. (5 p) To construct a more complete picture, divide the lattice onto two sub-lattices, A and B. Construct the
mean field effective Hamiltonian by assuming that fluctuations are small, and thus approximate the product
S(r)S(r′) ≈ S(r)〈S(r′)〉+ S(r′)〈S(r)〉 − 〈S(r)〉〈S(r′)〉, as usual. However, allow for two different values for the
magnetizations on the two sub-lattices, 〈S(r)〉 = mA,B . Then evaluate the partition function with this mean
field Hamiltonian and show that the dimensionless mean field free energy density (f = F/(T N)) is given by:

fMF = −1

2

(
J̃ mAmB + ln ch(hA − J̃mB) + ln ch(hB − J̃mA)

)
,

where we allowed for a field that is different on the two sub-lattices, hA,B = HA,B/T , and J̃ = zJ/T , with z
the coordination number. Derive the self-consistency equations for mA,B from this expression by differentiating

with respect to hA and hB . [Be careful: mA = − 1
NA

∂F
∂HA

= −2 ∂f
∂hA

.]

c. (5 p) Introduce the ferromagnetic and antiferromagnetic order parameters, m = (mA + mB)/2 and n =
(mA −mB)/2, and rewrite the self-consistency equations obtained in terms of these. Assume that in the high
temperature phase n = 0, and compute the value of m approximately as a function of h ≡ hA ≡ hB from the
self-consistency equations. Then show that the n = 0 solution gets unstable when:

1 = J̃(1−m2) ≈ J̃
(

1− h2

(1 + J̃)2

)
,

thus the magnetic field suppresses TC quadratically. What is the order of the phase transition in a small but
finite magnetic field?

d. (5 p) Finally, draw the phase diagram, and interpret it in terms of fixed points. Argue that there must be a
tricritical fixed point, where a first order phase transition line and a second order phase transition line meet.
(There are six fixed points for h ≥ 0: two of them are stable, one is a discontinuity fixed point, one is a regular
critical point, and the fifth one is the tricritical point described above, and for h = 0 there is a high temperature
fixed point, too. There are three more fixed points for h < 0.)

II. LATTICE RG AND UNIVERSAL SCALING

2.1 (10 p) Exercise 3.2 from Cardy’s book. Scaling for the 1D Potts model.
Let us consider the classical one-dimensional Q-state Potts model:

H = −J
∑
i

δσi,σi+1 ,

where the ’spins’ σi can take Q different values. Construct the renormalization transformation for b = 2.

a. (3 p) Rewrite exp{−H} as a product of terms using the identity:

Tσiσi+1 ≡ e
Jδσiσi+1 = 1 + δσiσi+1(eJ − 1) .

Then do the decimation by summing over every second spin.
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b. (3 p) Give the renormalization group transformation for the free energy density. Use the variable x ≡ eJ − 1.
Show that in the large x limit the transformation simplifies to:

x′ ≈ x

2
− Q

4
.

c. (4 p) Determine the correlation length: Proceed as at class. Start from a very large value of J , and use an
approximate form of the relation x→ x̃ appropriate in this limit to determine the number of decimations after
which the effective coupling becomes of the order of unity, x̃ ∼ 1. Determine the correlation length from the
number of iterations needed. Keep also the subleading term in the approximate relation above, and take the
large Q limit. How can you interpret the expression you get? Explain the Q-dependence of it? (Hint:Think
about domain walls.)

σ
1

σ
4

σ
3

σ
2

σ
~

2.2 (25 p) Construction of the RG transformation for the two-dimensional Ising model. Consider the two-dimensional
Ising model on a square lattice with nearest neighbor interaction:

H = −K1

∑
(i,j)

σiσj ,

Consider the plaquet shown in the figure. The contribution of this plaquet to the partition function is

Z =
∑

...,σ1,σ2,σ3,σ4,σ̃...

· · · × exp(K1(σ1 + · · ·+ σ4)σ̃)× . . .

a. (8 p) Integrate out the spin σ̃ and show that the summation over σ̃ produces a factor

∼ cst.× exp
{
Aσ1σ2σ3σ4 +B

4∑
i,j=1

i<j

σiσj

}
,

where B = 1
8 ln[ch 4K1]. What is the value of the four-spin interaction A ?

b. (7 p) Now neglect all generated interaction beyond second nearest neighbor interaction. What is the RG
transformation K1 → K ′1, K2 → K ′2 like, if you assume that the spins that are integrated out are independent?
(I.e., you neglect the interaction K2 between these spins.) Show that the approximate transformation obtained
this way has a non-trivial fixed point determined by the equation:

K∗1 =
3

8
ln[ch(4K∗1 )] , K∗2 = K∗1/3 .

[Be careful: One new bond has two neighboring plaquets...]

c. (10 p) Linearize the transformation around this point and show that it becomes:

δK ′1 = th(4K∗1 ) δK1 + δK2 , (1)

δK ′2 =
1

2
th(4K∗1 ) δK1 . (2)

Determine the corresponding eigenvalues and the value of the exponent ν. [Compute numerically the value of
K∗1 .]
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III. QUANTUM CRITICALITY

3.1 (15 p) Consider the 2-dimensional transverse field Ising model. Using simple scaling arguments determine the
scaling form of the susceptibility along the z-direction, close to the quantum phase transition. Use the finite size
scaling property

fs(Bz, Bx −B(c)
x , β) = b−(d+1) fs(b

yhBz, b
yt (Bx −B(c)

x ), β/b)

and show (5p) that

χz(T,B) = T−x Q±(T/|B −BC |y) ,

with Q a universal scaling function, and B the field in the x direction. What are the precise (numerical) values of
the exponents (3p)? (Use the corresponding table in Cardy’s book!) What are the asymptotical properties of the
function Q± (3p)? Sketch the behavior of χ(T,B) as a function of T while B crosses the critical value, B = BC
(3p). (Remember that in this system one has a gap away from the critical point and that for B > BC one has a
paramagnet, while for B < BC a ferromagnet is found.)

3.2 (15 +1 p) Diagonalization of the transverse field Ising model
Consider the transverse field Ising model,

H = −J
∑
j

σ̂zj σ̂
z
j+1 −B

∑
j

σ̂xj .

a. (5 p) First use a special form of the Jordan-Wigner transformation

σ̂xj = 2c†jcj − 1 , σ̂zj = i (−1)
∑
k<j(c

†
kck−1) (cj − c†j) ,

with the cj denoting spinless fermions. Show that these operators satisfy the relations (σ̂xj )2 = (σ̂zj )2 = 1 and
[σ̂xj , σ̂

x
k ] = [σ̂zj , σ̂

z
k] = 0 (3p). Show that, in this fermionic language, the Hamiltonian is quadratic (2p):

H =
∑
j

[
J(cj + c†j)(cj+1 − c†j+1)− 2B c†jcj

]
+ cst .

b. (5 p) Now introduce the Fourier transform of the operators cj and show that

H =
1

2

∑
j

(c†q, c−q)

(
ωq −2iJ sin(q)

2iJ sin(q) −ωq

)(
cq
c†−q

)
+ cst , (3)

with ωq = 2J cos(q)− 2B.

c. (5+1 p) Find the eigenvalues ±Ωq of the 2× 2 matrix Hq in (??), and denote the corresponding eigenvectors
by uq,±. Plot the dispersion Ωq at and off the critical point (1p). Define the following annihilation operators,

aq ≡ (uq,+)+ ·
(

cq
c†−q

)
, bq ≡ (uq,−)+ ·

(
cq
c†−q

)
,

and show that the structure of the 2× 2 matrix Hq implies (2p)

a†q = b−q .

Using this property and the spectral representation Hq = Ωq(uq,+) (uq,+)+ − Ωq(uq,−) (uq,−)+, show that (2p)

H =
∑
q

Ωq a
†
qaq + cst.

Thus Ωq just gives the energy of (fermionic) quasiparticles, and the spectrum becomes gapless at the quantum
critical point, B = J . How does the gap scale with B − BC? What does that imply for the critical exponents
of the Ising model? (+1p)
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3.3 (20 p) Dynamical correlations of an Ising spin and mapping to the 1D classical Ising model. Consider
the following Hamiltonian describing a spin in a magnetic field:

ĤQ ≡ −B σ̂x ,

with σ̂x the Pauli Matrix.

a. (5 p) First, as a warm-up, repeat what we did at class: Compute the partition function:

Z ≡ Tr{e−β ĤQ} (4)

using the Trotter formula: divide β in the exponential into N pieces, ∆τ ≡ β/N , and insert a complete set |σ〉
at every time τi = i ·∆τ (i = 0, .., N − 1) using the identity 1 =

∑
σ |σ〉〈σ|, and

(eB∆τ )σσ′ = C(J)

(
eJ e−J

e−J eJ

)
. (5)

(Show that tanh(B∆τ) = e−2J . What is the expression for C(J)?) Show that the partition function of the
quantum system then reads,

Z = CN
∑
{σi}

exp{J
∑
i

σiσi+1} ,

i.e., it is just the classical partition function of the Ising model with an appropriate J = − 1
2 ln tanh(B∆τ).

b. (5 p) Now introduce the imaginary time Heisenberg operators,

σ̂z(t) = eiĤQtσ̂ze
−iĤQt → σ̂z(τ) = eĤQτ σ̂ze

−ĤQτ

and their correlation functions

C(τ1 − τ2) ≡ 〈σ̂z(τ1)σ̂z(τ2)〉ĤQ ≡ Tr{e−β ĤQ σ̂z(τ1)σ̂z(τ2)}/Z ,

with τ1 > τ2. Show that this correlation function depends indeed only on the difference τ1− τ2. Now repeat the
previous procedure, by choosing τ1 = i×∆τ and τ2 = j×∆τ , and using the identity σ̂z

∑
σ |σ〉〈σ| =

∑
σ |σ〉σ〈σ|.

Show that

C(τ1 − τ2) = 〈σiσj〉H =

∑
{σk} σiσj exp{J

∑
k σkσk+1}∑

{σk} exp{J
∑
k σkσk+1}

,

where the average is taken with the classical Hamiltonian:

H = −J
∑
k

σkσk+1.

This means that the imaginary time correlation function of a quantum spin in a transverse magnetic field is
identical to the spatial correlation function of a one-dimensional Ising chain.

c. (5 p) Now compute the correlation function ?? by simply diagonalizing ĤQ. (Hint: Construct the eigenvectors

|±〉 of ĤQ and the corresponding eigenvalues, and use these to evaluate the trace. You will have to compute
the matrix elements of σ̂z between them to evaluate the correlation function.) Show that the correlation length
in time direction is simply given by:

ξτ =
1

∆
, (6)

with ∆ = 2B the “gap”, i.e., the energy difference between the ground state and the excited state. Express
also this correlation length in terms of J and ∆τ in the limit ∆τ → 0 using the connection found above, and
show that this corresponds indeed to the result we obtained at class for the 1D classical Ising model in the limit
J � 1.

d. (5 p) To think: Can you generalize c. to a quantum system in higher dimensions with a gap in the excitation
spectrum, and show that the relation ξτ = 1

∆ holds in general for ANY system with a gap?
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IV. FIELD THEORETICAL SCALING

4.1 (20 p) Perform the Hubbard-Stratonovich transformation for the following d-dimensional O(3) Heisenberg model,

H = −J
2

∑
r,r′

nr · nr′ ,

and derive the corresponding continuum field theory. Here the n-s denote vector spins of unit length, |n| = 1, and
only nearest neighbor sites give a contribution.

a. (5 p) Following the procedure at class, decompose the interaction term of the Hamiltonian by introducing the
new vector fields φai at each site (a = x, y, z) using the identity (prove it!)

exp{1

2

∑
r,r′,a

xarAr,r′x
a
r′} ∼

∫ ∏
r,a

dyar exp{−1

2

∑
r,r′,a

yar [A−1]r,r′y
a
r′ +

∑
r,a

yarx
a
r} .

b. (5 p) Next, carry out the integrals over the n’s in the terms ∼ exp{n · φ} . (Hint: One can use spherical
coordinates and align the z axis parallel to the field φ.) Show that the result depends only on |φ|. Re-
exponentiate and expand the result up to second order in φ2 to determine the coefficient of the φ2 and |φ|4
terms in the effective action.

c. (5 p) Treat the first term ∼ J−1 as at class, and then write the full effective action for the field φr. (Go over
to Fourier space, invert Jr,r′ there, expand it in q, and then go back to real space.) What is the temperature at
which the phase transition takes place (the coefficient of the φ2 term changes sign)?

d. ( 5 p) For T < Tc determine the ground state (of the quartic terms in the effective action (Hamiltonian) and
look for the Goldstone modes. Assume that φ is parallel to the z axis, and then expand the effective action
(Hamiltonian) up to second order in the small fluctuations:

φ = (δφx, δφy, φ0 + δφz) . (7)

Show that the energy of transverse fluctuations goes as q2 in Fourier space. Show also that the energy of
longitudinal fluctuations (Higgs modes) remains finite at q = 0.

4.2 (25) Consider the O(n) model, described by the following effective action:

H = H∗ +

∫
ddr
[
t a−2 |~φ|2 + +u a−ε (|~φ|2)2

]
, (8)

H∗ =
C

2

∫
ddr(∇~φ)2 (9)

where φ denotes an n-component vector, ~φ = {φα} = {φ1, φ2, . . . , φn}, and all operators are normal ordered. As
shown in the previous problem, you arrive at this effective theory if you consider vector spins instead of Ising spins.
The constant C in H∗ is defined in such a way that the correlation function of φα is nicely normalized,

〈φα(r1)φβ(r2)〉∗ =
δαβ

|r1 − r2|d−2
.

Construct the operator product expansion of the operators occurring in H following the same lines as in case of the
Ising model (10 p). Then compute the second order corrections to the scaling equations (5 p), and determine the
exponent ν from them (10 p). For additional hints see Cardy’s book, there the derivation is almost complete. What
happens in the n→∞ limit?

3.3 (15 p) Operator Product Expansion
Construct the OPE for the operator product : φ4(r) :: φ6(r′) : at the Gaussian Fixed point (10p) (spell out every
function and compute every coefficient in the expansion). Denote the corresponding dimensionless coupling of the
term : φn(r) : in the energy functional by un, and the corresponding beta functtion by βn. Which βn’s will contain a
term ∼ u4u6, and with what coefficient (5p)?
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3.4 (5 p) Normal ordering
Prove that the operator : φ4(r) : is given by the following expression:

: φ4(r) := φ4(r)− 6φ2(r)〈φ2(r)〉+ 3〈φ2(r)〉2,

where 〈...〉 denotes averaging with a Gaussian Hamiltonian, H[φ].

3.5 (20 p) Consistency of RG
Prove that the RG transformation derived at class can be also generated by higher order terms in the expansion of Z.
(Hint: using δH expand 〈exp(−δH)〉 in δH, and express the n’th order term as an n · d-dimensional integral. Show
that changing the cut-off length a→ a′ in the n’th order term can be compensated by the redefinition of the couplings
in the n− 1’th order term. Here assume that the dominant contribution comes from regions where, say, |r1− r2| ∼ a,
while all other distances are large. Show that the combinatorial factors work out nicely.
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Other possible exercises

1.3 (15 p) Exercise 2.2 from Cardy’s book: Infinite range Ising model
Very often infinite range models are used to construct mean field theories. In this problem we consider the classical
Ising Hamiltonian, where each spin is coupled to every other spin

H = − J

2N

∑
r,r′

S(r)S(r′)− h
∑
r

S(r) .

Here the index r takes N � 1 different values, and S(r) = ±1 is an Ising spin. We show that in the N → ∞ limit
the mean field equations for this model become exact. (Similar models are used to describe spin glasses.)
Hints:

a. (3 p) First notice that the interaction term is simply proportional to O2 with O =
∑
r S(r), and rewrite the

partition function by making use of the identity (Hubbard-Stratonovich transformation):

exp{x2/2α} =

√
α

2π

∫
dy exp{−α

2
y2 + yx} .

b. (4 p) Next carry out the trace over the spins and bring the partition function to the form,

Z ∼
∫ ∞
−∞

dy exp{−Nf(y)} .

c. (4 p) Evaluate the integral by the saddle point method, using the fact that the prefactor N is very large:

Zsp = cst. exp{−Nf(y0)} ,
(
∂f

∂y

)
y0

= 0 .

d. (4 p) Differentiating ln Zsp with respect to h show that y0 is related to the magnetization as m = th(y0 + h),
and rewrite the saddle point equation and the saddle point free energy functional in terms of m.

2.3 (20 p + 10 p) Cardy’s book, 4.2, somewhat simplified/modified. Exact results and universal scaling functions
for the 1D Ising model.
Consider the 1D Ising model:

H = −J
∑
i

σiσi+1 − h
∑
i

σi .

We shall evaluate the partition function and compute the susceptibility per site, χ, for a finite system of size L
with periodic boundary conditions analytically and show that for periodic boundary conditions and large correlation
lengths, ξ

Tχ ≈ 2ξ f

(
L

ξ

)
, (10)

with

ξ−1 = ln [cth(J)] (11)

the correlation length, and the scaling function f is given by

f(x) = tanh(x/2) .

Therefore, although the 1D Ising model has no phase transition, in the T → 0 limit it behaves quite the same way as
a critical system.
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a. (8 p) First rewrite the partition function as a trace of the product of the following (transfer) matrices:

Z = Tr{TL} , (12)

Tσ,σ′ = exp{Jσσ′ + h

2
(σ + σ′)} (13)

Then diagonalize the matrix T and compute the trace and the free energy in terms of the eigenvalues of the
transfer matrix. Keep only the leading terms in h throughout this calculation and show that the eigenvalues of

the transfer matrix are given by λ± = (eJ ± e−J) + h2

2 e
2J(e−J ± eJ) +O(h4)) . Expand the free energy up to

second order in h to show that

F = −T ln(λL+ + λL−)− TLh
2

2
e2J λ

L
+ − λL−
λL+ + λL−

+O(h4)) ,

where λ± = eJ±e−J . Then take the large J limit, compute the susceptibility and prove Eq. (??). (Do not forget
that h = H/T with H the external magnetic field, - multiplied by the Bohr magneton and the appropriate g
factor, - and T is the temperature. Use the expression (??) above, obtained later explicitely from the correlation
function.) Interpret the susceptibility in the L� ξ and L� ξ limits.

b. (4 p) Now compute the free energy density in the h = 0, L→∞ limit. For this part of the calculation restore
the temperature, J → J/T . From the free energy density compute the entropy density s, and show that it goes
to 0 as T → 0. Plot s as a function of temperature. Verify that for T � J it scales to ln 2. Interpret the results.
Compute also the specific heat and show that it scales as cv ∼ (J/T )2e−2J/T for T << J . Plot the specific heat
too.

c. (8 p) Finally, compute the correlation function to verify the expression of the correlation length. Do this
calculation only for h = 0, but keep a finite system size. Show first that

C(j) ≡ 〈σiσi+j〉 ≡
∑
{σi} σi σi+j e

−H∑
{σi} e

−H =
Tr{TL−j σ̂zT j σ̂z}

Tr{TL}
,

where σ̂z denotes the third Pauli matrix. Then using the eigenvalues and eigenvectors of T show that the
correlation function is simply given by:

C(j) =
λL−j+ λj− + λj+λ

L−j
−

λL+ + λL−
.

Then take the L→∞ limit, and compute the correlation length from the condition, C(j) ∼ e−|j|/ξ as j →∞.
Compute ξ in the J � 1 limit, and express the specific heat, the entropy, and the susceptibility (Tχ) in terms
of ξ in the ξ � 1, L =∞ limit.

d. (+ 10 p) This last part is optional, you should only do if you use Mathematica or Maple, but it is very
instructive. Here we show explicitely that the scaling function depends on the boundary conditions. Compute
now the free energy density for free boundary conditions along the same lines as in (a). Just take the trace and
expand it up to h2. Compute the scaling function f(ξ/L) in this limit, assuming J � 1.

A. Monte Carlo

1. (30 p) Do Monte Carlo for the 2D Ising model, extract the susceptibility and determine the critical exponents
through finite size scaling. (Hint: The simplest way is to compute the expectation value of the total magnetization,
〈
∑
r σr〉 and that of its square, 〈(

∑
r σr)

2〉, and get χ from these, χ ∼ 〈δM2〉/T . Derive recursive relations for these
quantities and use the simplest single spin flip Monte Carlo step: Flip the spin with probability p = 1 if the total
energy is reduced, but with probability p = e−∆E/T if the energy increases with the flip. Do not go much below
TC ≈ 2.27 J !)


