1. Introduction

Random matrices were first introduced in physics by Wigner in the 1950’s as a
tool to studyv the statistical properties of resonances observed in the scattering of
neutrons by heavy nuclei (see [1 4] and other articles reprinted in ref. [3]). The
ideas involved are very general, as we shall see in the presentation that follows,
and have been applied successfully to a variety ot quantum-mechanical systems:
some of these applications will be described here and also in other courses of
this School; an application to chaotic dynamics can be found, for instance, in ref.
[6]. It is this universal description that makes the topic so appealing. Whenever
a universal behaviour has been discovered in physics, its understanding has rep-
resented a great theoretical challenge: let us just cite, as a beautiful example, the
universality of critical phenomena {7], whose comprehension in the past has been
of far reaching consequences.

In his original statistical analysis of nuclear resonances, Wigner approached
the problem from the standpoint of scattering theory [1-3]. For example, it was
in those early papers that the notion of a statistical R function was introduccd.
Since the construction of the R-function was conceived in terms of its poles and
residucs (associated with bound states tnside a box), the attention of a number of
people concentrated on the statistical properties of the discrete spectrum of bound
systems from a very general point of view. This is in fact the topic of a large part
of the material contained in the reviews of refs, {5,8,9] (where applications to a
number of physical systems can already be found) and forms the subject matter
of section 2 of the present course.

The statistical analysis of the original scattering problem was undertaken by
several groups (see, e.g., the papers referred to in chapter VIII of ref. [8] and in
section 3 of this course), not always from the same point of view: sometimes a
phenomenological approach was taken; in some papers the description was done
in terms of the statistics of the poles and residues of the scattering matrix 5, or
those of the R, or X matrix; in others, statistics on the S matrix itself was done.
Again, some of the ideas involved are very general and have been applied to
a variety of physical systems, whose dimensions may differ by many orders of
magnitude - atomic nuclei, mesoscopic systems, microwave cavities! This forms
the topic of section 3 of these notes. We first consider those systems in which
the scattering process can be described in terms of an “equilibrated, delayed”
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component only, and then those that also need a “prompt, direct” component, for
their understanding. Finally, we present some random-matrix models intended to
describe the scattering produced by disordered systems, where the time scale set
by a diffusive process has a dominant role.

A number of appendices are included for the sake of complcteness. Appendix A
gives, in its first part, a brief survey of the quantum-mechanical scattering theories
introduced by various authors; in its second part it cxplains, by means of simple
examples, some of the basic notions of scattering theory used in section 3: the
scattering matrix S and its propertics (unitarity and its analytic structure in the
complex energy plane), the transfer matrix, its properties and its relation to the .5
matrix. A central-limit theorem of a novel kind, relevant to 1-channel scattering
theory, is verified, for a particular situation, in Appendix B. In appendix C a
Fokker—Planck equation relevant to the description of scattering in the presence
of diffusion is obtained.

In the prescntation that follows we deal with situations where the complexity
of the problem washes out most of the details and leads to a behaviour that re-
flects the symmetries of the system, depends only on a rather limited number of
relevant parameters (generally of a macroscopic nature, having a clear physical
significance) and is insensitive to other details of the problem. In a number of
cases one has discovered a generalized central-limit theorem (CLT) responsible
for this behaviour. In these situations, a microscopic calculation might end up
being a “scaffolding”, due to the final insensitivity to most of the details. It is
then conceptually appealing to construct directly the statistical distribution of the
quantities of interest by imposing the symmetry constraints and the values of the
relevant parameters alluded to above; This procedure may determine the distri-
bution uniquely; if it does not, it has been frequently found advantageous to make
a selection on the basis of a maximum-entropy criterion. Such a criterion allows
one to pick the “most probable” distribution among those that satisfy the given
constraints; alternatively, one could say that it treats the statistical variables of
the problem “as randomly as it is allowed” hy those constraints. In a sense, the
above philosophy is best expressed in William of Occam’s (1300-1349) famous
dictum:

“Essentia non sunt multiplicanda praeter necessitatem”,

known as the “Occam Razor”. Occam’s statement, which, literally, means: “En-
tities do not have to be multiplied beyond necessity”, was rephrased by Bertrand
Russel [10] as: “If in a certain science everything can be interpreted without a
certain hypothesis, there is no reason to use it”.
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Fig. . INustration of the statistical regularities that occur in a variety of situations, as discussed in
the text.

2. Random matrices and spectral statistics

The energy spectra of complex quantum-mechanical systems are, in general, not
amenable to a detailed level-by-level analysis. In many-body systems onc finds
complicated states that no one even knows how to calculate; in chaotic single-
particle systems, even when one can solve numcrically the Schrodinger equation,
one does not learn much with an individual-level analysis. In contrast, a statistical
description like the one to be discussed below, besides being, in many cascs, the
only feasible one, reveals features which would otherwise remain hidden.

As an illustration of the statistical regularities that occur in a surprising vari-
ety of situations, consider the spectra shown in fig. 1 [8,11]. Each contains 50
levels and they have all been rescaled to the same spectrum span. Fig. la shows
a spectrum of equally-spaced levels (picket fence); Fig. 1b shows the eigenval-
ues ol a Sinai billiard for a fixed exact symmetry (reflection symmetry); (c), (d)
are experimental data for neutron resonances: in the first all the levels have the
same exact symmetry (J™ = 1/2%), while the second one contains mixed exact
symmetries (J™ = 3%,4%); finally, fig.le shows a Poisson’s sequence, corres-
ponding to levels thrown at random. The “arrowheads™ mark the occurrence of
pairs of adjacent levels with spacings smaller than one quarter of the average. We
observe, from right to left, a decrease in the probability of small spacings, or the
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Fig. 2. Nearest-neighbour spacing distribution for spectra b-¢ of fig. 1; panel d’ corresponds to the
spectrum of a stadium with the four possible symmetries included.

building up of a phenomenon known as leve! repulsion. This is seen more clearly
in fig. 2, that gives a histogram of nearest-neighbour spacings for cases (b)—(c).
The levels of fig. 2b, as well as those of fig. 2c, all corresponding to the same
exact symmetry, are fitted very well by “Wigner’s surmise” [12]

p(z) = (rz/2)e ™= /%, 2.1

Here, z denotes a spacing measured in units of the mean spacing. Case (e) is well
described by Poisson’s distribution [see ref. [5], Introduction]

p(z) =e™7, (2.2)
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shown as a dashed line. On the other hand, spectrum (d), corresponding to mixed
exact symmetries, is shown in the figure to have a spacing distribution somewhat
intermediate between (2.1) and (2.2); a similar situation is observed in fig. 2d’,
that shows the spacing distribution for the spectrum of a stadium, containing all
levels corresponding to the four possible symmetries [6,11]. It is also apparent
from fig. 1 that the spectra (b) and (c) deviate from the picket-fence (a) less
strongly than (e) : to this spectral rigidity we shall come back later.

Figs. 1b, c and 2b, c are just one piece of evidence, with spectra arising from
very different physical problems — a Sinai billiard and a nucleus — of a statistical
regularity actually observed when the classically related problem is fully chaotic
[6]: we shall say that these systems, that behave statistically in a similar way,
belong to the same universality class.

The study of the universal behaviour occurring in complex spectra is our pur-
pose in what follows. We shall not touch upon those features which appear to be
system dependent, such as thosc rclated with the short orbits in a scmiclassical
description (see ref. [6], p. 156; see also ref. [13] for a discussion of energy
level statistics in small metal samples). In the scattering problems studicd in the
next section, we also consider the universal properties first (section 3.1); we show
next that in various cases of physical interest onc can identify a number of system-
dependent relevant parameters which, once specified, do determine the statistical
scattering properties of the system.

For our theoretical analysis it is useful to treat a universality class through
Wigner’s notion of ensemble of random matrices [1-5,14], i.e., Hamiltonian
matrices

Hy - Hin
| oo (2.3)
Hyy -~ Hyn

distributed according to a probability law. This is reminiscent of the notion of
Gibb’s ensemble (which is defined, though, for a fixed Hamiltonian) in statist-
ical mechanics. Similar issues as in statistical mechanics then arise, like that of
ergodicity: just as the question of the equality of time averages and ensemble av-
erages is important in classical statistical mechanics, we have to face the question
of spectral vs. ensemble averages in the present context.

Following the ideas outlined in the Introduction, we propose a statistical rodel
for our random matrices on the basis of a maximum-entropy criterion. We thus
make a digression to introduce this concept.
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2.1. The concepis of information and entropy of u statistical distribution

Suppo. ¢ we wish to accomodate N objects in k boxes. If N, denotes the number
of particles in box 4, the weight W of the configuration Ny, Na,..., Ny is [15]
N!

- IVI.IJVQ! s Nkr
In the absence of other physically relevent restrictions, the most probable con-
fignration is the one of maximum weight © Ny = Ny = --- = N In clas-
sical statistical mechanics one finds the Maxwell-Boltzmann distribution using a
maximum-weight argument. There, the objects are particles and the boxes rep-
resent equal volume elements in u-space, the energy ¢; being assigned to them;
but one has further restrictions: in the microcanonical ensemble the total num-
ber of particles N and the total energy E are fixed; for N >> 1, these (plus the
total volume) are, for a thermodynamical description, the only relevant physical
quantities, other dynamical details being irrelevant. For given N, E, the most
probable configuration, i.e. the one with maximum weight, is given by the well
known Maxwell-Boltzmann expression V; = exp(—a' — B¢;), @' and 3 being
Lagrange multipliers. This statement can be rephrased in terms of the entropy per
particle S = N~!In W. Using Stirling’s approximation, S can be written as

S= —sz‘lﬂpn / 2.5

w (2.4)

where p; = N; /N is the fraction of particles (or probability to find a particle) in
box i. With the restrictions

Zpi =1, (2.6)

Y ap =% @27

S is maximum when
P = e—a—ﬁe; . (28)

The quantity S, the thermodynamic entropy in the statistical mechanical problem,
can also be assigned to an arbitrary distribution p; , (i = 1,... k), in which
case the term entropy is sometimes qualified as Shannon entropy or information-
theory entropy [16-20). The information is defined as I = —S. The distribution
(2.8) is the one with minimum information, or maximum entropy, consistent with
the constraints (2.6), (2.7), which in turn represent the only physically relevant
quantities in this problem.
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Fig. 3. A simple example of maximum and minimum-entropy distributions.

We contrast in fig. 3 the distribution of minimum information (or maximum
entropy) consistent with the constraint (2.6) alone, with a distribution ot maximum
information (or minimum entropy); in the former case all the p;’s, 7 = 1,.. ., k
are equal to 1/k and & = In k; in the latter case, S = 0.

It is interesting that the form (2.5) for the entropy can also be found from a
uniqueness theorem ([18], p. 9). Suppose we require the entropy S, the negative
of the information I, to have the following properties:

1. For given k and for Ele p; = 1, the function S(py, . . ., px ) takes its largest
possible vatue for p; = 1/k.

2. For two (in general statistically dependent) sets of events {A;} and {B},
the entropy of the combined set satisfies S(AB) = S(A) + >, piSk(B). Here,
Sk(B) is the conditional entropy of the set { B}, calculated on the assumption
that the event A actually occurred.

3. Adding an impossible event does not change the entropy; S(py, . .., px,0) =
S(prs- . 2 pe).

Then, if S(p1,...,px) is continuous with respect to all its arguments and has
the above three properties, it must have the form (2.5), up to a multiplicative
constant.

Consider now an example with a continuous variable. Let z € {—o00, +00).
The probability density p(z) is related to the differential probability by

dP{z) = p(x)dz, 2.9
and the entropy is defined as

S=- /p(’r) In p(z)dz. (2.10)

From the above discussion it is clear that among all the distributions that are
normalized and have fixed first and second moments (equal to x and u° + o2,
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respectively) the Gaussian

o—la—n)?/o? o foyz®

has the largest entropy. Let us recall an interesting situation where a Gaussian
distribution arises. Consider a number n of statistically independent variables
with a common arbitrary (the actual restrictions are very mild!) distribution. The
distribution of their sum becomes approximately Gaussian for n > 1 and, asn —
oo and with a proper renormalization, it tends to a zero-centered Gaussian with
unit variance. This result is known as the central-limit theorem (CLT) of statistics
[21]. We thus see that the resulting distribution is sensitive only to the centroid and
width of the original one, all the other details being irrelevant! This is precisely
reflected in the fact that the information (entropy) carried by a Gaussian is smallest
(largest) among those distributions that have the same centroid and width. This
interpretation has to be contrasted with the more subjective one of Jaynes {17],
who would look for a distribution having maximum entropy, “while agreeing with
whatever information is given”.

As another example of a continuous variable, consider the angle 6 € (0, 27),
with the relation '

dP(0) = p(6)d6 (2.12)

between the differential probability and the probability density. The entropy is
defined as

S=- / 2(0)In p(6)dé. @2.13)

With no other constraint except normalization, S is maximum for p(6) = 1/27.
On the other hand, with the constraint {cos §) = p, S is maximum with

plf) = e~ Feost, (2.14)

We observe that, for a continuous variable, we have to specify how to factorize
the differential probability into a probability density times what has sometimes
been called the “prior” [20] (dz and d in the above examples). The choice of the
prior corresponds to making a definite postulate of “‘equal a priori probabilities”,
as, after all, one always does in statistical studies. For a compact space, the prior
is normalizable and defines the maximum-entropy distribution in the absence of
constraints. In many cases of interest there is a “natural” way to “measure” the
quantities in question: let us make it clear, though, that it is the confrontation with
experiment that finally decides whether the choice is a reasonable one or not. In
closing, let us just remark that choosing the prior as the invariant measure under
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a certain symmetry operation has the appealing consequence that the resulting
entropy is also invariant under that operation [22]. As an illustration, in the above
example df remains invariant under the addition of an arbitrary constant phase
fp; 1.e.

6 =0+6, d6=4de. (2.15)

Calling p(#) and ¢(¢') the probability densities of the variables ¢ and (', respect-
ively, we have

p(6)do = q(8")d¢’; (2.16)
since d9 = d&’ (eq. (2.15)),
q(8") = p(8(8')) = p(6' — bo). (2.17)

For the entropy we then have

SO = - [ p(elup(o)ts
so that, applying egs. (2.16) and (2.17), we find

SO = [ o)1 (@)’ = i8]
2.2. An ensemble of real symmetric matrices

We first make a short digression. In a three-dimensional Euclidean space the
standard arc element is given by

ds? = dz? 4+ dy? + d=? (2.18)
and the volume element by
dV =dxdydz. (2.19)

Notice that both quantities are invariant under rotations as well as under trans-
lations. Should we require that the volume element be invariant under rotations
only, we would have the freedom to multiply (2.19) by an arbitrary nonnegative
function f(r) of the radial coordinate r = (2% +y® +22)!/2; this function reduces
to a constant if 4V has to remain invariant under translations as well.

In the language of the previous subsection, (2.19) is the prior in terms of which
we write a differential probabtlity in our three-dimensional Euclidean space; 1.c.

dP(zx,y, 2) = p(z,y, z)dzdydz; (2.20)

we refer to p{z, y, 2) as the probability density.
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For future purposes we point out that the above are special cases of 2 more gen-
eral situation studied in differential geometry; there one considers the arc element

ds® =Y guu(2)62u67., (2.21)

(written in terms of independent variables), through which the metric tensor
guv(w) is defined. Assuming that ds® remains invariant under the transforma
tion x, = x,(x],zY,...), one can prove that the volume element

dv = | det g(z)]*/* [ ] dzy (2.22)
I7

remains invariant under the same transformation [23].

We now go back to our random-matrix problem. Consider a system that is in-
variant under the operation of time-reversal; for integral spins, or for half-integral
spins and rotational invariance, one can always find a basis in which the Hamilto-
nian matrix H is real and symmetric (|5], Introduction and {9]). This is the case
for the problems illustrated in Figs. 1b,c and 2b,c that were discussed at the be-
ginning.

First we have to define a way to “measure” real symmetric matrices ([5], p.32
and [24]) of dimensionality N. In analogy with the above 3D example, egs.
(2.18)-(2.20), to the variation § H we associate the “‘arc element”

ds? =tr(6H)? (2.23)
= "(6Hu)* +2) (6Hi;), (2.24)
7 i<
(in terms of independent variables) and the volume element (up to a multiplicative
constant)

du(H) = [[ 685 [] 617 (2.25)
i<y %

Just as in the example, the arc element (2.23) and the measure (2.25) remain
invariant under a real orthogonal transformation (a change of basis in Hilbert
space that maps the space of real symmetric matrices unto itself) as well as under
the addition of a constant matrix. Using the above measure we then write the
differential probability d P as

dP({H,;}) = p({H:; ) du(H); (2.26)

we refer to p({H;;}) as the probability density.
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In the cases discussed at the beginning of this section in connection with figs.
I and 2, as well as in various numerical simulations and experimental situations,
one finds a clear-cut separation between the properties of fluctuations and the sec-
ular variation of the level density: while the former have the universal character
that we discussed at the beginning of this section, the latter is, generally speak-
ing, system dependent [8,22,25]. It is then appropriate to look for an ensemble
that has minimum information (or maximum entropy) among all those that have
a prescribed density [22]. This task will be undertaken in subsection 2.4. At the
present moment we adopt a simpler point view, that leads to an ensemble that
has been analytically studied in great detail [9]. Suppose we agree to describe
those situations in which, once the energy scale is specified, the statistical prop-
erties of the spectrum are insensitive 1o most details. An ensemble that reflects
these properties is one of minimum information (or maximum entropy) once the
average strength of the Hamiltonian matrices

(tr(H?)) = <Z(H“)2 + 2Z(Hij)2> (2.27)
i i<y
is specified [22]; the answer is
p({Hij}) = e A mwurlH) (2.28)

where A and u are Lagrange multipliers. Eq. (2.28) defines the Gaussian Or-
thogonul Ensemble (GOE): p(H) depends on H only through a trace and is thus
invariant under orthogonal transformations; in addition, except for the condition
of symmetry, the various mairix elements are statistically independent Gaussian
variables.

As a simple illustration, consider the case N = 2 (ref. [5], p. 53). We can write
p(H) as

p(H1\, Hyg, Hyy) = e A #(HI+HEG+2H) (2.29)

To find the spectral properties, we make a change of variables to the eigenvalues
E,, E, and the angle 8 of the orthogonal transformation that diagonalizes H'; the
measure (2.25) can then be expressed as

cl,u(H) = |E1 — EzldEldEzde (2<30)
As a consequence, the joint probability density of the eigenvalues is
w(Ey, By) = |Ey ~ Eyle™HE+ED, 2.31)

We first observe that the Jacobian | E; — Ey| vanishes when the two eigenvalues
coincide, thus giving rise to the level repulsion that was described at the beginning
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Table |
(#1,6]  Spin {H,J] Ensemble g
0 inleger orthogonal ]
0 1/2 integer orthogonal |
0 1/2 integer #0 symplectic 4
#0 unitary 2

of this Section. If we go one step further and express (2.31) in terms of “center of
mass” and “relative coordinates”, we find precisely Wigner's spacing distribution
(2.1)! We only mention here that the spacing distribution has also been calculated
in the N — oo limit, with the remarkable result that the Wigner surmise (2.1) is
an excellent approximation to it {9].

2.3. Universality classes

The orthogonal case studied above belongs to one of the three universality classes
arising from general symmetry arguments. We have the scheme shown in the table
[9,26], where .7 denotes the angular momentum operator and # the time-reversal
operator (see [5], Introduction; [27,28]). Time-reversal invariance, as is realized
in the absence of a magnetic field, implies [H,8] = 0. We have already en-
countered the orthogonal case in the above presentation. In the unitary ensemble
the Hamiltonian matrices are Hermitean and are transformed among themselves
(an automorphism) under unitary transformations. In the symplectic case the auto-
morphism is induced by a subgroup of the unitary matrices, called symplectic.
Finally, the last column of the table assigns, to each one of the three universality
classes, a parameter 3, that counts the number of real parameters associated with
each matrix site: 1 for real matrices, 2 for complex ones and, in the language
of quaternions, 4 for matrices whose elements are linear combinations, with real
coefficients, of the 4 quaternion units. As we shall see in subsection 2.5, 3 plays,
formally, a role similar to the inverse temperature in statistical mechanics.

2.4. The Gaussian Ensembles (GE)

If we maximize the entropy, constrained, as we did above, by a specified average
strength of the Hamiltonian matrices, we find the Gaussian Orthogonal, Unitary
and Symplectic Ensembles (GOE, GUE, GSE), for 8 = 1, 2,4, respectively. The
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resulting joint probability density of eigenvalues is given by

w(Ey,...,BEx) = C[[|1E - E)P [[e . (2.32)
1< j k

Eq. (2.31) above is a particular case of (2.32) for § = 1, N = 2. We summarize
below some of the results that are found |5,6,8,9] from the joint distribution of
eigenvalues, Eq. (2.32).

1.The density of eigenvalues. The “microscopic density” is defined as

N
p(E) =Y 6(E — E) (2.33)

t=1

and the mean level density, or simply the density (a one-point function), is then
given by

o(E) = (E)). (2.34)

1/2

In terms of the rescaled energy x = E/(Bv2N)'/? one finds, for p(E), the so-

called “‘semicircle™
p(z) = (N/27)(4 ~ 2?)1/2, (2.35)

2. A short range repulsion is found: the nearest-neighbour spacing distribution
behaves as 7 when z — 0.

3. Long-range rigidity. We first encountered this concept in our discussion
of fig. 1. To be more precise, we present in fig. 4 a small segment of a 1206-
dimensional spectrum resulting from a complex many-body calculation [8]. The
left part shows the actual energy levels, while the right part shows an equally-
spaced spectrum with the same local density, that actually originates from the
bottom of the spectrum and is computed by an appropriate smoothing of the actual
density. We find the surprising result that the actual level deviations are of the
order of a single spacing unit! One can compute the fluctuation of a single energy
level for the above ensembles. In units of the mean local spacing A one finds, in
the center of the spectrum ( [8,9]; see ref. [29] for the circular ensemble discussed
in the next section)

N In2N

~ (2.36)

{(62)%)

For N = 10'2, the level motion is only about 1.7 spacings!
The number variance £%(r), i.e. the variance of the number of levels . in an
interval §F = rA, is also found to have a logarithmic dependence [8,9,30]; for
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Fig. 4. Nlustration of the spectral rigidity.

example, for § = 2 one finds
¥ir) = i[ln(27r1") +y+1]+ ()(L) (2.37)
n? mw2r”’

- being Euler’s number.
In contrast, a Poisson’s sequence of statistically independent levels gives rise
to the much larger fluctuation

22(r) =r(l —r/N) =50, (2.38)

This last result is shown by writing the number of levels inside §E at E as
n = va:l 8p.se(E:), where Op s5(E;) equals 1 if E; lies inside the interval
§F at E and 0 otherwise; one then calculates var(n) considering the levels to be
statistically independent.

4. Two-point functions. In terms of the microscopic density (2.33) one defines
the two-point function

pa(E,E') = ((E)H(E) — (HE)) ((E)). (2.39)

Separating out from the first term on the right-hand side of (2.39) the ¢ = j term
arising from (2.33), one defines the rwo-level cluster function Y3(E, E') through
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the equation

p(E.E) _ 8(E - B

= - Y;(E,E). 2.40
ABWE) B ) @40

One can also write

N v R?(E’ E’)
Yo(B,E)=1—- ———= | 2.41
(BB =1 = S E) (24D
where
Ry(E,E') =) (8(E - E)S(E' - Ej)) (2.42)
i#j

=N{(N -1)P(E,E") (2.43)

is the relative frequency of pairs of levels and P (E, E') the two-level joint prob-
ability density.

In a region of constant density, the right-hand side of (2.40) becomes &(r) —
Ya(r), where r = (E — E')/A is the energy separation measured in units of the
mean spacing A.

For a Poisson spectrum consisting of IV levels inside an interval L, Py(E, E') =
1/L? and Y2(r) = 1/N — 0 as N — co. For a spectrum with level repulsion, as
1s the case for the matrix ensembles studied here, I%(E, E') = 0and Y2(0) = 1; as
E — E' — o, the levels become independent and Y, (7) — 0. As an illustration,
we cite the result for 5 = 2:

y 2
Ya(r) = (M) : (2.44)

wr

The equally-spaced peaks of Ya(r) indicate the presence of a crystalline struc-
ture of long-range order, again a manifestation of the spectral rigidity already
noted above. For comparison, a picket-fence spectrum would give Ys(r) =
1 — 3,40 8(r — p). These three cases are reminiscent of the behaviour of gas,
liquid and solid systems in statistical mechanics.

The 2-level form factor is defined as the Fourier transform of Ya(r) ;i.e.

b(k) = / " Ya(r)e ™ dr. (2.45)

For the 3 = 2 case of Eq. (2.44) one finds

b(k)=1— |k, |k| <1

=0, k| > 1. (2.46)
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The physical significance of the form factor is particularly appcaling. Supposc
we construct a wave packet as a linear combination of IV states - contained in
a stretch of cnergy 6F, the mean spacing being A- with identical cocfficients
1/+/N . The overlap of the wave function at time ¢ with that at time 0, squared and
ensemble averaged, tends to 1/N as N — o0, at a rate determined by b(wt/27),
where w = A/A (see also [31,32]).

5. A linear statistic I is a function of the cigenvalues, with the form

F:Zf(E)

- [ 1epie)as. @47
In (2.47) the microscopic density of Eq. (2.33) was used. The ensemble average

and variance of F' can then be expressed in terms of the mean density p and the
two-point correlation function po of eq. (2.39) as [34]

=t/f(Ey(E;dE (2.48)

varF = / f F(E)F(E")ps(E, E'YdEAE'. (2.49)

Using (2.40) and (2.45) one finds, in a region of constant density (with mean
spacing A)

varF = — /¢(t)¢ M1 = b(EA)]de ; (2.50)
here, ¢(t) is the Fourier transform of f(E)

B(t) = / F(E)e ™ FE. (2.51)

If f(E) has a width ~ §E, ¢(t) is appreciable over an interval ¢ ~ 1/§F; if

the number of levels inside o &, i.e. §£/A | is very large, we can approximate
b(k) in (2.50) for small values of the argument (= 1 — 2|k|/3); provided [¢(t)|*
decreases in the tails at least as 1/¢27<, we have

varf' = /q‘)(t t)|t|dt. (2.52)

This result, first obtained by Dyson and Mehta [30], shows that the variance is
independent of microscopic parameters and has a universal 1/ dependence. For
instance, if f(E) = 6[(1 - (2E/L)?)'/?), where 8 is the step function and L the
tength of an energy interval, one finds (F) = wL/4A = w{n)/4 and varF =
1/283, independent of {n}; the implication is that this linear statistic allows the
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measurcment of the average number of levels (n) in the interval L with a mean
square error of order unity.

6. If the ensemble is “unfolded” to onc of uniform density, one can show that
ergodicity is fulfilled: ie., ensemble averages for a fixed energy are equal to
energy averages for a fixed samplc, up to a set of zcro measure [8]. This is an
important property, when quantities evaluated along one experimental spectrum
are to be compared with theoretical results cvaluated as ecnsemble averages. It is
worth being a little more explicit about this point.

Suppose we have achieved stationarity by an appropriate unfolding. Consider
aquantity f(E,€), defined for the member H*® of the ensemble and dependent on
the details of (i.e. a functional of) the spectrum for that member. Lct us construct
the spectral average (denoted by a bar) over the interval § £ at £

1 E+36E
=55  #E.E 2:53)
—1sE
This is a random number, in the sense that it depends on the member £ of the
ensemble. When its variance (the brackets (- - -) denoting, as usual, an ensemble
average)

e 0 - ([FE]") - (7))

tends to zero in the limit E — oo, we say that f is an ergodic quantity [33].
Thus, for almost all members £ of (he ensemble, except for a sel of zero measure,
(2.53) coincides with its ensemble average; i.e.

L E+isE
1= (M) =55 [, UE0w=1) @s%)

where, in the last step, we used stationarity. We thus have equality of spectral
and ensemble averages for almost all members of the ensemble. Slutski’s ergodic
theorem ([33], p.20) states that a stationary random function ts ergodic if and only
if its two-point correlation coefficient vanishes as the separation between the two
points (energies in our case) tends to infinity. This theorem has been used to study
a number of ergodic properties of the GE’s [8]. As an example take, for f, the
microscopic density p(E) of Eq. (2.33). Then (2.53) gives n/6F, n being the
number of levels inside § | and its variance is

2
YJ {)2

(SE r2
Here, r = (n), p is the mean level density, as usual, and %2 the number variance,

given by (2.37) for the GUE and by £2 ~ r for a Poisson process; in both cases,
(2.56)—0as r — oo.

(2.56)

var—
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2.5. Marrix ensembles with a specified density

As was mentionced right after q.(2.26), in numerical simulations as well as in ex-
periments one has found a clear-cut separation between the properties of fluctu-
ations and the secular behaviour of the density; while the former have the univer
sal character described above, the latter is, generally, system dependent |8,22,25].
It is then appropriate to look for an ensemble that belongs to one of the above
symmetry classes and has minimum information (or maximum entropy) among
all those that have a prescribed density [22]. One finds, for the joint probability
density of eigenvalues

w(By,...,Ex) = CJs(B) [[e V") =0, (2.57)
k
where the Jacobian Jg is given by

T5(E) = [[ 1B — E;I°. (2.58)
1<y
The right-hand side of (2.57) has the form of the Boltzmann weight, in classical
statistical mechanics, associated with the “Hamiltonian”

H=-) In|E -E|+) V(E) (2.59)
1<y 1
The first term of H can be interpreted as the repulsive potential between pairs
of charges in a 2D electrostatic problem, while the second term is a “confining
potential” which, in the Gaussian Ensembles (2.32), is a harmonic oscillator. In
the large- N limit, V' and the density p are related through the mean-field equation
[35]

V(E) = / o(E'Yn|E — E'|dE +C. (2.60)

Since p(F) is the average of the microscopic density p(E) of Eq. (2.33) , i.e.

p(E)e PHdE, - - dEyN
[¢PHAE, - dEy

the two-point correlation funtion p, of Eq. (2.39) is written, in ref. [34], as the
functional derivative

1 6p(E)
In the mean-field approximation (2.60), ref. [34] thus finds that the variance of
a linear statistic, Eq. (2.49), is independent of V and has the universal 1/3 de-
pendence.

p(E) = J (2.61)
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Fig. 5. Transmission coefficient of the system shown in the inset.

3. Random matrices in scattering problems

Various quantum mechanical scattering formalisms have been developed in the
past. In order that the reader can see them in perspective, appendix A.1 presents
a summary of a number of them, emphasizing those aspects that are relevant for
the problems to be discussed in this section. Similarly, for the sake of complete-
ness, appendix A.2 introduces, through simple examples, the various concepts of
scattering theory that are needed in what follows,

3.1. Scatrering described by an equilibrated component. The circular ensembles

The quantum-mechanical scattering produced by classically chaotic cavities has
been investigated by several authors [36-46). An example is presented in Fig. 5
[47]. The inset shows a typical system, consisting of a 2D cavity connected to the
outside by a pair of leads, where confinement in the transverse direction (inside
a width W in each lead) produces discrete transverse modes, or channels. The
stoppers shown inside the cavity are intended to block any direct transmission
between the leads. The scattering matrix S and the resulting transmission coeffi-
cient 1" across the system vary as a function of the incident momentum because
of the resonances occurriyng in the cavity[48]. These resonances are moderately
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overlapping for one open channel (1 < kW/m < 2) and become more overlap-
ping as more channels open up. The basic assumption (ergodic hypothesis) 1s
that through these fluctuations S covers the available marrix space with uniform
probability. This concept, which reminds us of the microcanonical ensemble of
classical statistical mechanics, will be developed in what follows.

A quantum scattering problem is described by the scattering matrix 5 [48-51].
If the incident momentum is k, there are

N = kW/n 3.1)

transmitting or running modes (channels) in each lead. The wavefunction in the
leads is written as the N-dimensional vector

T(z) = [¢' («),...,¥" (@)]", (3.2)
the n-th component being a linear combination of unit-flux plane waves; i.e.

ezk,,ac b e—ik.,,a:
1/"71,(3&) = Qn (hkn/m)]/Q + 0, (hkn/m)ll/Q:

n=1..,N, (3.3)

for the left lead, and a similar expression for the right lead, with coefficients af,
b’.. In (3.3), k,, the “longitudinal” momentum in channel n, is such that

k2 + [%]2 = k*. (34)

The 2N-dimensional S-matrix relates the incoming to the outgoing amplitudes

as
b a
I>afj|:S|ibl:|a 3.5

where a, b, a’, b’ are N-dimensional vectors. The matrix .S has thc structure

g = ("‘ t:) , (3.6)
tr

where 7,t are the N x N reflection and transmission matrices for particles from
the left and ', ¢’ for those from the right. The transmission coefficient referred to
above is given by

T = tr(tt!) (3.7

and thc conductance of the cavity is, for “spinless” particles [52] ,

G=-—=T. 3.9
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The requirement of flux conservation(FC) implies unirariry of the S matrix
[48-51]; i.e.
S8t =1. 3.9

This is the only requirement in the absence of other symmetries. In the language
of the previous chapter, this is the unitary case (3 = 2). In the presence of time-
reversal invariance, S, besides being unitary, is a symmetric matrix [48-51,53]

s =87 (3.10)

in the orthogonal case (3 = 1); in the symplectic case (F = 4), for a particle with
s=1/2, S isa4N x 4N matrix that satisfies

S =38T%T, G.11)
where

S X0 Oy -1y

= E = .

- [0 E} ’ [IN On J (G-12)

In the language of quaternions, S is called a seif-dual matrix.

The precise realization of the notion of “equal a priori distribution” of the S
matrix is the invariant measure associated with each symmetry class [24,53]. By
definition, that measure remains invariant under an automorphism of a given class
of matrices unto itself; L.e.

dpg(S) = dpug(S'). (3.13)
For 8 = 1 we have
§' = Uy SUT, (3.14)

Uy being an arbitrary, but fixed, unitary matrix. Clearly, Eq. (3.14) is an auto-
morphism of the set of unitary symmetric matrices unto itself. For 3 = 2,

S =UpSV, (3.15)
Uy and V, being now arbitrary fixed unitary matrices. For § = 4,
S = UpSUp, (3.16)

where Uy = STUFS. For § = 2, the resulting measure is the well known
Haar’s measure of the unitary group and its uniqueness is well known [28,54].
Uniqueness for the other two classes was shown in ref. [53]. Eq. (3.13) defines
the Circular (Orthogonal, Unitary, Symplectic) Ensembles (COE, CUE, CSE), for
B =1,2,4, respectively.
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The eigenvalues of a unitary matrix are complex numbers e*%s of unit modulus.
The joint probability density of the eigenphases 6; for the circular ensembles
(CE’s) was found in ref. {53] as

ws(Br,-.,0x) = Cp [[ % )%, (3.17)
<k

its study was motivated by the convenience of having a model for the energy
levels (that were associated with the eigenphases) with uniform density across
the whole spectrum, rather than by its applications to scattering problems. The
fluctuation properties of the eigenphases were found, for large [V, to coincide with
those of the energy levels in the Gaussian ensembles described in the last section,
in the region where the density of the semicircle 1s a maximum [9,29].

We go back to those problems where the unitary matrix S occurring in the
CE’s is identified with the scattering matrix. In this subsection, the possibility of
“direct” processes — caused by short trajectortes and giving rise to a nonvanishing
averhge S matrix [42,55-57] — is ruled out; they will be considered in the next
subsection. We emphasize below the cases 3 = 1. 2; various generalizations to
the 3 = 4 case can be found in ref. [45].

The quantum scattering produced by classically chaotic cavities (and subject
to the restriction of the last paragraph) is found to obey the statistical properties
described by the CE’s. The eigenphases have been studied in {36—44]; the statist-
ics of the S-matrix elements themselves was examined in refs. [37,40] and was
successfully compared with the results of ref. [58]; the transmission coefficient
T of Eq. (3.7) was analyzed in [45,46].

Averages of products of S and 5™ matrix elements for the CE’s can be calcu-
lated without using an explicit form for dpg(.S), but solely its invariant properties
[59,60]. Using the notation

(N = /fdua(S)« (3.18)
with
[ dusts) =1, (3.19)
one finds, for example (for 8 = 1,2)
24(8) _ 1 3.20
) = 7= (3.20)

o, 2u8) _ 2N +2 = B)(1 + 0ac0bd) — bac — Obd 391)
([tas|[teal ™}y = 2N(2N + 1)(2N + 7 — 40) ' @
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Fig. 6. Weak-localization correction and conductance fluctuations as a function of’ NV for the system
shown in Fig. 5, compared with the theoretical predictions (COE, CUE) discussed in the text.

We can obtain the first and second moments of the transmission coefficient T' of
Eq. (3.7) by performing, in the above equations, the sum over channels, with the
results

N 1
N(N +1)? 1
ar(T) = ~. COE 3.23
var(T) GN1122N13) 8 G2
N? 1
_ LI 3.24
44N 1) 16 ¢ G249

where the limitis as N — oo. In this limit, the weak-localization correction (3.22)
and the magnitude of the conductance fluctuations, var(Z"), become universal;
the latter is twice as large in the presence of time-reversal symmetry (3 = 1) as
in the absence of such symmetry. Fig. 6 [46] compares the above predictions
for (T'y — N/2 and var(7T) with the results of a numerical simulation that uses
cavities like that of Fig. 5. One can construct a random-matrix theory for the
billiard Hamiltonian in terms of one of the Gausstan Ensembles discussed in the
previous section and then couple the billiard to the leads in a statistical way; if the
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parameters are so adjusted that (S) = 0, the resulting ensemble for the S-matrix
coincides with one of the Circular Ensembles described above (see [61-63] and
also The Heidelberg approach, in appendix A.1.2).

The invariant measure for the CE’s was expressed in eq. (3.17) in terms of the

eigenphases; it is also convenient to express it in terms of the eigenvalues 7, of

the Hermitean matrix ¢¢!, whose trace is the total transmission 7', Eq. (3.7). The
S-matrix of Eq. (3.6) can be expressed in the “polar representation” [64—66]

. L) \/l—T VT w3 0 .
s=[' o] [ T A ] o

where 7 stands for the N x N diagonal matrix of the eigenvalues 7, and the v(*)
are arbitrary unitary matrices for 8 = 2, with v®) = ()7 and v = (v T
for 3 = 1. In the present case, the differential arc length of Eq. (2.21) is

ds? = 'I:r[dstdS]. (3.26)

Substituting for .S the form (3.25) and applying Eq. (2.22) one finds (G = 1, 2)
the invariant measure [45,46]

dpp(S) = pe({r}) [ [ a7 [] du(v™), (3.27)
where the joint probability density of the {7} is
pal{r}) = Cs [T I - nl"HT A2/ (3.28)
a<b

and du(v(} denotes the invariant, or Haar’s, measure on the unitary group [54]
and Cg is a normalization constant. The total transmission coefficient T, given
by

= Z T, (3.29)

is & linear statistic, in the terminology used in section 2.4.5. In the language of
section 2.5, the last product in Eq. (3.28) defines the “‘single-particle confining
potential”. As remarked right after Eq. (2.62), ref. [34) shows that the limiting
results (3.23), (3.24) for varT as N — oo, i.e. 1/(87), are independent of the
specific form of the confining potential.

The distribution of T can be obtained by integration of (3.28). As an example,
Fig.7 [46] compares the resulting distribution for N = 2 with the same numerical
simulations that were mentioned above.
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Fig. 7. Distribution of I’ for N = 2: the same numerical simulation of the previous figures 1s
contrasted with the theoretical prediction arising from COE and CUE.

3.2. Scattering described by a prompt and an equilibrated component

In the last subsection we considered those scattering processes that can be de-
scribed in terms of an equilibrated component only: the possibility of direct, or
prompt components, giving rise to a nonvanishing averaged S-matrix[55], was
specifically ruled out. That possibility is considered in what follows. We first
illustrate the idea in a one-channel situation.

3.2.1. The one-lead, one-channel case

Consider a cavity connected to the outside by only one lead and suppose that
the energy is such that there is only one open channel: scattering by the cavity
just consists of reflection back to the same lead and the relevant S-matrix is one-
dimensional.

Unitarity implies that S can be written as S = ¢, 6 being twice the phase shift,
so that S is restricted to move on the unit circle (Fig. 8a). From analiticity, S has
poles only in the lower-half of the complex-energy plane (Fig. 8b and appendix
A2).

Suppose now that we perform an average of the k-th power of S, S*(E), with
a Lorentzian weighting function centered at some energy Ey and having a half-
width /. From Cauchy’s theorem one has

ok _ ' K I/ﬂ' ok
[SL] Eod / o (E)de = S%(Ey + i), (3.30)

and hence
ok _1ak 331
[5 ] Eo,J [S] ( )
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Fig. 8. Unitarity and analyticity of the 1 x 1 S-matrix for a one-leud, one-channel problem.

i.e. the average of/the k-th power of S coincides with the k-th power of the
average of S. As the energy F changes, S of Fig. 8a moves on the unit circle and
# changes accordingly. The integral in (3.30) is over E; let us inquire whether it
can be converted into an integral over 8, in such a way that

21
[ﬁ] = / SkApP(S) = / e 0n(6)ds , (3.32)
E‘),I 0
with
dP(S) = p(8)d6 (3.33)

a (non-negative) measure independent of k. Assume (3.32) to be possible and
expand p(#) in a Fourier series; 1.e.

p(0) = are™’, (3.34)
k
with ¢, = a* .. We find, for the expansion coefficients
a_y = (1/27) / p(0)c*0d8 = Sk j2r = (8)F /27, (3.35)
We can sum the series, with the result [67]
11— |5”]2 ”
fHl=———=—, S=¢. 3.36)
) = x5 —3p © ¢

We can thus answer the question posed above: p(8) exists and is uniquely given
by Eq. (3.36) in terms of the parameter? only. The result (3.36) is valid whether
S(E) consists of a single pole, a regular pattern or a statistical distribution of
poles; notice though that S has a numerical value that depends on the centroid
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L7 and the half-width I of the Lorentzian of Eq. (3.30). Suppose now that S(E)
has resonances in the full interval (—oo, oc) and that, as the averaging interval
2] — oo, S becomes independent of Iy and 1. In many cases of interest it
also occurs that, as I — oo, Lorentzian averages become indistinguishable from
morc physical “box averages” (i.e. with a weight equal to 1/27 within the encrgy
interval 0 & = 21, and zero outside): in that case d P(S) = pg(#)da, with p5(8)
given by (3.36), can be interpreted, in a very appealing way, as the fraction of
“time” spent within 40 by S(E), as E runs from —oo to +c0.

Consider now an ensemble of S{E) matrices, that we assume ergodic, in the
sense explained in section 2.4.6. In particular, S will be the same for all members
of the ensemble, except for a set of zero measure, and can be calculated as the
ensemble average (S) at a fixed energy. Similarly, the condition (3.31) arising
from analyticity, togcther with ergodicity, implies the relation

(S*) = (8)* (3.37)

between ensemble averages, often called the analyticity-ergodicity (AE) require-
ment. The ensemble measure is thus uniquely given by

dP5y(S) = prsy(6)dd, (3.38)
with
11— ()2
sy () = g—éju@—il—g (3.39)

once (S} is specified. The ensemble depends parametrically upon the single com-
plex number (S), any other information being irrelevant! Slutski’s ergodic the-
orem, mentioned in section 2.4.6, allows us to construct the ensemble from a
single realization by picking S matrices at energies sufficiently far apart that their
correlation coefficient is negligible.

We note in passing that (3.37) implies that a function f(S) that is analytic in
its argument, and can thus be expanded in a power series in S, must fulfill the
reproducing property [24,56]

£((s)) = / £(S)dPs(S). (3.40)

Eq. (3.40) also arises in the problem of finding the 2D electrostatic potential
inside a circle, knowing its value on the boundary [68]; the Green function gives
rise to the so-called Poisson’s kernel, which is precisely our measure (3.39)!

We now compare the above results with a microscopic calculation. Suppose
we express the one-channel S matrix in terms of a A matrix and construct the
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latter in terms of resonances (the microscopic variables; see refs. [48,50,69,70)
and also appendix A.1); i.e.

1+3iK
- 3.41
S=1Tk G40
with
2

The E.’s are the eigenvalues and the ;s are related to the eigenvectors of a
bound-state Hamiltonian. One stretch of resonances, each determined by its posi-
tion E; and the amplitude ;, determines one S-matrix. A collection of stretches,
following given statistical laws, like the ones studied in the previous chapter, is
then used to construct an ensemble of S-matrices. Two ensembles, for which
there is numerical evidence of ergodicity, were constructed: in the first one, the
E; ’s were chosen at random, the spacing = between successive resonances thus
following Poisson’s law (2.2); in the second one,  was sampled from Wigner’s
distribution (2.1), but with no correlation among the various spacings. In both
cases, the amplitudes ; were considered statistically independent Gaussian vari-
ables. The probability density of the variable 8 (at a fixed energy E) resulting
from a numerical simulation [67] for the two above ensembles (with the same
value of (S)) is compared, in Fig. 9, with Poisson’s measure (3.39). The excel-
lent agreement verifies the above statement that the only relevant quantity is (S}
and any other information about the distribution of S is imrelevant. A central-
limit theorem (CLT) of a novel kind is responsible for the insensitivity of p(#) on
details other than (S). Poisson’s kernel (3.39) for S implies Cauchy’s distribu-
tion for the quantity K appearing in (3.41). Thus, viewing K as the sum over

resonances (3.42), our discussion implies that, in the limit when the number of

resonances grows, the resulting K becomes eventually distributed according to
Cauchy’s distribution; this occurs no matter what is the distribution of the reson-
ances, as long as one has ergodicity! As a verification of this general theorem,
the explicit evaluation of the distribution of K in the particular case of randomly
distributed F;’s and statistically independent (but with an arbitrary individual dis-
tribution) ;s is performed in appendix B: the standard central-limit theorem for
independent variables [21], leading to a Gaussian distribution, does not apply,
because the 1/E structure of the individual terms building up K gives divergent
second and higher moments; in fact, in this particular situation of independent
levels, the result is a particular case of the distributions studied by Levy [72,73].
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Fig. 9. Comparison of Poisson’s measure with numerical simulations.

3.2.2. The multichannel case

We now consider .S matrices of dimensionality n, that can describe, say, a one-
lead problem with n channels or a two-lead problem with N = n/2 (n even)
channels each. The Argand diagram of Fig. 8a has to be generalized to include
the axes Re Syq, Im Sy, ReSi5, Im Sis, ..., Re S,,,,, Im S,,.; S is restricted to
move on the surface determined by unitarity (SST = ) and, for 3 = 1, symmetry
(5=287).

The AE requirement (3.37) is now generalized to

<(Salb1 )n‘ T (Sax-b;-)nb) = (Sﬂ1bl>n1 te (Slﬂk'bk>nk ' (3.43)
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notice that this expression involves only S, but no 5* matrix elements. Similarly,
it £(S) is a function that can be expanded as a series of nonnegative powers of
S11, .+ Snn (analytic in 5), we must have the reproducing property (3.40).
Qur starting point is the invariant measure dug(S) that was introduced in the
last subsection, eq. (3.13). The average of S evaluated with that measure van-
ishes, so that the prompt, or direct, components vanish. It is easy to check that
the AE requirements (3.43) or, equivalently, the reproducing property (3.40), is
satistied exactly for the invariant measure. Ensembles that contain more informa-
tion than the invariant one are constructed by multiplying the latter by appropriate
functions of S. Just as in the previous section, we relate the probability density

p((-f)(S) to the differential probability through (notice that we require (S) = 5)

dPY(S) = p¥ (S)dus(S) (3.44)

and require the fulfillment of the AE conditions. Mathematicians know a solu-
tion to this problem, which, for arbitrary dimensionality of the S-matrix, is again
known as Poisson’s kernel and is given by [24,56]

_y [det(I — §5TyjBntz-p)/2

285y = v )
Ps 5= |det(I — S51)|ont2-5

(3.45)

Here, Vg is a normalization factor. We notice that, for n = 1, eq. (3.45) reduces
to (3.36).

In the case n > 1 there is, though, a very important difference with respect to
the n = 1 case, in that AE and reality of the solution do not fix pz(5) uniquely.
Indeed, in general (the 1 X 1 case being exceptional), we expect the matrix S to be
insufficient to characterize the full distribution when, in additton to the prompt and
equilibrated components, there are other contributions associated with different
time scales [69]. Out of all possibilities, though, Poisson’s kernel occupies a very
special place: its entropy

Slpl = — / p3(S) Inpz(S)du(S) (3.46)

is larger than or equal to that of any other kernel satisfying AE and for the same
S. We can say that Poisson’s kernel describes those physical situations in which,
having imposed the general requirements of flux conservation, time-reversal in-
variance (when applicable) and AE, most of the details are irrelevant, except for
the average matrix 5.

Before finishing our discussion we mention, in relation with the S-matrix model
(3.45), that it has been found advantageous to map the physical .S-matrix unto
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another S-matrix, S’, for which the probability density reduces to a constant and
thus the differential probability for S is given by the invariant measure; i.e.

dP(S") = du(S"). (3.47)
The transformation in question is, for 3 = 1 ([57];[24], p.84)
S"=R(S-8)(I-88)" YR, (3.48)

where the matrix R satisfies the reiation
R(I - §5HRt = 1. (3.49)

Therefore, if S =0, S is described by one of the CE’s of the previous subsec-
tion; if S # 0, it is §” that is described by a CE: in particular, the eigenphases
of 5' satisfy the distribution given by Eq. (3.17), its transmission coefficient 7
has the average and variance of (3.22) and (3.23) and its polar parameters 7/ are
distributed according to Eq. (3.28).

Ref. [42] analyzes a scattering problem described in terms of a 2 x 2 S matrix
and a nonzero S in terms of Poisson’s distribution (3.45) and finds a satisfactory
agreement. Further studies in this direction are now in progress [75].

Refs. [69-71] deal with the problem of the present subsection by constructing
the S-matrix in terms of a Hamtltonian, for which a GOE is assumed; this was
described right after Eq. (3.24) and in appendix A.1.2. The two-point function
found in {69], together with Slutski’s theorem [33], is used in ref. [76] to study
the ergodic properties of the S-matrix ensembles. It is significant that both the
ensemble of refs. [69-71] and Poisson’s measure discussed above are of max-
imum entropy, but at different levels: one at the level of the Hamiltonian and the
other at the level of the S-matrix. The relation between the two ensembles has
recently been studied in ref. [74], which then explains the coincidences noticed
in the past [56,57] for one- point functions between the two approaches.

3.3. Scattering in disordered media. Diffusion processes and localization

In the confined geometry shown in Fig. 10 the portion of length L is a disordered
medium that scatters waves incident upon it. The diffusion time across the system
is the relevant characteristic time. We could imagine an experiment performed
with microwaves or, if the disordered system is a mesoscopic device, a situation
where the interest is in the electronic transport. The goal is to study the coherent
multiple scartering produced by the disordered part and its statistical properties
across a collection (ensemble) of samples that differ, from one another, in their
microscopic configuration.

Quantities of interest are, e.g., the average and fluctuations of the transmission
coefficient T, = |t45]° (¢ being given in Eq. (3.6)), the correlation between
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Fig. 10. Disordered system studied 1n the text.

pairs of such coefficientes, the average and fluctuations of the total transmission
coefficient 7" defined in Eq. (3.7), etc.

For definiteness we use, in what follows, the terminology associated with the
electronic transport problem. Ideally, we consider the system at zero temperat-
ure, so that we have no inelastic processes and can concentrate on the coherent
properties of the scattering process.

3.3.1. The isotropic model: a global approach

Consider the polar representation (3.25) of the S-matrix associated with the full
sample. In the isotropic model [66,77,78] the unitary matrices vU) are distributed
according to the invariant (or Haar's) measure du('u(j)) of the unitary group:
this corresponds to the intuitive notion of “‘equal a priori probability”, and thus
maximum entropy, or minimum information, for the “angular” part of the global
S-matrix. Moreover, the matrices v47) are chosen to be statistically independent
of one another and of the 7’s. The specific choice (3.28) for the distribution of the
7,'s would take us back to the CE’s of section 3.1; no particular choice is made,
though, for the time being; we come back to this problem later on.

It is clear that the average (S} vanishes in the isotropic model, meaning that
there are no prompt components, in the language introduced earlier. Although
this may be a good approximation for (¢}, it is an oversimplification for (r), for
which the contribution of short paths may be important [44]. We see below some
of the consequences of this assumption.

We first write the reflection coefficient R as

Ry = |rasl® (3.50)
where 7 is given by Egs. (3.6) and (3.25) as
r=—vM/1 =703, (3.51)

As we mentioned in section 3.1, averages of products of matrix elements of a
unitary matrix can be evaluated explicitly {60] for the invariant measure. It is
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then a simple exercise to calculate the ratio of the reflection coefficient back to
the same channel to that leading to a different channel; one finds the simple answer
(see [65,79] and, for 3 = 4, [80])

{ Raa)(ﬂ)

Foss® = 1 2
We thus see that in the orthogonal case (3 = 1) backward scattering to the same
channel is enhanced by a factor 2, as compared with scattering to any other chan-
nel. This is precisely the prediction of weak-localization theory, where the argu-
ment is that the various paths contribute with random phases, except for a path
and its time-reversed one, which contribute coherently and give rise to a factor 2
in the backward direction. The same argument predicts that when time-reversal
symmetry is destroyed by a magnetic field, the above-mentioned enhancement is
absent; this is precisely what eq. (3.52) shows for the unitary case (5 = 2).

One can also calculate the correlation coefficient of the transmission coeffi-
cients T,p, T.q. The structure of the result, with regards to the channel-index
dependence, can again be evaluated using the techniques of invariant integration;
one finds [65,79]

(Top Ty )P = [AN(TH O — By (T2} 9600 b1
+ [AN(T2)P — By)T* (P)(buar + Su) (3.53)
+ [AN (TP — By (D)8 — O ((T) P07,

Here we have defined

To=> 7, (3.59)
N? +1 2

Ay=——— By=-———s, Cy=1/N" 3.55

N NZ(NZ—].)?’ N N(N2"1)2, N / ( )

The averages appearing on the r.h.s of (3.53) are independent of the channel in-
dices; their explicit value needs a specific model for the statistical distribution of
the 7,’s.

In perturbative calculations [81] one finds, for the correlation between pairs of
transmission coefficients, three types of terms, which, for quasi- 1D systems, have
essentially the structure provided by the & functions of Eq. (3.53): the difference
is that the Kronecker deltas are replaced by functions which peak at those wave
vectors that satisfy the appropriate Kronecker deltas in our calculation, but de-
cay over some distance in momentum space. A similar comment applies to the
channel dependence of the backward scattering (3.52). The assumption of iso-
tropy thus leads to quite important consequences; we see, however, the necessity
to improve it.
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What can we say about the joint distribution of the 7,,’s? In the metallic regime,
L > 1, we need a choice that describes the diffusion that has taken place between
the two ends of the sample. Within the present global approach the following
scheme has been developed [77,78,82]. Consider a system with a specified geo-
metry; assuming that the relevant physical information is contained in the density
p(7), it is proposed to look for the distribution that has maximum entropy among
those that have that density p(7). This approach is analogous to the one outlined
in section 2.5. The differential probability for the S matrix can be written as

dP(S)=p(S)du(S) (3.56)
=Cs [[1ra = mlP [[ eV T] dre [T du(w®™), (3.57)
a<h c c 2

where the “confining potential” V{7) has to be chosen so as to reproduce the
required p(7). Since the total transmission coefficient T is given by the linear
statistic (3.29), ref. [34] shows that the structure (3.57) implies varT = 1/83,
independently of the confining potential (universal conductance fluctuations).

3.3.2. The evolution of the statistical distribution: a local approach
We now look at the “evolution”, with increasing sample length L, of the statistical
distribution, that was not available in the above analysis.

So far we have described a scattering process through its S-matrix. As ex-
plained in appendix A.2, one can, alternatively, employ the transfer matrix M
[51], that relates the coefficients on the two sides of the scatterer. The scattering
and transfer matrices are related, so that the scattering process can be described
in terms of either one. In the present context we shall find the use of the trans-
fer matrix particularly advantageous, because of its multiplicativity property: the
transfer matrix for a collection of scatterers (with a potential free region between
adjacent ones) is the product of the individual transfer matrices. The collection
of transfer matrices has the properties of a group, which is not the case for the
scattertng matrices.

Just as the S-matrix was defined in eq.(3.5), the 2N x 2N-transfer matrix M
is defined through the relation

£]-uf]. - (32)

where «, 3,7, 6 are N x N matrices.
The requirement of flux conservation imposes on M the restriction [64-66]

me Mt =3, (3.59)
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where

5. ((1) 01) (3.60)

is the 2/V-dimensional generalization of the usual Pauli matrix ¢, 1 being the
N x N unit matrix. We thus see that the transfer matrices M satisfying flux con-
servation form the pseudounitary group U (N, V). In the terminology of section
2, this is the unitary case (F = 2).

[n the orthogonal case (3 = 1), the transfer matrix M must also satisfy the
requirement [64-66]

M* = S, M%, (3.61)

where ¥, is the 2V -dimensional generalization of the Pauli matrix o,. Relations
(3.59) and (3.61) are illustrated in appendix C.2.2 in a 1D (N = 1) case. One
can check that these relations define the real symplectic group Sp(2N, R). Eq.
(3.61) implies, for the M of (3.58), the structure

o p
M= ([3* a*) . (3.62)

A transfer matrix can be written in the polar representation [64—66]

1 1—7

o2 7 \/T 3 g
M= ( 0 [fv(4)]f> 1—7r % ( 0 [v(l)]f ) (363)

in terms of the same parameters used in Eq. (3.25) for the S-matrix. The “radial
parameters” A, defined through
1

T 14 A,

(3.64)

TU_

are sometimes useful.

The multiplicativity property of the transfer matrix allows a local approach to
the problem: the full system is built from thin slices, or building blocks, of length
8L , that we assume small on a macroscopic scale, but still thick enough to contain
many impurities. Consider then a system of length L, described by the transfer
matrix M. We add to it a thin slice (with the characteristics indicated above),
described by the transfer matrix M;sz. Because of the multiplicativity property
mentioned above, the resulting transfer matrix M 57, can be written as

Mpysr = Msp M. (3.65)
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Assuming the two pieces to be statistically independent, we can write the res-
ulting probability density in terms of the individual ones as the convolution [66]

pr+sp(M) = /PL[M{LIM]PSL(MM)d#(MéL), (3.66)

where du(M) is the invariant measure associated with the group of transfer
matrices.

Notice the similarity between the “‘combination requirement” (3.66) and the
Smoluchowsky equation for Markovian processes: for instance, for a Brownian
particle, that equation gives the velocity distribution at time ¢t + &t in terms of the
distribution at time ¢ and the transition probability. One can then convert such an
integral equation into a differential equation of the Fokker—Planck type [83,84].
A similar procedure can be followed in the present context.

Inrefs. [65,66,80] the statistical distribution for the building block is chosen on
the basis of a maximum-entropy criterion, the physical restriction being a given
value of the elastic mean-free-path l. The resulting psr(Ms1) is isotropic, just as
in the models described in the first part of this subsection. It can be proved that the
property of isotropy is preserved under convolution, so that the final distribution
for the full sample is again isotropic. The ansatz for the building block that we
just described is introduced in Eq. (3.66), which is then expanded in powers of
§L; in the limit L — 0 one finds, for the joint probability density w(} () of the
Ao ’s of Eq. (3.64), the Fokker-Planck or diffusion equation

aw () 2 ) w(ﬁ)(}\)
85 BAN+2-BZ aA Aa(l+2a) o370
(3.67)
where
s=L/I (3.68)

is the length of the sample measured in units of the mean-free-path and Jz() is
the Jacobian of Eq. (2.58), with X replacing . The initial condition associated
with (3.67) is the one-sided delta function

w(A) = 6(A). (3.69)

It is interesting to notice that one can find a generalized central-limit theorem
that gives rise to the same result (3.67), (3.69), thus providing a nice interpretation
of the information-theoretic argument presented above [35].

For a large number of channels, N >> 1, one can expand the expectation value
(T) of the total transmission coefficient in decreasing powers of N [65,87]. For
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instance, for § = 1 one finds
. N 1, Ll
(7). - By
1+L/I 3°1+ L/l
In the metallic regime, [ < L <« NI, the first term of (3.70) gives a diffusive
or ohmic behaviour; the second term describes coherent weak-localization, of a
quantum-mechanical origin. A similar expansion for varT gives [65,87,80]

)2 + O(1/N). (3.70)

var]l == i + - (3.71)
153 '
a universal result independent of N, L, {. This value of varT should be contrasted
with that arising from the global approach, i.e. varT = 1/80, which in turn is the
same as that for a cavity, Eqs. (3.23), (3.24).

The above results are consistent with microscopic Green function calculations
[88] performed for quasi-1D systems.

The diffusion equation (3.67) for 5 = 2 was solved exactly in ref. [89], while
ref. [90] gives a solution for arbitrary 3 using a linearization procedure. In ref.
[90] the second and fourth cumulants of the 7T-distribution are studied, while
cumulants of arbitrary order are analyzed, for 3 = 2, in ref. [91].

The model for the building block is improved in ref. [86]. A modified argument
is presented here. Since the transfer matrix of the building block is expected to
be close to the unit matrix, we write

Msp=I+c¢. (3.72)

We assume a statistical model such that

(€5)sr =0, (3.73)
(elpers) = olpen 6L + - (3.74)

while (€3}, etc, are higher order in § L. We consider specifically the 5 = 1 case
and assume the € matrix to have the four-block structure of eq. (3.62); the upper
indices in egs. (3.73), (3.74) take on the values 1, 2 and indicate the block, while
the lower indices run from 1 to N and denote the row and column in that block.
Appendix C shows that the evolution (with increasing length) of the expectation
value of a function F'(M) obeys the Fokker—Planck-like equation

OFM))r 1 ey m ¥
—_ = TUMEPMTP——— ), .
L 9 abcd( be tVidf aMg,?an;'n 3.75)

Here, a summation over repeated indices is understood. The ¢’s play the role of
generalized “diffusion coefficients”. A model for them is presented in appendix
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C, where the resulting expression for the diffusion equation is also given. There,

one “educes the full set of coefficients to o4, = 1/las, ol = 1/1,,, the inverse
mean-free-paths for backward and forward scattering, from channel b to a. It
would be interesting to investigate whether the solution of the diffusion equation
(3.75) for the psy associated with a thin slab is one of maximum entropy with
the restrictions (3.73), (3.74), just as it happened in relation with the diffusion

equation (3.67).
For the average transmission coefficients of a thin slab one obtains the expres-
sions

(Taad =1 [ cart D alL+---, (3.76)
b b(#a)

(Tupo)p = 0L+ . (3.77)
which are physically reasonable. The evolution of the average transmission amp-
litude t,p is given by

rltar)r = —0altas)r, {(tab)r=0 = Oab, (3.78)
so that
(tab>[4 = e_O-ML&Ib- (379)

(06 = )., 7an) These results describc a gradual phase “randomization” as the
length L increases. Whether one reaches precisely isotropy for L > { is not
clear; there is evidence, though, that the phascs and the A,’s retain an important
statistical correlation [86,92]

It is interesting to mention that in the one-parameter model

- 10w (3.80)
(N +1)l

the joint probability density w(A) of the A,’s of eq. (3.64) obeys precisely the
diffusion equation (3.67) (with 8 = 1), and all the consequences mentioned below
that equation follow. It appears that for quasi-1D systems all channels are so
thoroughly mixed that approximating the various mean-free-paths by a single one,
[, is a good approximation.

The analysis of refs. [69,71] was generalized in refs. [61,62] in order to treat the
present problem. The Hamiltonian associated with small portions of the system of
dimensions ~ [ are modelled by independent GE’s. Each block is then connected
to the adjacent ones, thus giving rise to a diffusion process across the sample.
Finally, the system is connected to the external channels to find lhe total S matrix,
from which the transmission coefficient and its statistical properties are evaluated.

Tab
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The analysis is carried out, in 2D, for arbitrary width W and length I of the
system. For one block, as well as in the quasi-1D case, the results are consistent
with the ones discussed above.

Appendix A. Scattering theory
Appendix A.1. A survey of quantum-mechanical scattering theories

Various scattering theories have been developed in the past. We summarize here a
tew aspects of them that are relevant to the present course. A more comprehensive
information can be found in the cited literature.

Appendix A.1.1. Scattering formalisms

1. Wigner’s R-matrix theory. The motivation for the development of this formal-
ism was the description of nuclear reactions. An excellent comprehensive present-
ation can be found in {50] and in the references contained therein.

Wigner approached the problem in a vein similar to the description of the scat-
tering of electromagnetic waves that reach a cavity through a number of wave-
guides or channels. In the context of nuclear physics the term channel refers to
a pair of particles in a definite quantum state [93-95] and the equivalent of the
cavity is the compound system formed by the target and the projectile. It is in-
teresting that in the quantum dots contemplated in modern mesoscopic physics
this terminology is even closer to the experimental setup; in fact, a channel refers
to a transverse mode in one of the leads, that really act as waveguides and are
connected to a real cavity.

The solution of the Schridinger equation inside the cavity with boundary con-
ditions at its surface yields discrete eigenvalues F; and eigenfunctions ¥;. Inside
the cavity, the wavefunction for the scattering problem at energy E is expanded in
terms of the ¥, ’s and then joined smoothly with the external wavefunction to find
the scattering matrix S; this is done by imposing continuity of the logarithmic
derivative at the boundary, which yields the fundamental quantity R.. (where
¢, ¢' label channels), known as the R-matrix and given by

YicYic!
Ree = - = Al
_E-F (A1)

Here the reduced amplitude =;.. is proportional to the overlap of the wavefunction
¥; with the wavefunction for channel ¢ at the boundary. Consider, for simplicity,
the special case of one-channel s-wave scattering by a 3D rotationally invariant
potential of range a, or, equivalently, scattering by a 1D potential of range a
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with an infinite reflecting barrier at the origin. The relation between the .S and R
matrices is then given by

2ika 1 + tkaR
' — —2ika (A2
S=e Y TikaR’ )
where k is the incident wavenumber.
The quantity sometimes called the K-matrix (denoted by Q) in [50]) is related
to .S by

14K

=T % (A3)

2. The Lippman-Schwinger equation of potential scattering. The reader is re-
ferred to refs. [49,96] for an excellent presentation of this topic.

The Hamiltonian H is split into the Kinetic energy Ho and the interaction V.
The eigenfunction 4y of H is related to the eigenfunction ¢ of Hy (a plane wave)
through the Lippman—Schwinger integral equation

YEEE) = 16a(E) + gz VW (B (A%

Here E is the total energy, a (which will play the role a channel index) the dir-
ection of k and the wavefunctions are normalized in the sense of a Dirac delta-
function in these two variables; #(¥) = E + ie (with € — 0) insures outgoing(+)
or incoming(-)-wave boundary conditions. Iteration of Eq. (A.4) generates Born
series of potential scattering.

The on-shell S-matrix, defined through the relation

WO (BT (B) = Su(B)S(E - B, (A35)
is a unitary matrix. The T-matrix, defined by
S(Lb(E) = 5ab — QWiTub(E), (A6)
is in turn given by
1
_ _ A.
T(E) =V + Vg g7 (A7)

3. Feshbach’s projector-operator formalism. Feshbach divides Hilbert’s space
into two orthogonal parts by means of the projector operators P and Q (with
P+ Q = 1,PQ = QP = U), with the idea that P projects unto the prompt
(in time) component of the wave function, that has a smooth energy dependence,
while @ projects unto the time-delayed component, with a more complicated en-
ergy dependence {97,98). In various nuclear physics applications @ contains the
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bound-state-in-the-continuum (BSC){69] that occur because of the many-body
nature of the system and P contains the rest. Choosing P to project outside and
Q inside a cavity with a given geometry (a natural choice for a quantum dot), onc
can reproduce Wigner’s R-matrix theory.

The Schrodinger equation can be written as the two couplced cquations

(E — Hpp)P|¥) = HpqQ|Y) (A8)
(E - Hgq)Q|¥) = HopP|¥), (A9)
where the notation Hqag = AHB was used. Using the Lippman—Schwinger

equation described above (actually its generalization, known as the “two-potential
formula™), one can find the 7"-matrix as

1

) —Hpp—-rLl — H
QPR _ g, e

T = T{Pet) 4 Hpg e Hgp. (A.10)

Appendix A.1.2. Statistical scattering

The development of statistical scattering theories was motivated in the past by
nuclear scattering phenomena that exhibit statistical properties. Many of those
ideas now find an application to the description of mesoscopic devices. We mcen-
tion here some of these approaches.

1. The M.I.T. approach. A representative paper on this approach is ref. [99];
more references can be found in [8]. Using Feshbach’s formalism, the S¢.- matrix
element is written in the “optical-background representation”

Seer = (S (E)) =1y Qﬂg—)_gq;’—w), (A.11)
q q

that contains explicitly a prompt and a time-delayed component. The various
residues and poles occurring in the above expression are assumed to be statist-
ically independent in the large I'/A limit, attained when the number of open
channels is very large. Unitarity is not guaranteed in this approach, except on
average. Average cross sections can be expressed entirely in terms of the optical
matrix (S).

2. The Heidelberg upproach. As is mentioned in the last paragraph of section
3.2, refs. [69,71] are representative of this approach; more references can be
found therein. In this approach the S-matrix is constructed in terms of bound
states (for which a GOE is assumed) that are coupled to the various channels by
means of coupling amplitudes ¢, for which a Gaussian distribution is assumed.
Unitarity is guaranteed in this approach. In the case in which only a prompt and
an equilibrated contribution are considered, the full statistical distribution of the S
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matrix and all quantities derived from it can be parametrized in terms of the optical
matrix {.S). An important feature of this approach is that the S-matrix distribution
is covariant [61-63], in the sense that, under the transformation (3.14) (for 3 = 1)
it fulfills the relation

dPs)(8) = dPy,syur (UoSUy ). (A.12)

For {S) = 0 we have
dPy(8) = dPy(UpSUY ), (A.13)

so that covariance means invariance; from the uniqueness theorem of the invariant
measure, (A.13) must then coincide with the COE.

3. Direct study of the statistical distribution of the S matrix. This approach
studies those situations in which one has a prompt and an equilibrated component
only, so that the full statistical problem can be parametrized in terms of an optical
matrix {.S), which then plays the role of the relevant parameter, in the terminology
of section 1. The distribution of the S matrix is constructed directly, i.e., without
going through a Hamiltonian, in order to reflect this fact: it is required to carry
minimum information or maximum entropy, once {.S) is specified [56,59,100] and
a number of important physical requirements, like ergodicity of the ensemble and
analyticity of .S, are fulfilled. The theory is guaranteed to be unitary and fulfills
the covariance property of the previous paragraph. [t is described in more detail
in section 3.2.

Appendix A.2. Simple examples of quantum-mechanical scattering problems

For the sake of completeness we illustrate here, by means of simple examples,
the notions of scattering theory that are needed throughout the course.

Appendix A.2.1. A 1x 1 scattering matrix: illustration of the concepts of unitarity
and analytic structure in the complex energy plane

In the present 1D example, shown in Fig. 11 (see ref.[48] for a detailed discus-

sion), one has an infinite wall at x = 0 and a é-potential at z = a. The solution

of the Schrédinger equation

d2
(W + & (2) = upd(z - a)v(x) (A.14)
has the form
Pz < a) = Asinkz (A.15)

’f,i')(’L' > ﬂ) — e—-ik::; + Seik't. (Alf))
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UoO(x-a)
~ikx
S R
—_—
Se ikx
0 a X
Fig. 11. The one-dimensional scattering problem studied in the text, giving rise toa 1 X 1 S-matrix.

The coefficient S of the outgoing wave is the scattering matrix, a1 X 1 matrix in
this example. The wavefunction, egs. (A.15) and (A.16), is continuous at z = a,
while the slope has the discontinuity

d T=a+e€
E] T e, (A1)

With these two boundary conditions one then finds the two coefficients A and S
the latter turns out to be

 (sinka + & coska) + i sin ka
2¢k u U,
S = —e 4" 2 2 (A.18)

(sinka + £ coska) — iL sinka
ugp ug

Eq. (A.18) shows that S is a complex number with unit modulus: this property,
called unitarity, ensures flux conservation: i.e., the incident and outgoing fluxes
are equal [48-51]. As a consequence of unitarity, S can be written as

S = e, (A.19)

where the real quantity é is known as the phase shift.

If ug = 0, (A.18) gives S = —1; if uy — oo, we find S — —e~2*2_ Both
limits are correct.

When uy — oo, there are bound states in the region z € [0,a] whenever
ka = nm. When uo is large but finite, there is a small probability of “leaking”
through the barrier and we observe a resonance. Resonances are seen as poles of
the S-matrix in the complex k-plane, near ka = nw. Writing ka = nz + &, with
¢ < 1, we find poles at

kna=kla—iv,, (A.20)
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Fig. 12. Analytic structure of S in the complex k plane.
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Fig. 13. Analytic structure of S in the complex energy plane: the two Riemann sheets.
where
nm
kpa=nm— — 4+ —— — (A21)
ua  (upa)
nm 2
vn=( ) e (A22)
Upa

Thus S has poles in the lower half of the complex k-plane (causality) and zeroes
at complex conjugate positions, to ensure unitarity (see fig. 12, where poles are
indicated as crosses and zeroes as circles). In the energy variable € = (ka)®
we need two Riemann sheets [48] and the resulting analytic structure is indicated
schematically in fig. 13. The region shown in fig. 8b actually represents the lower
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Fig. 14. One-dimensional example giving rise to a 2 X 2 scattering and transfer matrices.

part of the second sheet shown in fig. 13, continued analytically to the upper part
of the first sheet.

Appendix A.2.2. A 2 X 2 scattering matrix and the corresponding transfer matrix
In the present one-dimensional example we consider the spatial coordinate z in the
full interval (—oo0, co) and study the scattering produced by a §-potential centered
at z = 0 (see fig. 14). Continuity of the wave function and discontinuity of its
slope at x = 0 yield

a+b=a+b (A.23)
ik(a' =) =ik(a —b) +up(a + b). (A.24)

1. The scattering matrix S. If we decide to relate incoming and outgoing waves,
we are led to the 2 x 2 scattering matrix S ([51], p.96); i.e.

b a
[a,] :S[b,] (A.25)
For instance, if ¢ = 1, b’ = 0, we have incidence from the left and b = r, o’ =
t are the reflection and transmission amplitudes; if a = 0, ¥ = 1, we have

incidence from the right and b = t', ' = r’ are the corresponding reflection and
transmission amplitudes. Thus the S of (A.25) has the structure

S = {7’ t’] . (A.26)

tr

Egs. (A.25) and (A.26) are illustrations of the general relations. (3.5) and (3.6)
used in the text.
From Egs. (A.24) we now obtain

1 -1 b -1 1 a
e o] =Ll ) a2
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so that
DHA 1
-2 1- 2
S = 27k 21k ] (A28)
L 2ik
1- 2uik 1 - z%%
We see that S is a unitary matrix
S8t =1, (A.29)

a property that again ensures flux conservation, just as in the 1 x 1 case treated
above. We also see that S is symmetric, S = ST, as a consequence of time-
reversal invariance [48-51].

2. The transfer matrix M. If we decide to relate the components on the two
sides of the scatterer we are led to the transfer matrix M (ref. [S1], p.96); i.e.

a’ a
= . A30
)= ]3] ww
This equation is a particular case of the general relation (3.58). From the particular
casea=1, b—r, a =t, ¥ =0 one finds

r=—0*/a (A.31)

t=1/a". (A.32)
Froma=0, b=1¢, o’ =7, ¥ =1 one finds

=1/ (A33)

r' = pB/a’. (A.34)

We thus have the relation between the transfer matrix and the scattering matrix.
From (A.23), (A.24) we have

11 a 1 1 a
AT ot [0 s

so that

(A.36)

v 14+ 3% ﬁ]

— 2o 1

2ik 2ik
We observe that M of (A.36) has the structure of Eq. (3.62), so that (3.61) is
satisfied. Eq. (3.59) which, in the present case, implies || — |8]% = 1, is also
fulfilled by (A.36).
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The transfer matrix has the property of multiplicativity. Suppose two nonover-
lapping scatterers, with transfer matrices M, and Mo; M, takes the coefficients
a,btoa’, b and M from a’, b to a”,b"; it is clear that

M = MM, (A.37)

takes a,bto a”,b”.

Appendix B. Verification of the central-limit theorem for the 1 x 1 X matrix

Set £ = 0in Eq. (3.42). Then

n 2 n )
K—Z%:nyui. B.1)
=1 =1

Choose all the 47 and the E; 's statistically independent; the distribution p( E,) is
uniform in the interval (—L, —§), (6, L). The resulting probability density g(u)
for the variable u = 1/F is then

p(E =1/u)
q(u) = — (B.2)
U
The second moment of the variable u is (u?) = 7. As § — 0, (u?) — o0;
thus g(u) does not satisfy the requirements of the standard central-limit theorem.
Therefore, we calculate directly the distribution of the variable K. We first com-

pute the Fourier transform of ¢(u); i.e.

; 1 Y8 cos ku
g — thuy
fﬂ(k'-)_'<e >_L—6 2

du, (B.3)

/L U
an even function of k. We shall find it convenient to differentiate (B.3) to find
1
/ k —
1) = 7
an odd function of k. Here, Si{z) is the sine-integral function (ref.[101], p. 231).
As a check, we expand (B.3) for small &; we find

[Si(k/L) — Si(k/6)), (B.4)

1 k?
Fulk) =1- b7 + (R.5)
We also expand (B.4), using
Si{fz)=2z+---, x>0, (B.6)
to find
, k
FuR) = =22+ (B.7)
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consistent with (B.5). 'The two sine-integral functions occurring in (B.4) are
shown schematically in fig. 15, for 6 < L. '
If we let § — 0 in (B.4), Si(k/6) — = /2sgn(k) and we find , for large L

1k =
’ Bl DR kY- B.8
Julk) = 715 = Ssgn(k) -+ ®3)
and, upon integrating
wlk|  k?
=1- o ot B.9
fu(k) 1 o7, + 512 + (B.9)
The Fourier transform of the distribution of v?u is thus
%), Ok
k)y=1- k B.10
f’72u( ) 1 2L I |+ 2L2 + ( )

and that of the variable K, eq. (B.1), is

Fr(k) = [frpu(k)]" = e"m fr2n(®)

Yoy 4y g2 1 2 2
oo [T L (Y

}. (B.11)

Now, taking the limit

n—o0, L—oo, 2L/n=A4, (B.12)
we find
(k) — = "F M, (B.13)

The inverse Fourier transform of (B.13) gives the probability density of the vari-
able K as

t
w(K) = Kz/—jtz’ (B.14)
where
)
t= 1" (B.15)

Notice that only the ratio (v2}/A enters. We thus find Cauchy’s distribution in
the limit.

We now look for the distribution of K derived from Poisson’s kernel (3.36).
If S = exp(if), the variable K of (3.41) is given by K = tan(#/2) and its
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Si{k/8), S<<L

?

Silk/L)

Fig. 15. The sine integral functions used in the text.

probability density by w(K) = p(6(K))(d8/dK). Using (3.36) for p(#) and
also[69]
=_ L-t
T 1+t
we obtain precisely (B.14).
Thus this calculation verifies, in a particular case (Levy’s theorem [72,73]), the
novel central-limit theorem referred to in the text, after Eq. (3.42).

(B.16)

Appendix C. The Fokker-Planck equation for disordered systems

From Egs. (3.65), (3.72) we have

Mpis, = My +6My, c.n
with

SMyp — eMp. (C.2)
Given a function F(M) we can then write

F(Mpys) = F(Mp +6Mp) = D(Mr)F(ML), (C3)
where

DM) =1+ (M) 2 + -1—(6M)'(6M)”‘a—2 C4

M= an 2! VT
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6 M being given by (C.2); the dots in (C.4) indicate a contraction over indices.
Averaging (C.3) we obtain

<F(M))L+5L = (D(M)F(M))L, (C5)

where the differential operator D{M) is the average over e (defined for a slice of
thickness 6 L) of D (M) of (C.4); i.e.

_ GO 0 sy O
(C.6)
Substituting (C.6) in (C.5) we find
(F(M)>L+5L = (F(M))L
: (M)
Ao OF 1 A (e O°F

+ (M) Fi + 35 (D @) g+ )

(C.7

Using (3.73) and (3.74) we then obtain (3.75).
For Ms; we use the parametrization of ref. [102]

_ e 0 ][+ )t/ n
M&L - !:0 eg‘J [ n* (1+n*n)1/2 b (C.8)

where # = ih, h being N x N Hermitean and 7, N x N complex symmetric. We
choose the following averages of the first and second powers:

8y =(m=0 (C9
(6%) = — (mr") (C.10)

Eq. (3.73) is then satisfied to order L. The terms linear in 6L in Eq. (3.74) are
chosen as

TayedOL = (Barbea) = — (haphea) = ~baabpeoipdL (C.11)
Toa8L = (0°67) = — (hiyhy) = ~SaabaeoiySL. (C.12)
Tayes = (Bupbig) = (havhly) = Gacbpa0iy,0L (C.13)
oo Baclpa + 8aabpe
022§ L = (napnty) = —i"l?abd—baab(SL (C.14)
V1281 = () =0, oM12EL = (On*) =0 (C.15)
0,12,126L —_ (nn> = 0, 0'21’216L — <n*r’*> = (C]6)
o222 L = (") =0, o*PL=(n*¢") =0 (C.17)
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Substituting in (3.75) we then obtain
o (F(M)
2B — ), C.18)

where

s x O *F
HF = Z (T:zb{Mbchszd W}

PR R
T2 “b§m Tab {M*’C Med Shproarzy + M M aM,‘ffaMfdf”}
+ al%m Out {Mg;c M W% + M Mfdm}
. 2
- m;,m Oaa MoEMET —-_GML;Z“ ;‘Lﬁ;” ' (C.19)
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