
Math 241 - Calculus III
Spring 2012, section CL1
§ 16.8. Stokes’ theorem

In these notes, we illustrate Stokes’ theorem by a few examples, and highlight the fact that
many different surfaces can bound a given curve.

1 Statement of Stokes’ theorem

Let S be a surface in R3 and let ∂S be the boundary (curve) of S, oriented according to the
usual convention. That is, “if we move along ∂S and fall to our left, we hit the side of the
surface where the normal vectors are sticking out”. Let ~F be a vector field that is defined (and
smooth) in a neighborhood of S. Then the following equality holds:∫

∂S

~F · d~r =

∫∫
S

curl ~F · ~n dS.

The theorem can be useful in either direction: sometimes the line integral is easier than the
surface integral, sometimes the other way around.

2 Examples

Consider the vector field ~F = (y, xz, 1) whose curl is

curl ~F =

∣∣∣∣∣∣
~i ~j ~k
∂
∂x

∂
∂y

∂
∂z

y xz 1

∣∣∣∣∣∣
=~i(0− x)−~j(0− 0) + ~k(z − 1)

= (−x, 0, z − 1).

Consider the curve C which is the unit circle in the xy-plane, defined by x2 + y2 = 1, z = 0,
oriented counterclockwise when viewed from above. Let us compute the line integral of ~F along
C.

First, parametrize C by the usual “longitude” angle θ:

~r(θ) = (cos θ, sin θ, 0)

0 ≤ θ ≤ 2π.

Then we have ∫
C

~F · d~r =

∫ 2π

0

(y, xz, 1) · ~r′(t)dt

=

∫ 2π

0

(sin θ, 0, 1) · (− sin θ, cos θ, 0)dt

=

∫ 2π

0

− sin2 θdt

= −π .
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Stokes’ theorem claims that if we “cap off” the curve C by any surface S (with appropriate
orientation) then the line integral can be computed as∫

C

~F · d~r =

∫∫
S

curl ~F · ~n dS.

Now let’s have fun! More precisely, let us verify the claim for various choices of surface S.

2.1 Disk

Take S to be the unit disk in the xy-plane, defined by x2 + y2 ≤ 1, z = 0. According to the
orientation convention, the normal ~n to S should be oriented upward, so that in fact ~n = (0, 0, 1).∫∫

S

curl ~F · ~n dS =

∫∫
S

(−x, 0, z − 1) · (0, 0, 1)dS

=

∫∫
S

(z − 1)dS

=

∫∫
S

(−1)dS

= −Area(S)

= −π .

2.2 Hemisphere

Take S to be the unit upper hemisphere, defined by x2+y2+z2 = 1, z ≥ 0. According to the
orientation convention, the normal ~n to S should be oriented upward, pointing away from the
origin. That means ~n = (x,y,z)√

x2+y2+z2
= (x, y, z). Let us parametrize S in spherical coordinates,
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with colatitude 0 ≤ φ ≤ π
2

and longitude 0 ≤ θ ≤ 2π.∫∫
S

curl ~F · ~n dS =

∫∫
S

(−x, 0, z − 1) · (x, y, z)dS

=

∫∫
S

−x2 + z2 − z dS

=

∫ π
2

0

∫ 2π

0

(
−(sinφ cos θ)2 + (cosφ)2 − cosφ

)
sinφ dθdφ

=

∫ π
2

0

(−π sin2 φ+ 2π cos2 φ− 2π cosφ) sinφ dφ

= π

∫ π
2

0

(cos2 φ− 1 + 2 cos2 φ− 2 cosφ) sinφ dφ

= π

∫ π
2

0

(3 cos2 φ− 2 cosφ− 1) sinφ dφ u = cosφ, du = − sinφdφ

= π

∫ 0

1

(3u2 − 2u− 1)(−du)

= π
[
u3 − u2 − u

]1
0

= π(1− 1− 1)

= −π .

We could also take S to be the unit lower hemisphere, defined by x2 + y2 + z2 = 1, z ≤ 0.
According to the orientation convention, the normal ~n to S should be oriented upward, pointing
towards the origin. That means ~n = −(x,y,z)√

x2+y2+z2
= −(x, y, z). Again, we parametrize S in

spherical coordinates, with colatitude π
2
≤ φ ≤ π and longitude 0 ≤ θ ≤ 2π. A very similar

calculation yields: ∫∫
S

curl ~F · ~n dS =

∫∫
S

(−x, 0, z − 1) · (−(x, y, z)) dS

= −
∫∫

S

−x2 + z2 − z dS

= −π
∫ π

π
2

(3 cos2 φ− 2 cosφ− 1) sinφ dφ

= −π
∫ −1
0

(3u2 − 2u− 1)(−du)

= π
[
u3 − u2 − u

]−1
0

= π ((−1)− 1− (−1))

= −π .
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2.3 Paraboloid

Take S to be the part of the paraboloid defined by z = 1− x2 − y2, x2 + y2 ≤ 1. According to
the orientation convention, the normal ~n to S should be oriented upward, pointing away from
the z-axis.

Let us parametrize S using x and y as parameters, with domain of parametrization D the unit
disk x2 + y2 ≤ 1:

~r(x, y) = (x, y, 1− x2 − y2).
The tangent vectors are

~rx = (1, 0,−2x)

~ry = (0, 1,−2y)

so that a normal vector is given by the cross product

~rx × ~ry = (2x, 2y, 1).

Check the orientation: This normal vector points up and away from the z-axis. Ok! No need
to flip it. ∫∫

S

curl ~F · ~n dS =

∫∫
D

curl ~F · (~rx × ~ry)dxdy

=

∫∫
D

(−x, 0, z − 1) · (2x, 2y, 1)dxdy

=

∫∫
D

−2x2 + z − 1dxdy

=

∫∫
D

−2x2 + (1− x2 − y2)− 1dxdy

=

∫∫
D

−3x2 − y2dxdy

= −
∫ 2π

0

∫ 1

0

(
3r2 cos2 θ + r2 sin2 θ

)
rdrdθ

= −
∫ 2π

0

∫ 1

0

(
3r3 cos2 θ + r3 sin2 θ

)
drdθ

= −
∫ 2π

0

3

4
cos2 θ +

1

4
sin2 θdθ

= −
(

3

4
(π) +

1

4
(π)

)
= −π .

2.4 Cone

Take S to be the part of the cone defined by z = 1−
√
x2 + y2, x2 + y2 ≤ 1. According to the

orientation convention, the normal ~n to S should be oriented upward, pointing away from the
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z-axis.

Let us parametrize S in cylindrical coordinates with 0 ≤ r ≤ 1 and 0 ≤ θ ≤ 2π:

~r(r, θ) = (r cos θ, r sin θ, 1− r).

The tangent vectors are

~rr = (cos θ, sin θ,−1)

~rθ = (−r sin θ, r cos θ, 0)

so that a normal vector is given by the cross product

~rr × ~rθ =

∣∣∣∣∣∣
~i ~j ~k

cos θ sin θ −1
−r sin θ r cos θ 0

∣∣∣∣∣∣
=~i(0− (−r cos θ))−~j(0− r sin θ) + ~k(r cos2 θ − (−r sin2 θ))

= (r cos θ, r sin θ, r).

Check the orientation: This normal vector points up and away from the z-axis. Ok! No need
to flip it.∫∫

S

curl ~F · ~n dS =

∫∫
D

curl ~F · (~rr × ~rθ) drdθ

Notice! The vector ~rr × ~rθ = (r cos θ, r sin θ, r) already encodes the distortion

of area dS = |~rr × ~rθ| drdθ =
√

2 r drdθ. Do not throw in an extra r.

=

∫∫
D

(−x, 0, z − 1) · (r cos θ, r sin θ, r)drdθ

=

∫∫
D

(
−r2 cos2 θ + (−r)r

)
drdθ

= −
∫ 2π

0

∫ 1

0

r2(cos2 θ + 1)drdθ

= −1

3

∫ 2π

0

(cos2 θ + 1)dθ

= −1

3
(π + 2π)

= −π .

2.5 Tin can

Take S to be the “tin can with a top but without the bottom”, of height, say, 5. In other words,
S consists of the part of the cyclinder x2 + y2 = 1, 0 ≤ z ≤ 5 (the side of the can), along with
the disk x2 + y2 ≤ 1, z = 5 (the top of the can). Call them respectively S1 and S2.
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According to the orientation convention, the normal ~n to S1 should point away from the z-axis.
That means ~n = (x, y, 0). Let us parametrize S1 in cylindrical coordinates with 0 ≤ z ≤ 5 and
0 ≤ θ ≤ 2π:

~r(z, θ) = (cos θ, sin θ, z).∫∫
S1

curl ~F · ~n dS =

∫∫
S1

(−x, 0, z − 1) · (x, y, 0)dS

=

∫∫
S1

−x2 dS

= −
∫ 2π

0

∫ 5

0

(cos2 θ)(1)dzdθ

= −5

∫ 2π

0

(cos2 θ)dθ

= −5π.

The normal ~n to S2 should point up. That means ~n = (0, 0, 1).∫∫
S2

curl ~F · ~n dS =

∫∫
S2

(−x, 0, z − 1) · (0, 0, 1)dS

=

∫∫
S2

(z − 1)dS

=

∫∫
S2

(4)dS

= 4 Area(S2)

= 4π.

Combining the two parts, we obtain∫∫
S

curl ~F · ~n dS =

∫∫
S1

curl ~F · ~n dS +

∫∫
S2

curl ~F · ~n dS

= −5π + 4π

= −π .

3 Closed surfaces

3.1 Closed curves

Recall the following from chapter 13.

Definition 3.1. A closed curve is a curve that ends where it started.

In other words, a closed curve C has no endpoints floating around; it forms a loop. Another
way to say this is that its boundary is empty: ∂C = ∅. In general, the boundary of a curve
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is its ending point minus its starting point (the signs account for orientation). If the curve C
goes from A to B, then we can write

∂C = B − A.

A consequence of the fundamental theorem of line integrals is that integrating a conservative
vector field along a closed curve C automatically yields zero:∫

C

∇f · d~r = f(B)− f(A) = 0. (1)

In fact, we learned that property (1) characterizes conservative vector fields: A vector field is
conservative if and only if its integral along any loop is zero.

Property (1) is not as mysterious as it seems. The key is that conservative vector fields are
very special. Most vector fields are not conservative, i.e. are not the gradient of any function.

3.2 In 2 dimensions

What is the analogous notion for 2-dimensional objects, namely surfaces?

Definition 3.2. A closed surface is a surface that has no boundary.

In other words, a closed surface S has no “edge” floating around. Another way to say this is
that its boundary is empty: ∂S = ∅. In general, the boundary of a surface will be a curve, or
possibly several curves.

Example 3.3. Let S is the upper hemisphere of radius R, defined by x2 + y2 + z2 = R2, z ≥ 0.
Its boundary ∂S is the circle of radius R in the xy-plane, defined by x2 + y2 = R2, z = 0.

Example 3.4. Let S is the sphere of radius R, defined by x2 + y2 + z2 = R2. Its boundary ∂S
is empty. That is, the sphere is a closed surface.

Example 3.5. Let S is the part of the cylinder of radius R around the z-axis, of height H,
defined by x2 + y2 = R2, 0 ≤ z ≤ H. Its boundary ∂S consists of two circles of radius R: C1

defined by x2 + y2 = R2, z = 0, and C2 defined by x2 + y2 = R2, z = H.

A consequence of Stokes’ theorem is that integrating a vector field which is a curl along a
closed surface S automatically yields zero:∫∫

S

curl ~F · ~n dS =

∫
∂S

~F · d~r

=

∫
∅

~F · d~r

= 0. (2)

Remark 3.6. In case the idea of integrating over an empty set feels uncomfortable – though it
shouldn’t – here is another way of thinking about the statement. If S is a closed surface, cut it
into two parts S1 and S2 along some curve C. For example, we can cut the sphere S into the
upper hemisphere S1 and lower hemisphere S2 along the equator C. Applying Stokes’s theorem
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to each part yields∫∫
S

curl ~F · ~n dS =

∫∫
S1

curl ~F · ~n dS +

∫∫
S2

curl ~F · ~n dS

=

∫
C

~F · d~r −
∫
C

~F · d~r

= 0

where the opposite signs come from the orientation convention.

In fact, property (2) characterizes curls: A vector field is the curl of some vector field if and
only if its integral along any closed surface is zero.

Property (2) is not as mysterious as it seems. The key is that curls are very special. Most
vector fields are not the curl of a vector field.

4 Which vector fields are curls?

We have seen that vector fields of the form curl ~F are (relatively) easy to integrate along
surfaces. But how do we know if a given vector field is the curl of some vector field? Here is a
necessary condition.

Proposition 4.1. Let ~F be a nice enough vector field (twice continuously differentiable). Then

we have div(curl ~F ) ≡ 0. In words: a curl is always incompressible.

Proof. Write ~F = (F1, F2, F3) and abbreviate the partial differentiation operators as

∂1 =
∂

∂x
, ∂2 =

∂

∂y
, ∂3 =

∂

∂z
.

Then the curl is

curl ~F =

∣∣∣∣∣∣
~i ~j ~k
∂1 ∂2 ∂3
F1 F2 F3

∣∣∣∣∣∣
=~i(∂2F3 − ∂3F2)−~j(∂1F3 − ∂3F1) + ~k(∂1F2 − ∂2F1)

= (∂2F3 − ∂3F2, ∂3F1 − ∂1F3, ∂1F2 − ∂2F1).

Its divergence is

div
(

curl ~F
)

= ∂1(∂2F3 − ∂3F2) + ∂2(∂3F1 − ∂1F3) + ∂3(∂1F2 − ∂2F1)

= ∂1∂2F3 − ∂1∂3F2 + ∂2∂3F1 − ∂2∂1F3 + ∂3∂1F2 − ∂3∂2F1

= (∂1∂2F3 − ∂2∂1F3) + (∂2∂3F1 − ∂3∂2F1) + (∂3∂1F2 − ∂1∂3F2)

≡ 0 + 0 + 0

= 0.
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Remark 4.2. If one prefers the notation ~F = (P,Q,R), then the above calculations can be
written as

curl ~F = (Ry −Qz, Pz −Rx, Qx − Py)

and
div
(

curl ~F
)

= (Ryx −Rxy) + (Pzy − Pyz) + (Qxz −Qzx) ≡ 0.

Example 4.3. We have seen in section 2 that the vector field (−x, 0, z−1) is a curl. Its divergence
is indeed zero:

div(−x, 0, z − 1) ≡ −1 + 0 + 1 = 0.

Example 4.4. Consider the vector field ~F = (xy2, y+ z, yz3). Is ~F the curl of some vector field?

The divergence is

div ~F =
∂

∂x
(xy2) +

∂

∂y
(y + z) +

∂

∂z
(yz3)

= y2 + 1 + 3yz2

which is not the constant function 0. Therefore ~F is not the curl of a vector field.

Question 4.5. Is the condition also sufficient? In other words, does the property div ~F ≡ 0
guarantee that ~F is a curl?

In general, the answer is NO! However, there is a partial converse.

Proposition 4.6. Let ~F be a nice enough vector field on all of R3. If ~F satisfies div ~F ≡ 0,
then ~F is the curl of some vector field. In words: a vector field defined everywhere on R3 is a
curl if and only if it is incompressible.

Example 4.7. Consider the vector field ~F = (xy2,−y3 + cos z, 2y2z). Is ~F the curl of some
vector field?

The divergence is

div ~F =
∂

∂x
(xy2) +

∂

∂y
(−y3 + cos z) +

∂

∂z
(2y2z)

= y2 − 3y2 + 2y2

≡ 0.

Moreover, ~F is defined (and smooth) everywhere on R3. Therefore ~F is the curl of some vector
field.

Remark 4.8. Describing more precise sufficient conditions for an incompressible vector field to
be a curl would require a foray into topology. The answer depends on the shape of the domain
of ~F .

In the lecture on Monday April 30, we will see that the converse of 4.1 can fail spectacularly.
We will study a vector field ~F satisfying div ~F ≡ 0 which is not a curl.
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Stokes' Theorem Examples

Stokes' Theorem relates surface integrals and line integrals.

STOKES' THEOREM

Let  be a vector field.  Let  be an oriented surface, and let  be the boundary curve of , orientedF W G W

using the right-hand rule.  Then:

(( *a b
W G

curl  F A F s† . œ † .

EXAMPLE 1 Let  be the curve defined by the parametric equationsG

B œ !

C œ #  # >

D œ #  # >

! Ÿ > Ÿ #cos
sin

1

Use Stokes' Theorem to evaluate .(
G

# &DB / .B  B C .C  $C .Dcos

SOLUTION The parametric equations above describe a circle of radius  on the -plane:# CD

 

x

y 

z 

Let  be the disc whose boundary is the given circle.  By Stokes' Theorem:H

( ((ˆ ‰ ˆ ‰
G H

# &D # &DB /  B C  $C † . œ B /  B C  $C † .i j k s i j k Acos coscurl

We compute the curl:

curl̂ ‰ ˆ ‰
â ââ ââ ââ ââ ââ ââ ââ â

B /  B C  $C# &D i j kcos œ œ $  &B /  C`Î`B `Î`C `Î`D

B / B C $C

i j k

i j k

# &D

# &D

cos

cos

So we have to evaluate  .(( ˆ ‰
H

# &D$  &B /  C † .i j k Acos



 This integral can be evaluated geometrically.  The vector  for the disc points in the positive . BA
direction.  (Stokes' theorem uses the right-hand rule:  if you curl the fingers of your right hand in the
direction of , then your thumb points in the direction of .)  So:G .A

ˆ ‰$  &B /  C † . œ $ .Ei j k A# &D cos

Therefore:

((
H

ˆ ‰ (( a b$  &B /  C † . œ $ .E œ $ ‚ œ "#i j k A# &D

H

cos the area of the disc 1 è

EXAMPLE 2 Let  be the surface  for  and .  Evaluate theW D œ B "  B C "  C ! Ÿ B Ÿ " ! Ÿ C Ÿ "a b a b
integral , where  is the upward-pointing normal vector.((

W

B † . .k A A

SOLUTION If we wish to use Stokes' theorem, we must express  as the curl of some vector field .Bk F
The formula for the curl is:

curlF

i j k

œ œ  ß  ß `Î`B `Î`C `Î`D

J J J

`J `J `J `J

`C `D `D `B `B `C

`J `J

â ââ ââ ââ ââ ââ ââ ââ ââ â
Œ 

B C D

D B D BC C

So what we need is:

`J `J `J `J

`C `D `D `B `B `C
 œ !  œ !  œ B

`J `JD B D BC C

It is not hard to guess that , with .  Indeed:J œ B J œ J œ !C B D
"
#

#

curlŒ 
â ââ ââ ââ ââ ââ ââ ââ ââ â

"

#
B œ œ B`Î`B `Î`C `Î`D

! B !

#

"
#

#

j k

i j k

By Stokes' Theorem, we conclude that (( *
W G

#B † . œ B .C G
"

#
k A , where  is the boundary curve of the

surface .W

 So what is the boundary of ?  Well, the equation  specifies a surface whoseW D œ B "  B C "  Ca b a b
D-coordinate varies with horizontal position:



 

x 
y 

z 

The allowed values of  and  are determined by the inequalities  and , whichB C ! Ÿ B Ÿ " ! Ÿ C Ÿ "

describe a square on the -plane:BC

 

x 

y 

1

1 

The sides of this square are along the lines , , , and .  Looking at the equation, weB œ ! C œ ! B œ " C œ "

see that  for these values of  and , so the boundary of the surface is just the boundary of theD œ ! B C

square on the -plane:BC

 

x 

y 

1

1 

We can evaluate  geometrically:*
G

#"

#
B .C

* ( ( ( (
G

# # # # #" " " " "

# # # # #
B .C œ B .C  B .C  B .C  B .C

top bottom left right

The top and bottom sides are horizontal, so .  Furthermore,  along the left edge, and .C œ ! B œ ! B œ "



along the right edge, so:

* (
G

#" " "

# # #
B .C œ !  !  !  .C œ

right
è

EXAMPLE 3 Let  be the upper hemisphere of the unit sphere .  Use Stokes' theoremW B  C  D œ "# # #

to evaluate , where  is the upward-pointing normal vector.(( ˆ ‰
W

$ C # CB /  $B / † . .i j A A

SOLUTION If we wish to use Stokes' theorem, we must express  as the curl of someB /  $B /$ C # Ci j
vector field .  The formula for the curl is:F

curlF

i j k

œ œ  ß  ß `Î`B `Î`C `Î`D

J J J

`J `J `J `J

`C `D `D `B `B `C

`J `J

â ââ ââ ââ ââ ââ ââ ââ ââ â
Œ 

B C D

D B D BC C

So what we need is:

`J `J `J `J

`C `D `D `B `B `C
 œ B /  œ $B /  œ !

`J `JD B D BC C$ C # C

If we guess that  and  are zero, it is not too hard to figure out that .  Indeed:J J J œ B /C B D
$ C

curl̂ ‰
â ââ ââ ââ ââ ââ ââ ââ â

B / œ œ`Î`B `Î`C `Î`D

! ! B /

$ C

$ C

k

i j k

B /  $B /$ C # Ci j

By Stokes' Theorem, we conclude that (( *ˆ ‰
W G

$ C # C $ CB /  $B / † . œ B / .D Gi j A , where  is the

boundary curve of the surface .W

 Since  is the upper hemisphere of the unit sphere,  is just the unit circle on the -plane.  By theW G BC

right-hand rule,  is oriented counterclockwise.  (It would be clockwise if we had started with theG

downward-pointing .)  Then  is zero, since  is not changing over the course of the circle.. B / .D DA *
G

$ C

We conclude that .(( ˆ ‰
W

$ C # CB /  $B / † . œ !i j A è



EXAMPLE 4 Let  be the surface defined by  for .  Use Stokes' Theorem to evaluateW D œ B  C D Ÿ %# #

(( ˆ ‰
W

# $$BD  D † . .i k A A, where  is the upward-pointing normal vector.

SOLUTION If we wish to use Stokes' theorem, we must express  as the curl of some$BD  D# $i j
vector field .  The formula for the curl is:F

curlF

i j k

œ œ  ß  ß `Î`B `Î`C `Î`D

J J J

`J `J `J `J

`C `D `D `B `B `C

`J `J

â ââ ââ ââ ââ ââ ââ ââ ââ â
Œ 

B C D

D B D BC C

So what we need is:

`J `J `J `J

`C `D `D `B `B `C
 œ $BD  œ !  œ D

`J `JD B D BC C# $

If we guess that  and  are zero, it is not hard to figure out that .  Indeed:J J J œ BDB D C
$

curl̂ ‰
â ââ ââ ââ ââ ââ ââ ââ â

BD œ œ`Î`B `Î`C `Î`D

! BD !

$

$

j k

i j k

$BD  D# $i

By Stokes' Theorem, we conclude that (( *ˆ ‰
W G

# $ $$BD  D † . œ BD .C Gi k A , where  is the

boundary curve of the surface .W

 So what is the boundary of ?  Well, the equation for the surface  can be expressed as ,W W D œ <#

where .  This appears as a parabola on the -plane:D Ÿ % <D

 

r 

z 

(2, 4) 

 

y 

z 

x 

C 

Therefore, the surface  is a bowl-shaped paraboloid.  Its boundary curve  is a counterclockwise circleW G

on the plane  with radius , with parameterization:D œ % #

B œ # >

C œ # >

D œ %

! Ÿ > Ÿ #

cos
sin 1



(The circle is counterclockwise by the right-hand rule.)  Thus:

* ( a ba b a b

(
( a b

” •

G !

$
#

$

!

#
#

!

#

!

#

BD .C œ # > % # > .>

œ #&' > .>

œ #&' "  #> .>
"

#

œ "#) >  #>
"

#

œ #&'

1

1

1

1

cos cos

cos

cos

sin

(double-angle formula)

1 è


