
2. Gyakorlat

1. Adjuk meg a következő differenciálegyenlet általános megoldását:

a.) y′ = ln(x)y

b.) y′ − 2y

x
= 0

2. An integrating factor is any expression that a differential equation is multiplied by to
facilitate integration and is not restricted to first order linear equations. For example, the
nonlinear second order equation

d2y

dt2
= Ay2/3

admits dy
dt as an integrating factor:

d2y

dt2
dy

dt
= Ay2/3

dy

dt
.

To integrate, note that both sides of the equation may be expressed as derivatives by going
backwards with the [[chain rule]]:

d

dt

(
1

2

(
dy

dt

)2
)

=
d

dt

(
A

3

5
y5/3

)
.

Therefore

(
dy

dt

)2

=
6A

5
y5/3 + C0.

This form may be more useful, depending on application. Performing a separation of
variables will give: ∫

dy√
6A
5 y

5/3 + C0

= t+ C1;



this is an implicit solution which involves a nonelementary integral. Though likely too
obscure to be useful, this is a general solution. Also, because the previous equation is first
order, it could be used for numeric solution in favor of the original equation.

3. Bolygómozgás
Egy rendszer energiáját 2D polárkoordinátákban a következőképpen tudjuk megadni:

E =
1

2

l2

mr4

(
dr

dϕ

)2

+
1

2

l2

mr2
− α

r
.

Határozzuk meg a rendszer r(ϕ) pályáját!

4. Az ábrán látható m tömegű testeket jobbra, balra meghúzzuk d-vel, majd elegendjük.
ı́rjuk le a három test mozgását! Mik lesznek a karakterisztikus frekvenciák?

2m mm

D D
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The Characteristic Polynomial 
 
 
Back to the subject of the second order linear homogeneous equations with 
constant coefficients (note that it is not in the standard form below): 
 
   a y″ + b y′ + c y = 0,   a ≠ 0.   (*) 
 
We have seen a few examples of such an equation.  In all cases the solutions 
consist of exponential functions, or terms that could be rewritten into 
exponential functions†.  With this fact in mind, let us derive a (very simple, 
as it turns out) method to solve equations of this type.  We will start with the 
assumption that there are indeed some exponential functions of unknown 
exponents that would satisfy any equation of the above form.  We will then 
devise a way to find the specific exponents that would give us the solution.   
 
Let y = e 

rt be a solution of (*), for some as-yet-unknown constant r.  
Substitute y, y′ = r e 

rt, and y″ = r2
 e 

rt into (*), we get 
 
   a r2

 e 
rt + b r e 

rt + c e 
rt = 0,   or 

 
   e 

rt
 (a r2 + b r + c ) = 0. 

 
Since e 

rt is never zero, the above equation is satisfied (and therefore y = e 
rt 

is a solution of (*)) if and only if a r2 + b r + c = 0.  Notice that the 
expression a r2 + b r + c is a quadratic polynomial with r as the unknown.  It 
is always solvable, with roots given by the quadratic formula.  Hence, we 
can always solve a second order linear homogeneous equation with constant 
coefficients (*). 
 

                                                 
† Sine and cosine are related to exponential functions by the identities 

i

ee ii

2
sin

θθ

θ
−−

=  and  
2

cos
θθ

θ
ii ee −+

= . 
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This polynomial, a r2 + b r + c, is called the characteristic polynomial of the 
differential equation (*).  The equation  
 

a r2 + b r + c = 0 

 
is called the characteristic equation of (*).  Each and every root, sometimes 
called a characteristic root, r, of the characteristic polynomial gives rise to a 
solution y = e rt of (*).   
 
 
We will take a more detailed look of the 3 possible cases of the solutions 
thusly found: 
 
 1.  (When b2 − 4 ac > 0)  There are two distinct real roots r1, r2. 
 2.  (When b2 − 4 ac < 0)  There are two complex conjugate roots 
      r = λ ± µi. 
 3.  (When b2 − 4 ac = 0)  There is one repeated real root r. 
 
 
 
 
Note:  There is no need to put the equation in its standard form when solving 
it using the characteristic equation method.  The roots of the characteristic 
equation remain the same regardless whether the leading coefficient is 1 or 
not. 
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Case 1 Two distinct real roots 
 
 
When b2 − 4 ac > 0, the characteristic polynomial have two distinct real 

roots r1, r2.  They give two distinct‡ solutions 
tr

ey 1

1 =  and  
tr

ey 2

2 = .  Therefore, a general solution of (*) is 
 

trtr
eCeCyCyCy 21

212211 +=+= . 

 
It is that easy. 
 
 
Example:    y″ + 5 y′ + 4 y = 0 
 

The characteristic equation is r2 + 5 r + 4 = (r + 1)(r + 4) = 0, the roots 
of the polynomial are r = −1 and −4.  The general solution is then 

 
    y = C1 e 

−t + C2 e 
−4t. 

 
 
Suppose there are initial conditions y(0) = 1, y′(0) = −7.  A unique particular 
solution can be found by solving for C1 and C2 using the initial conditions.  
First we need to calculate y′ = −C1 e −t − 4C2 e −4t, then apply the initial values: 
 
    1 = y(0) = C1 e 0 + C2 e 0 = C1 + C2  
 
  −7 = y′(0) = −C1 e 0 − 4C2 e 0 = −C1 − 4C2 
 
 
The solution is C1 = −1, and C2 = 2   →  y = −e −t + 2 e −4t. 
 

                                                 
‡  We shall see the precise meaning of distinctness in the next section.  For 
now just think that the two solutions are not constant multiples of each other. 
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Question:  Suppose the initial conditions are instead y(10000) = 1,  
y′(10000) = −7.  How would the new t0 change the particular solution? 
  
 
Apply the initial conditions as before, and we see there is a little 
complication.  Namely, the simultaneous system of 2 equations that we have 
to solve in order to find C1 and C2 now comes with rather inconvenient 
irrational coefficients:  
 
    1 = y(10000) = C1 e −10000 + C2 e −40000         
 
  −7 = y′(10000) = −C1 e −10000 − 4C2 e −40000     
 
With some good bookkeeping, systems like this can be solved the usual way.  
However, there is an easier method to simplify the inconvenient coefficients.  
The idea is translation (or time-shift).  What we will do is to first construct a 
new coordinate axis, say Ť-axis.  The two coordinate-axes are related by the 
equation Ť = t − t0.  (Therefore, when t = t0, Ť = 0; that is, the initial t-value 
t0 becomes the new origin.)  In other words, we translate (or time-shift) t-
axis by t0 units to make it Ť-axis.   In this example, we will accordingly set Ť 
= t − 10000.  The immediate effect is that it makes the initial conditions to 
be back at 0: y(0) = 1, y′(0) = −7, with respect to the new Ť-coordinate.  We 
then solve the translated system of 2 equations to find C1 and C2.  What we 
get is the (simpler) system  
 
    1 = y(0) = C1 e 0 + C2 e 0 = C1 + C2  
 
  −7 = y′(0) = −C1 e 0 − 4C2 e 0 = −C1 − 4C2 
 
As we have seen on the previous page, the solution is C1 = −1, and C2 = 2.  
Hence, the solution, in the new Ť-coordinate system, is  y(Ť) = −e −Ť + 2 e −4Ť. 
 
Lastly, since this solution is in terms of Ť, but the original problem was in 
terms of t, we should convert it back to the original context.  This conversion 
is easily achieved using the translation formula used earlier, Ť = t − t0 = t − 
10000.  By replacing every occurrence of Ť by t − 1000 in the solution, we 
obtain the solution, in its proper independent variable t. 
 
   y(t) = −e −(t − 10000) + 2 e −4(t − 10000). 
 



© 2008, 2012   Zachary S Tseng    B-1 - 11 

Example:  Consider the solution y(t) of the initial value problem 
 
    y″ − 2 y′ − 8 y = 0,   y(0) = α,   y′(0) = 2π. 
 
Depending on the value of α, as t → ∞, there are 3 possible behaviors of y(t).  
Explicitly determine the possible behaviors and the respective initial value α 
associated with each behavior. 
 
 

The characteristic equation is r2 − 2 r − 8 = (r + 2)(r − 4) = 0.  Its roots 
are r = −2 and 4.  The general solution is then 

 
    y = C1 e 

−2t + C2 e 
4t. 

 
Notice that the long-term behavior of the solution is dependent on the 
coefficient C2 only, since the C1 e

 −2t term tends to 0 as t → ∞, 
regardless of the value of C1. 
 
Solving for C2 in terms of α, we get  

 
  y(0)  =  α   =       C1 +   C2   
  y′(0) = 2π  =   −2C1 + 4C2   
  

  2α + 2π = 6C2       →    32

πα +
=C . 

 
 Now, if C2 > 0 then y tends to ∞ as t → ∞.  This would happen when  

α > − π.  If C2 = 0 then y tends to 0 as t → ∞.  This would happen 
when α = − π.  Lastly, if C2 < 0 then y tends to −∞ as t → ∞.  This 
would happen when α < − π.  In summary:  
 

When α > − π,   C2 > 0,  ∞=
∞→

)(lim ty
t

. 

When α = − π,   C2 = 0,  0)(lim =
∞→

ty
t

. 

When α < − π,   C2 < 0,  −∞=
∞→

)(lim ty
t

. 

 


