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1 Introduction
Computational social science [1] is a rapidly developing area of scientific research. While people
are doing their usual daily activities – for example they are using their mobile phones, their credit
cards, etc. – they leave digital footprints behind themselves. These footprints can be used to make
important observations and measurements about the human behaviour, which was impossible a
few years ago. The two main directions of computational social science are the analysis of social
networks and human dynamics. Beside academic interest, studying human dynamics may have
practical usage as well. One example is analysing human mobility that is essential in modelling
(and anticipating) the spread of diseases. Social and economic phenomena are driven by individ-
ual human actions, thus timing of human activities is of central interest. This research is truly
multidisciplinary and physicists play an important role in it. The main aim of physics is to give
mathematical description about the phenomena in Nature. Social phenomena can also be con-
sidered as part of Nature and empirical studies, and even experiments can be made on the digital
datasets. Physicists are used to making simple (and more complex) models that are compared to the
data every time. Nowadays more and more datasets are becoming available for scientific research
[2, 3, 4, 5], and physicists can analyse these datasets similarly to those obtained from the physical
experiments. The essential difference is that in social sciences we usually cannot influence the
systems or prepare subsystems. The only thing we can do is to watch their intrinsic dynamics.
(From this point of view human dynamics is more an observational science like astronomy.) Due
to fluctuations and external interventions, like rare phenomena of non human-related Nature that
has effects on the human related world, we are able to analyse subsystems and the response of
the systems to disturbances. The stochastic character, the interaction of many constituents and the
data deluge have made physicists interested in the field of human dynamics and network theory
and they have had a major impact on these fields.

1.1 Previous results from literature
A large number of detailed electronic datasets have become available for scientific research re-
cently, which contain for example the timing of email [2, 3] and telecommunication [4] actions.
In human dynamics the most important and most studied quantity is the interevent time, that is
the time elapsed between two consecutive actions of the same kind of activity. For many types of
activities the interevent time distribution shows power-law decay. This means that very active and
long inactive periods can be observed on wide range of scales. The timing of events is not homo-
geneous, bursts of frequently repeated actions are separated by long inactive periods. We are going
to refer to this type of activity pattern as bursty behaviour. This is in contrast with the previously
assumed Poissonian human behaviour where long interevent times are exponentially rare. The
bursty behaviour can be characterised by the exponent of decay of the interevent time distribution.
The interevent time distribution is power-tailed for example for the library loans [6], for email
communication [2, 6] and for telecommunication patterns [7]. The interevent time distributions
for the surface mail based communication of Darwin, Einstein and Freud are also power-tailed [8].

The first model to describe bursty behaviour was introduced by Albert-László Barabási [9].
His publication in 2005 triggered much activity in the study of human dynamics. He wanted
to model the distribution of waiting times between reading and replying to an email that might be
responsible for the heavy tail of the interevent time distribution in the email communication. In this
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model people are assumed to have a list of size L that contains their tasks. Every task has a priority
xi (i = 1 . . .L) from a ρ(x) distribution. At each time step with probability p the user chooses the
task with maximum priority, and with probability 1− p he chooses a task uniformly. The chosen
task is then executed, and a new task comes with priority chosen from the distribution ρ(x). It can
be shown that the waiting time distribution in the model has a power-law decay Pwt(t)∼ t−β with
exponent β = 1 [9, 10]. This model is in agreement with the empirical results: both of the waiting
time and the interevent time distribution can be approximated by a power decay with exponent 1.
The finite length of the list models the finite memory of the users. We should note that if the length
of the list is not fixed then the decay of the interevent time distribution changes. If we assume
that tasks are coming and executed with the same rate then the exponent for the waiting time is
β = 3/2. This is the exponent that has been observed in Darwin’s, Einstein’s and Freud’s surface
mail patterns [8]. In these cases the length of the list is given by the quantity of the letters in the
drawer, and the quantity can fluctuate in wide range. This can cause the difference between the
exponents in the surface mail and the email communication.

Vázquez in his 2006 paper argued about the discrete universality classes in human dynamics
[6]. For example web-browsing, library loans and email communication are in the β = 1 univer-
sality class, while the surface mail communication is in the β = 3/2 universality class. In contrast
there is increasing evidence against the existence of universality classes. Zhou et al studied Netflix
users sorted by activity [5] (Netflix is a webpage on which movies can be rated by the users). They
found that the interevent time distribution is different for the groups with different activity, and the
exponent shows a monotonic dependence on the activity of the group. Similar results have been
reported in the analysis of short message communication [11]. The Barabási-model has a general-
isation in which the power-law exponent is tunable. That model was introduced in the same paper
as the original one, and its aim was just to simplify the calculations, but it turned out to have some
relevance. In this modified model the probability of choosing an element is a power function of its
priority: Π(x)∼ xs and the power-law exponent is 1+1/s. The s→∞ limit of the modified model
gives the p→ 1 limit of the original model.

In 2008 Malmgren et al proposed a totally different explanation for the heavy tails in the email
communication [12]. They claimed that the presence of heavy tails in the interevent time dis-
tribution is simply the consequence of the circadian and weekly cycles of human activity. They
proposed a model, the cascading nonhomogeneous Poisson process, which takes into account both
the periodic patterns of activity and the individual’s tendency to continue participating in an activ-
ity. The primary process is a nonhomogeneous Poisson process with a rate function with weekly
periodicity, and every event generated by this process starts a second Poisson process with higher
(but constant) rate. The distribution of the length of the second process also has to be fitted to
the data. They also calculated the Fano and Allen factors to decide if there is a deeper correlation
between the events, and they stated that the empirical email data is not more correlated (bursty)
than a Poisson process [13].

In contrast to this Hang-Hyun Jo et al at Aalto University introduced a deseasoning method
[14] that can remove the circadian and weekly patterns from the time series of mobile commu-
nication events for individuals. They found that the heavy tail of the interevent time distribution
remains robust with respect to the deseasoning procedure. This indicates that the human task
execution-based mechanism is a possible cause of the remaining burstiness in temporal mobile
phone communication patterns.

Wu et al studied a model where a Poisson process initiates a task-queuing model [15]. They
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also included interaction between the lists of the users, and with this model they could explain the
bimodal shape of the interevent time distribution seen in the short-message communication. By
bimodal distribution they mean that up to some time t∗ the distribution follows a power-law, and
after that it changes to exponential (and not to a product of a power and exponential function).

There are several more models of human dynamics beyond the task queuing models and the
cascading nonhomogeneous Poisson process. One interesting attempt is the interest-driven model
[16], in which the frequency of events is determined by the interest which is influenced by the
occurrence of events.

The origin of the observed burstiness is a controversial issue. Some scientists claim that the
cascading Poisson process gives a sufficient explanation, while others argue that in order to inter-
pret all observations intrinsic correlations have to be assumed.

Zhou’s "Towards the Understanding of Human Dynamics" review article [17] is recommended
to read to get a deeper insight to the empirical observations on different activities with power de-
caying interevent time distributions and to some models (Barabási- and the interest-driven models).

1.2 Dataset and analysed quantities
I do my research in collaboration with the research group at Aalto University in Finland. This
research group has been given access to the time stamped records of mobile phone calls (MPC)
and short messages (SM) from January 1, 2007 over a period of 120 days by an unnamed European
operator whose national market share is about 20%. The dataset is anonymous and it contains the
directions of the calls and the starting and ending times with resolution of seconds. The MPC
dataset contains N = 5.2× 106 users, L = 10.6× 106 links and C = 322× 106 calls, and the SM
dataset contains L = 8.5×106 links and C = 114×106 messages.

The research group has achieved many results in analysing the network properties constructed
from the MPC dataset [18, 19]. They have also started to analyse the time series in connection
with human dynamics. Now I am introducing the most important quantities that were computed
from the dataset.

Interevent time distribution

The most studied quantity is the interevent time distribution. The interevent time is defined as
the time elapsed between the end of the last call and the beginning of the next, i.e. it measures
the length of inactive periods. Let us focus on a single user. Let ti denote the time when the ith

call is started by the user and di denote the duration of the ith call. Then the ith interevent time is
defined by τi = ti+1− (ti−di). For the probability density or mass function we are going to use the
Pie(t) notation. This function measures the inhomogeneity of the calls but states nothing about the
correlations between the calls.

Autocorrelation function

One way to measure correlations in time series is to calculate the autocorrelation function of the
event sequence. The timing of calls can take only integer values for all digital databases. We define
the contracted event sequence {t̃i} in which the duration of calls are set to 0: t̃i = ti−∑

i−1
j=1 di. Let

X be the indicator function of starting a call: X(t) = 1 if t = t̃i for some i and 0 otherwise. The
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autocorrelation function for this contracted event sequence is the following:

A(t) =
〈X(t + τ)X(τ)〉

τ

〈X(τ)〉
τ

(1)

In the denominator we used the property that X2 = X for indicator functions. Contracted event
sequence is used because we would like to remove the repulsion of calls due to their finite duration.

Number of bursty events

The autocorrelation function is a two-point function. The research group was interested in deeper
correlations and defined a new measure, the distribution of the number E of bursty events in a
bursty period. Bursty periods are defined by a time window ∆t: two consecutive events are in the
same bursty period if the time between them is smaller than the time window, i.e. ti+1− (ti+di)≤
∆t. It is easy to show that the distribution of the number of bursty events PE,∆t(n) = P(E∆t = n) is
exponentially decaying in n for any processes with independent interevent times.

PE,∆t(n) =
(∫

∆t

0
Pie(t)dt

)n−1(
1−

∫
∆t

0
Pie(t)dt

)
(2)

1.3 Previous results of the research group
The three characteristic functions defined in the previous section are similar in different commu-
nication channels (fig.1, mobile phone call, short message and email communication). This sig-
nalises that there is some deep process that organizes human communication dynamics and gives
hope to find a model that can capture the essential properties of this process. The time series are
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Figure 1: Márton Karsai’s measurements on different communication databases [20]. The upper panels in
the plots show the PE distribution in my notation. The exponents referring to the scaling regions can be
found in tab.1.

very rich in phenomena and we are looking for the most characteristic properties as the beginning
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of our analysis. This is why the duration of calls are extracted from the data. The effect of very
short and long calls or the interaction with incoming calls may be studied in the future. In the case
of email and short-message communication the effect of interaction is expected to be much higher
than in the mobile call communication, because in the latter the two participants can react to each
other at the same call.

We can observe two time scales in the autocorrelation function and in the interevent time dis-
tribution in fig.1, they appear as a cutoff in the functions. The lower cutoff starts at ∼ 20 seconds,
which is the consequence of the typical reaction time after a call. The upper cutoff starts between
12 hours and a day. The cutoff can be described by an exponential or a power-law function with
a very large exponent. Between these two cutoffs both of the interevent time distribution and the
autocorrelation function show approximately power-law decay: Pie(t)∼ t−β and A(t)∼ t−α . The
observed exponents can be found in tab.1. Márton Karsai’s measurements show that for the MPC

α β γ

MPC 0.5 0.7 4.7
SMS 0.6 0.7 3.9
E-mail 0.75 1.0 2.75

Table 1: Exponents for the autocorrelation function (α), for the interevent time distribution (β ) and for the
number of bursty events distributions (γ) [20].

dataset the number of bursty events distribution has a power-law regime and the exponent (γ ≈ 4.1)
does not depend on the time window when it is chosen from the interval between 32 seconds and
9 hours.

The functions in fig.1 show an average over the whole dataset. These measurements were
repeated with averaging just over the users within the same group of activity (total number of calls
started), and similar scaling was found but with different exponents for the different groups (see
supplementary information in [20]).

As it has been mentioned before, the scaling region of the characteristic functions are robust to
the procedure that removes the daily and weekly patterns [14].

1.4 Questions and my results
My final aim is to find an appropriate model for human communication dynamics. I am interested
in analysing the dataset at the level of individuals. Though Márton Karsai has made measurements
for groups decomposed by overall activity, these groups still cover a wide range of activity. On
the other hand two users with the same activity can behave very differently. I have access to a
small subset of the MPC dataset (sMPC) and one part of my work is to analyse the characteristic
functions on the level of individuals. I am also interested in the question whether the cascading
Poisson process can make a good fit to the data or we can see some additional effect of burstiness.

These questions are discussed in section 2 and 3. In this dissertation I will show that the
behaviour of individuals varies within the sMPC dataset even for individuals with similar total
activity. The circadian pattern is well defined for almost every user but the weekly pattern is present
only for about half of them. The long time regime of the autocorrelation function can be reproduced
by any process with a proper rate function. A non negligible proportion of the users have changed
their average activity during the entire period. This should be taken into account if someone wants
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to use a nonhomogeneous Poisson process (which is usually defined by a weekly rate function).
The power-law regime of the autocorrelation function differs from the nonhomogeneous Poisson
process, and an additional Poisson cascade usually cannot fit the autocorrelation function on the
entire domain.

I have also studied a family of task-queuing models (section 4) that can be thought of as a gen-
eralisation of the Barabási-model. These models have many advantages compared to the Barabási-
model. In these models we can define the interevent times (not only the waiting times), and as
a consequence the autocorrelation function can also be defined. I have analysed these models by
numerical and analytical methods. I have shown that these models can produce power decay in
the interevent time distribution and in the autocorrelation function with tunable exponents. I have
proved a scaling law that connects the exponents of the autocorrelation function and the interevent
time distribution in these models. This result can be extended to all renewal processes with slowly
decaying interevent times.

In my thesis I cannot give answers to all questions that have arisen, and the connection between
the empirical measurements and the task queuing model is also weak. However, the results of the
task queuing model are more general and could be used in a wide range of problems where bursty
behaviour is present (e.g. in timing of earthquakes [21], or in neuron firing sequences [22]). Finally
the composition of task queuing models with a rate function is also promising.
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2 Empirical measurements
I have made measurements on a small extract from the MPC dataset, hereafter referred to as sMPC.
I have calculated the three characteristic functions (Pie(t), A(t) and PE(n)) for the individuals to
see how much and what kind of information is lost during the averaging. I have also analysed the
circadian and weekly patterns and some other properties.

2.1 The sMPC dataset
The sMPC dataset contains 70 people of 7 strength groups, where the groups are defined by the
overall user activity (tab.2). The dataset covers 180 days. We refer to the users by an ID number:

Str group 1 2 3 4 5 6 7
# of calls 0−104 105−208 209−416 417−834 835−1670 1671−3342 3343−5212

Table 2: Number of calls for the different strength groups

the first digit refers to the activity of the user (in which strength group is the user), and the second
digit distinguishes the users inside the groups (it goes from 0 to 9).

This dataset does not include the timing of the calls, it only includes the interevent time se-
quences. The interevent time is the time elapsed between the end of the last call and the beginning
of the next. Hence the timing of calls cannot be reproduced from this dataset, the length of calls
would be needed for it. This will cause problems in determining the circadian pattern and the
autocorrelation function.

In the case of users with high activity there is enough data to get smooth characteristic curves.
For users with lower activity these functions start to be noisy and can be sampled on fewer points.
Averaging, if it is permitted, can smoothen these curves but the temporal patterns of different
individuals even from the same group seem to be sometimes so different that it is hard to assume
that they are samples from the same distribution. This sMPC dataset is too small to get good
statistics from it, but it can show the differences and similarities between the individuals. By
analysing this dataset we can find interesting properties that should be measured on the MPC
dataset afterwards.

2.2 Interevent time distribution
The dataset contains the interevent time sequence τi i = 1,2, . . . for all users. The empirical in-
terevent time distribution Pie(t) is the histogram of the interevent times. The interevent times take
values from broad range (heavy tailed distribution), therefore logarithmic bins are used. All empir-
ical distributions are displayed on fig.2 except for users with ID 14, 17 and 18 because they started
less than 15 calls. We can conclude that different users of the same strength have similar interevent
time distributions. Common properties of the interevent time distribution:

• interevent times less then 10 seconds are rare;

• Pie starts with a small peak (with width∼ 50−100s);
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Figure 2: Empirical interevent time distribution for the whole sMPC dataset (individuals with ID 14,17,18
have been excluded because they started less than 15 calls). The right panel shows the averaged interevent
time distribution for the groups.

• there is a peak centered at about 10-24 hours (position change with the strength group, width
of the peak is ∼ 3h).

The shape and the precise position of the peaks can be different for users in the same group (fig.3).
Therefore averaging blurs the peaks, that is why the second peak is so small in Karsai’s measure-
ments [20]. In the case of users with low activity averaging helps to find the peak because smaller
bins can be used. For the most active users there is a valley before the second peak. Fig.3 shows
histograms with small bin sizes for active users and a gap in the interevent time is clearly visible
for them. The cutoff before the gap is approximately exponential. For less active users the gap
vanishes because they can produce large interevent times at daytime. The gap and the peak are
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Figure 3: Interevent time histograms for active users with small bin sizes. The users on the plot have a gap
in their interevent time distribution, but the position and the width of the gap depends on the user. The cutoff
before the gap is approximately exponential.

also visible on the ττplots of the following chapter (fig.4,5). To analyse the peak and the valley
one should use bins centered around the peak instead of simple logarithmic or uniform bins.

The section between the first peak and the valley can be different for the users in the same
group. In most cases this section is nearly linear in a log-log plot with slope around −0.6 (those
dominate the picture in fig.2). In a few cases a plateau with small or zero slope follows the first
peak (ID 67, 68, 70). For these people the cascading nonhomogeneous Poisson process can make
a good fit (the details can be found in section 3).
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Correlations between interevent times

Interevent time distribution shows nothing about the present correlations. I calculated the correla-
tion function of the interevent times:

Cττ( j) =

〈
τiτi+ j

〉
i−〈τi〉2i〈

τ2
i
〉

i−〈τi〉2i
≈ δ0, j

This quantity doesn’t show correlations between the interevent times. This is not a good measure
for correlations in this case because of the broadness of the interevent time distribution.

Another way to see if there is some correlation between the consecutive interevent times is
to plot the (τi,τi+1) pairs (where the actual interevent time is the abscissa, and the next is the
ordinate). Let us call this ττplot. Correlations could be seen from the distribution of points in the
plot. E.g. if the user liked to repeat the last interevent time, then the ττplot would be centered on
the diagonal. If large τ were followed by small and vice versa, then the diagonal would be sparse.
If the interevent times tended to be smaller than the last one, then the ττplot would be centered
under the diagonal. We don’t see anything like these in the empirical series, in fact, the ττplot
does not change significantly if we randomize (permute) the interevent time sequence.

The ττplot clearly shows the peaks in the interevent time distribution (they appear as dense
horizontal and vertical lines). For the first and second strength group it can be clearly seen that the
interevent time distribution have peaks at integer times a day. As the user activity gets higher the
large interevent times vanish (fig.4).
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Figure 4: ττplot for stregth groups 2, 3 and 4. Coordinates of the points are consecutive interevent times.
The grid shows the days.

In case of the most active users, there are very few interevent times greater than one day and
the ττplot is similar for the users as well (fig.5).

2.3 Autocorrelation function
Another characteristic property is the autocorrelation function of the calling sequence. We define
the indicator variable X(t) which takes value 1 for the times an event occurs and 0 otherwise. The
autocorrelation function is a 2-point function that depends on both variables because there is no
time translation symmetry.

A(t, t ′) =
E[X(t + t ′)X(t ′)]
〈E[X(s)]〉s

, (3)
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Figure 5: ττplot for users 65, 70 and 72. Coordinates of the points are consecutive interevent times, axes
are logarithmic. The grid shows the days.

where the bracket symbol 〈. . .〉x means averaging in the variable in the lower index and the de-
nominator is the average rate of calls. This function is hard to measure on individuals, especially
on users with low activity. The quantity that is easy to measure is the conditional probability of the
event: the user starts a new call t seconds after the last call:

A(t) = P(User starts a call t seconds later | he starts a call now) (4)

We note that in the sMPC dataset the start and endpoint of the calls are the same (we don’t care
about the length of the calls). We use the name autocorrelation function for this conditional prob-
ability.

Proposition 1. A(t) is the average of A(t, t ′) in the second variable.

Proof. Let t0 denote the random time of the actual call:

A(t) = ∑
s
P(X(t + s) = 1|X(s) = 1)P(t0 = s) (5)

and

P(t0 = s) =
P(X(s) = 1)

∑sP(X(s) = 1)
(6)

yields

A(t) =
∑sP(X(t + s) = 1,X(s) = 1)

∑sP(X(s) = 1)
(7)

=
〈E[X(t + s)X(s)]〉s
〈E[X(s)]〉s

= 〈A(t,s)〉s (8)

For stationary processes A(t, t ′) = A(t,0) = A(t).

In this normalization A(0) = 1, and the asymptotic or average value of the autocorrelation
function is not fixed to zero. In the empirical measurements the expectation value is left (compare
(8) with (1)). The expectation value could be executed either if we assumed some periodicity in
the calling sequence, but it would not lower the noise, or if the users were assumed to be taken as
different samples from the same process.
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(a) Autocorrelation on long range
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(b) Autocorrelation on short range

Figure 6: Autocorrelation function for all users in the sMPC dataset. Panel (a) shows the long time and (b)
the short time behaviour.

2.3.1 Autocorrelation function for long times and the circadian pattern

The empirical autocorrelation functions behave well in the sense that they are smooth for the users
with high activity. For almost every user A(t) is periodic with a period of a day (fig.6.(a)). To
be more precise, the period differs from the length of a day due to the eliminated lengths of the
calls. In the nonhomogeneous Poisson process the autocorrelation function can be calculated from
the rate function (details are shown in section 3). The rate function is the probability density
function of starting a call at a specific time of the day. This can be measured by projecting the
call sequence into one day and estimating the density of the calls as a function of the projected
timings. In the sMPC dataset it is hard to do the projection because the proper event sequence
cannot be reproduced from the data due to the finite missing lengths of the calls. However we can
still visualize the rate function or the circadian pattern with the following method.

Circadian plot We determine the event sequence neglecting the length of the calls. Now the
length of the days is smaller than 24 hours and is not equal for different days either. We assume
that there exists an effective length of the days for the users. Now we do the projection: we take the
modulo of the event sequence with this length. In the end we plot the projected timing of events
as a function of the consecutive events.If we choose a proper effective length and length of days
do not fluctuate much, the circadian pattern appears as denser and sparser vertical bands (fig.7-
9.b). The rate function would be the density along the time axis (this is an averaged rate function
over the whole length of the data). Due to the fluctuations in the missing length of the days the
circadian plot is not translation invariant (fig.7.b) but still shows the circadian pattern. The rate
function could be measured if we detrended the data on the plot. I have not done it because the
rate function could be determined easier from the MPC dataset. If the user changed his circadian
pattern during the examined period, the circadian plot would show it. The sMPC dataset shows
that the circadian pattern is robust (we note here that in contrast to this the average daily activity
can change on the scale of 100 days).

Remark. The method used to construct the circadian plot allows one to estimate the mean and
variance of the duration of calls from a dataset which does not contain information about the
length of calls. The necessary condition to do so is the existence of the circadian pattern.
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I noticed that similar autocorrelation functions are connected to similar rate functions. I iden-
tified four main classes of the autocorrelation functions, though there are many users who cannot
be classified into these classes.

Sawtooth function (fig.7)

The autocorrelation function of users with ID 60, 70, 72, 73, 79 is similar to the sawtooth function.
The rate function is nearly homogeneous for these people, and the length of the active period is
about half a day. Users with ID 77, 78 can also be appended to this list but they have an extra small
peak where others have the minima (this comes from their longer active period).
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Figure 7: (a) Sawtooth autocorrelation function of some users. (b) Event sequence projected to one day, the
number of the call is on axis n and the projected timing is on axis t. (c) Typical rate function in the group.

Peak with shoulder (fig.8)

This is the most populous group. The autocorrelation function has small peaks on both sides of the
daily peaks. The following users are in this group: ID 23, 27, 28, 29, 37, 38, 40, 42, 44, 46, 48, 51,
52, 56, 63, 65. All of them have two peaks in their rate function, similar to one in fig.8.(c). Users
with ID 66 and 67 have also similar autocorrelation function, but their rate function is different
(also from each other).
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Figure 8: (a) Autocorrelation functions with peaks on the shoulders. (b) Event sequence projected to one
day, the number of the call is on axis n and the projected timing is on axis t. (c) Typical rate function in the
group.
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Plateau between the peaks (fig.9)

The autocorrelation function has a nearly constant section between the peaks. The following users
are in this group: ID 21, 22, 55, 57, 75. For the users with higher activity (ID 55,57,75), the
typical rate function is shown in fig.9.(c). The essential property for the group is the narrow and
very active section in the rate function. Users 21 and 22 have only this narrow peak in their rate
function.
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Figure 9: (a) Autocorrelation functions with plateau between the peaks. (b) Event sequence projected to
one day, the number of the call is on axis n and the projected timing is on axis t. (c) Typical rate function in
the group.

Nonregular or bursty behaviour (fig.10)

There are some users whose autocorrelation function is not regular (ID 20,33,41). Their phoning
activity is directed by bursty periods that appear as lines with small slope in the circadian plot in
fig.10.(b-c).
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Figure 10: (a) Nonregular autocorrelation functions. (b-c) Event sequence projected to one day, the number
of the call is on axis n and the projected timing is on axis t.

Summary

The long time region of the autocorrelation function is determined by the rate function. This
is verified by simulations and some examples are shown when the cascading nonhomogeneous
Poisson process is studied (section 3). The rate function of most users can be modelled by four
constant sections. The long section with very low activity probably corresponds to the nighttime.

14



There are two daily peaks and a valley between them. The shape of the autocorrelation function
depends on the concrete parameters of these four domains (their width and height), therefore the
classification discussed is not sharp.

2.3.2 Short time autocorrelation and burstiness

The empirical short range autocorrelation functions for the whole sMPC dataset are shown in
fig.6.(b). The most conspicuous property of autocorrelation functions is that they start with a peak.
This peak cannot emerge due to the circadian pattern because the rate function is assumed to be
smooth.

Our aim is to detect and analyse the bursty behaviour. To do this, we have to find a reference
where the burstiness is not present but the circadian pattern is (the average value tells nothing
because there is a structure above that). Fortunately the autocorrelation function is smooth enough,
so we can compare the short time autocorrelation function with the autocorrelation function shifted
by one-two-. . . days at the same range. The peak characteristic for the short time behaviour is
expected to be absent in the shifted autocorrelation functions and it is verified by the measurements.

The reference curve is the average of the autocorrelation functions shifted by 1,2, . . .9 days of
length Te f f :

Are f (t) =
1
9

9

∑
i=1

A(t + iTe f f ) . (9)

The only problem with this reference curve is that it is not normalized properly. The weekends
(the periodically appearing days with lower activity) have small contribution to the first day of the
autocorrelation function because the number of calls is small on these days. But the weekends
lower the autocorrelation function for times larger than a day. This can be handled, but it should
be done in the large SMC dataset where the noise due to the effective length of the days is not
present. The end of the peak is where the slope of the short time autocorrelation reaches the slope
of the reference line. In some cases the peak is narrow (its width is . 1000s, eg. ID 62, 66, 67, 68,
70, 73, 75, 77), while in other cases the peak is thick (its width is & 10000s, eg. ID 61, 64, 65, 72,
78, 79). Some examples of the short range autocorrelation function are shown in fig.11.

2.4 Distribution of the number of bursty events
As it was mentioned in the introduction, a new measure for dependencies within the bursty period
was recently introduced. This is the distribution PE,∆t(n) of the number of events E in a bursty pe-
riod defined for time window ∆t. Two subsequent events are in the same bursty train (period) if the
time elapsed between them is smaller than the time window. This quantity decays exponentially
in variable n for any ∆t for renewal processes (eq.(2)). Márton Karsai’s measurements show that
for the MPC dataset, this quantity has a power-law regime and the exponent (γ ≈ 4.1) does not
depend on the time window when it is chosen from the interval between 32 seconds and 9 hours.
This measurement shows an average and it should be clarified that this regime exists for all indi-
viuals or it comes from some individuals or a group of them. For this reason Márton Karsai also
measured the PE distribution for the different strength groups, and he found power-law regimes
with exponents decreasing in activity (γ = 4.3 for the least active and γ = 2.45 for the most active
group) [20].
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Figure 11: Short range autocorrelation for some users (axes are logarithmic). The violet (lower) curve is
the reference. In the inset only the horizontal axis is logarithmic and the vertical is linear.

Measurements in the sMPC dataset

The 180 days of the extended MPC and the sMPC datasets seem to be too short to get a clear picture
on the power-law regime of the PE distribution, but it is also important to see every quantity on the
individual level.

The first question is the dependence on the time window. For ∆t < tc,l ∼ 8s every event is
separated and defines a bursty train, therefore PE(n)≈ δn,1. The other limit is ∆t > tc,u ∼ 100days
when the PE distribution is centralised on the overall activity of the user. Between these two limits
PE shows nontrivial behaviour. When ∆t (> tc,l) is small, the PE distribution is monotonically
decreasing and the decay is fast.

Increasing ∆t results in appearing larger values of E. More and more bursty trains merge and
the days are cut only to few trains (fig.12). When ∆t ≈ 9h, the trains cover the days for almost all
users and the PE distribution gets similar to the distribution of the numbers of daily calls. They are
not the same because a call at night can merge two days into one train or a day can be split into
two trains by a long inactive period at daytime, and furthermore the PE distribution does not count
the days with no calls. If we increase ∆t further, days start to merge and only days with low or no
activity can split the trains.

If ∆t is small, PE is capable to measure short-range dependencies deeper than the autocorrela-
tion function. If ∆t is large (& 1day), then PE gives some information on the occurrence of periods
with low activity.

Fig.13 shows that the beginning section of the PE distribution can be well approximated by an
exponential function (i.e. logPE is approximately linear in n) when ∆t < 1h. When ∆t . 512s, the
large trains are very rare but we should not find any if the PE was exponential. The queuing models
try to take this into account as an intrinsic property of the model, while in the nonhomogeneous
Poisson process these long trains may come from some external effect (e.g. birthday, . . . ) or from
a large scale change in the phoning activity. These rare events can produce the power-law regime
in Márton Karsai’s measurements after averaging between the strength groups. We have to note
that the strength groups cover wide range in the activity and the effect of blank periods, which
we will introduce in the following subsection, can pull active users to a less active group. This is
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Figure 12: Event sequence and bursty trains for some ∆t values. The grid shows days on the left and hours
on the right images.
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Figure 13: PE distribution for the whole sMPC dataset for some time windows. The main plots are semi-
logarithmic, and the insets show the logarithmic plot of the same data. Logarithmic binning is used in the
case of the two largest time windows.

another possible candidate for the rare events in the tail of the PE distribution.

2.5 Calls in daily resolution
The method used to visualise the circadian pattern can also be used to determine the boundary
of the days from the interevent time sequence. After doing this, we can analyse the number of
calls started on different days D(n), where n counts the days. The following quantities could be
analysed:

• distribution PD(n) of the number of calls (n) started on a day

• the homogeneity on large scales

• periodicity on weekly or monthly scales
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Empirical distribution function

The empirical distribution functions are shown in fig.14. Nonhomogeneous Poisson processes
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Figure 14: Empirical probability density function of number of calls started on a day. The filled area on the
right plot shows a Poisson distribution with parameter λ = 4.5.

would result in Poisson distributed number of calls for a day if the rate function was the same for
every day. If there were periodically occurring days with lower or higher activity, we would find
a mixture distribution of Poisson distributions with different parameters. This makes the fitting of
Poisson distribution to the data more complicated.

Inhomogeneity on large scales

We usually think that users behave in a stationary manner. It is an interesting question how good
this assumption is. Analysing the number of daily calls may help to decide this. More than half of
the users seem to behave rather stationary. Their daily call function fluctuates around its mean and
there are some spikes. In contrast with this there are many users whose daily call function seems
to change in time. These users can be divided into two (not essentially disjoint) groups. The first
group contains the ones (ID: 11, 17, 21, 22, 27, 29, 39, 41, 43, 79) who had a very long inactive
period (e.g more than 25 days). This criterion is fulfilled in the entire strength group 1, but many
of the members of this group have these gaps homogeneously, so they should not be added to this
group. The second group contains the users who seem to have modified their activity along the
180 days but not to zero (ID: 35, 42, 43, 47, 55, 60, 62, 73, 76, 78). These changes can also be
seen on the circadian plot because the change in the activity implies change in the effective length
of the days (fig.15.(a-b)).

Remark. User 41 used his telephone only in the first 25 days, but has made 561 calls. With this
performance he/she should have been assigned to the most active group (instead of group four
based on the average activity). These types of blank periods should be taken into account in an
accurate modelling.

Periodicity on weekly scale

As shown before, users have a well-defined circadian pattern. Can we see a similar weekly pattern?
The answer is ambiguous. One method to visualise a large scale (x-day) periodicity is to calculate
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Figure 15: (a) The user switches to higher activity between days 85 and 150. The grid shows the weeks
(also for panel (c)). (b) The first region with positive slope corresponds to longer effective length of the days
due to the lower activity. (c) The first 3 peaks suggest a 4-day periodic behaviour.

the autocorrelation function of the daily calls.

CDD(n) =
〈D(m)D(n+m)〉m−〈D(m)〉2m
〈D(m)2〉m−〈D(m)〉2m

(10)

I found that most users do not show periodic large scale patterns. For them every day seems to
be equal, i.e the days with lower or higher activity than average occur in a nonperiodic manner.
15 users (ID: 28, 38, 40, 45, 48, 56, 58, 60, 62, 63, 68, 69, 74, 76) show nice, quasi-periodic
autocorrelation functions with peaks at 7− 14− 21− . . . days. There are some other users (ID:
24, 26, 44, 52, 55, 64, 66, 75, 77) who show these peaks but the correlation is smaller and noisier
for them. There are 3 users (ID: 39, 47, 50) who have peaks at integer times 4 days (fig.15.(c)).
User 70 is an interesting exception because he/she has a period of two weeks (1 day inactive, 7
days active, 1 day inactive, 5 days active). Fig.16 shows some examples for nice periodic daily call
correlation functions, and fig.17 shows some counterexamples.
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Figure 16: Daily call correlation function. Grid shows the weeks.
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Figure 17: Daily call correlation function. Grid shows the weeks.
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3 Nonhomogeneous Poisson process
In [12] people are assumed to send emails according to a cascading nonhomogeneous Poisson
process. In their model a lot of parameters have to be fitted because the model needs both the
rate function and the distribution of the number of events in a cascade. They did not analyse their
model in some simple cases that would help to understand the model and its consequences.

For the sake of simplicity first we study the nonhomogeneous Poisson process without cas-
cades, and we calculate some quantities that were analysed on the datasets. In the second half of
this section I will show some simulations for the characteristic functions of the cascading nonho-
mogeneous Poisson process.

Let us denote the rate function by ρ . The probability of starting a call in an interval (t, t+dt) is
equal to ρ(t)dt. The rate function is assumed to be periodic with period of T , i.e. ρ(t +T ) = ρ(t),
where T can be a day or a week, etc.

3.1 Interevent time distribution
Let P>,x(t) denote the probability that no event happens from time x up to t + x.

P>,x(t) = e−
∫ x+t

x ρ(t ′)dt ′ (11)

The probability distribution function of interevent times can be calculated by conditioning on the
timing of the actual call (similarly to the train of thought used in computing the autocorrelation
function in eq.(5)-(6)):

P(τ < t) = 1−P(τ > t) = 1−
∫ T

0 ρ(x)e−
∫ x+t

x ρ(t ′)dt ′dx∫ T
0 ρ(t ′)dt ′

(12)

The probability density function Pie(t) of the interevent times:

Pie(t) =
∫ T

0 ρ(x)ρ(x+ t)e−
∫ x+t

x ρ(t ′)dt ′dx∫ T
0 ρ(t ′)dt ′

(13)

From this formula it is easy to see that the interevent time distribution inherits the periodicity of
the rate function:

Pie(t +T ) = e−
∫ T

0 ρ(t ′)dt ′Pie(t) (14)

which means that the integral in (13) have to be calculated only for t ∈ [0,T ].

General squarewave rate function

To get more insight into the nonhomogeneous Poisson process, we analyse the case when the
rate function is a squarewave function. Let N denote the length of nighttime and D the length of
daytime (T = N +D).

ρ(t) =

{
a if t ∈ (0,N),

b if t ∈ (N,N +D),
(15)
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and ρ(t + T ) = ρ(t). Without loss of generality we assume that N < D. Evaluating (13) for
t < N +D,

Pie(t) =



a2e−at(N− t)+b2e−bt(D− t)+
+ 2ab

b−a

(
e−at− e−bt) if t ∈ (0,N),

b2e−bt(D− t)+b2e−bte(b−a)N(t−N)+

+ 2ab
b−a

(
e(b−a)N−1

)
e−bt if t ∈ (N,D),

a2e(b−a)De−at(t−D)+b2e(b−a)Ne−bt(t−N)+

+ 2ab
b−a

(
e(b−a)Ne−bt− e−(b−a)De−at

)
if t ∈ (D,N +D),

(16)

For t > T = N +D we can use the formula below

f (t +T ) = e−(aN+bD) f (t) (17)

3.2 Autocorrelation function
The autocorrelation function is the conditional probability of starting a call t seconds later if a call
is started now.

A(t) =
∫ T

0 ρ(t ′)ρ(t + t ′)dt ′∫ T
0 ρ(t)dt

(18)

It is easy to see that A(t + T ) = A(t), i.e. the autocorrelation function is periodic. This can be
evaluated on some examples:

General squarewave rate function

Let N denote the length of nighttime and D the length of daytime.

ρ(t) =

{
a if t ∈ (0,N)

b if t ∈ (N,N +D)

Without loss of generality we assume that N < D. It is easy to evaluate (18) for t < N +D,

A(t) =
1

aN +bD


a2(N− t)+b2(D− t)+2abt if t ∈ (0,N)

2abN +b2(D−N) if t ∈ (N,D)

a2(t−D)+b2(t−N)+2ab(D+N− t) if t ∈ (D,N +D)

(19)

For t > T = N+D we can use the periodic extension. This expression for the autocorrelation func-
tion can explain the emergence of the plateaus in fig.9.a . That is if the rate function is dominated
by a peak and on the other regions it is negligible, then A(t) is constant when t ∈ (D,N)+ kT ,
k ∈ N (in this case D < N).
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General periodic function

The rate function ρ is assumed to be periodic (with period T ), so it can be written as Fourier series:

ρ(t) =
∞

∑
n=−∞

aneiωnt (20)

where ω = 2π

T and

an =
1
T

∫ T

0
ρ(t)e−iωntdt (21)

Substituting the Fourier series representation of ρ into (18) yields

A(t) = a0 +
1
a0

∞

∑
n=1
|an|2 2cos(nωt) (22)

This formula clearly shows how the rate function determines the autocorrelation function. It also
says that the autocorrelation function is not enough to calculate the rate function, because it does
not contain information about the phases of coefficients in the Fourier series.

Number of bursty events
The distribution of the number of bursty events is very hard to calculate in the nonhomogeneous
Poisson process. It could be investigated by simulations but the aim of the first half of this section
is to see some simple analytic formulae for the characteristic functions.

3.3 Cascading nonhomogeneous Poisson process
In the cascading nonhomogeneous Poisson process every event of the main process triggers a
second Poisson process with rate λ . The length of the second process is given by the number of
events NE which is chosen from some distribution PN(n). If we consider the cascade process as a
small perturbation, then the interevent time distribution is a mixture distribution of the interevent
time distribution of the cascade process and of the nonhomogeneous Poisson process. The weights
are given by expectation value of NE .

PCNHP
ie (t) =

PNHP
ie (t)+E[NE ]PC

ie(t)
1+E[NE ]

(23)

where the upper indices refer to the process (C: cascade, NHP: nonhomogeous Poisson). This
expression fits the simulations very well (fig.18 and 19). This formula shows that the cascade
process brings in one more scale and a simple Poisson process as a cascade cannot reproduce the
interevent time distributions for many users seen in the sMPC dataset.

The cascade process also gives a peak in the autocorrelation function. The contribution of the
cascade process to the autocorrelation function can be given by the following formula:

AC(t) =
∞

∑
n=1

P

(
n

∑
i=1

τ
C
i = t

)
P(NE > n) (24)
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where τC
i are the interevent times of the cascade process. This expresses that the call at time t can

be the first, second, . . . . The autocorrelation function for short times can be approximated by

ACNHP(t)≈ AC(t)+ANHP(t) (25)

Comparison of the model and measurements

By changing the values of the model parameters I have studied how good fits the model can pro-
duce. This short section is just a demonstration because the fits are not optimal. Making fits by
mathematical methods is planned to be done in the future. The cascade process I have used here
is a modified version of the Poisson process (which is no more a Poisson process but similar to it):
every interevent time is increased by a constant value x to take the reaction time into account. The
simulation results are shown in fig.18 and fig.19.
The cascade Poisson process is capable of producing a peak with an exponential decay for both
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Figure 18: Characteristic functions for user 70 and for the cascading Poisson process with parameters fitted
by hand. The analytic approximating curves were calculated from (23) and (25).
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Figure 19: Characteristic functions for user 60 and for the cascading Poisson process with parameters fitted
by hand. The analytic approximating curves were calculated from (23) and (25).

of the interevent time distribution and the autocorrelation function (fig.18), but it cannot reproduce
an approximately scale-free decay which can be seen in fig.19 (and in fig.11 for users 48, 60, 78,
79).

As a summary we conclude that the nonhomogeneous Poisson process can make a very good
fit for the autocorrelation function for long times, but this can be reproduced by any process with
a rate function (this statement is based on simulations which we do not show here). The Poisson
cascade can make a good fit in the short time region for some users who have an exponentially
decaying peak in their interevent time distribution but for many others it does not work well.

There are two ways to continue the modelling. The first way is to study processes with fat
tailed interevent time distribution as cascades which are triggered by a nonhomogeneous Poisson
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process. The second way is to analyse the effect of introducing a rate function to a process with
slowly decaying autocorrelation function and interevent time distribution.

In the following we will study simple processes leading to slowly decaying autocorrelation
functions.
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4 Priority arranged list model
Task queuing models are studied in human dynamics because they are capable of producing power-
law regime in the interevent time distribution. We present a model which can produce a power-law
decay also in the autocorrelation function.

We assume that every person has a task list and people choose their forthcoming activities from
the list. The list is ordered in the sense that the probability of choosing the ith activity from the
list is monotonically decreasing as a function of position i. The chosen activity is going to be
executed and it jumps to the front of the list. This means that if a person uses his phone at one time,
phoning as an activity is going to have high priority for a while. This mechanism is responsible for
producing the bursty behaviour.

The model is capable of covering many types of activities at one time. We classify the activities
into two groups. The important activities – the phoning tasks – will be denoted by A and all other
activities will be denoted by B (the latter form the group of "unimportant" activities). The length
of the list is denoted by N and the quantity of activities type B is denoted by L, i.e. we have N−L
activities of type A. The following example shows a realisation of a list and two transitions (the
chosen activities are coloured in each step):

ABAABBAAAAB...
AABAABBAAAB...
BAABAABAAAB...

In the first step the user started a call and after that he started some other activity.
We note that the time evolution of the first element of the list gives the event sequence of the

user. We are going to study the interevent time distribution, the autocorrelation function and the
distribution of the number of bursty events for this model.

Relation to the theory of shuffling cards

We can define the time reversed version of the model in which we choose a position from the same
distribution as in the original model and we move the first element of the list to the random position.
This model has similar properties to the original model, e.g. this model has the same interevent
time distribution and autocorrelation function. If we think of the list as a deck of cards, then the
time reversed model is a generalisation of the top-in shuffle method. The latter is a primitive model
of shuffling cards: the top card is removed and inserted into the deck at a uniform distributed
random position.
We are going to study the original version of the model.

4.1 Stationary solution
The list model defines a Markov-chain. The state space is the space of permutations with repetition
of sequences containing N−L elements of type A and L elements of type B. Therefore the state
space consists of

(N
L

)
elements. The probability of the next state depends on the current state only

(this is the Markov property). The transition probability is determined by the probabilities wi of
choosing the ith element. Here our only constraint is that for every position of the list wi 6= 0 (we
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are going to assume a power-law decaying function later). We arrange the probabilities of being in
particular states to row vectors. The time evolution of this vector is generated by multiplying with
the transition matrix from the right.

Example. N = 4, L = 3 model

The state space consists of 4 elements, and we are using the following ordering: 1 : ABBB,
2 : BABB, 3 : BBAB, 4 : BBBA. The transition matrix for this model:

W =


w1 w2 +w3 +w4 0 0
w2 w1 w3 +w4 0
w3 0 w1 +w2 w4
w4 0 0 w1 +w2 +w3

 (26)

Proposition 2. The transition matrix is doubly stochastic (sum of the rows and the columns are
equal to one).

Proof. We use an extended Markov chain for the proof in which the state space is the permutation
of numbers 12 . . .N (N! elements are in the state space). These numbers denote the initial posi-
tions of the elements of the list. N−L numbers refer to type A and L numbers refer to type B. The
Markov chain is ergodic, because all permutations can be generated by finite steps of moving one
element to the front of the list (this is also true for the permutations of AAA . . .BB). The sum of the
rows are equal to one by definition (after each step we are surely in one of the states).
An arbitrary p1 p2 p3 . . . pN permutation can be generated from itself with probability w1, from p2 p1
p3...pN with probability w2, . . . , and from p2 p3 . . . pN p1 with probability wN , and from other per-
mutations it cannot. The transition to a specific state is described by the columns of the transition
matrix, therefore the sum of each column is ∑wi = 1.

The row vector (111 . . .1) is an eigenvector of a doubly stochastic matrix with eigenvalue 1,
and this has to be the stationary solution of the chain because of ergodicity. Thus the stationary
distribution is uniform, which means that after a long time every permutation is equally probable.
From this it follows that the stationary solution of the original Markov chain (where the states are
the permutations with repetition of AA . . .B) is also uniform. This implies that the transition matrix
is doubly stochastic.

4.2 Master equation
The space of permutations or permutations with repetition consist of N! or

(N
L

)
elements. If we are

interested only in the PA,i(t) probability of finding an A at the ith position of the list at time t then
it can be described by a (row) vector of length N (PA(t)). The equation which describes the time
evolution of this vector is called the Master equation. This equation can be determined if we use
the law of total probability for PA(t +1) with condition on the last step:

PA,1(t +1) =
N

∑
k=1

PA,k(t)wk (27)

PA,k(t +1) = PA,k(t)
k−1

∑
i=1

wi +PA,k−1(t)
N

∑
i=k

wi (28)
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The first line expresses that a task A from any position i can jump to the first place with probability
wi. The first term in the second line expresses that we can find an A at the kth(≥ 2) position if it
has also been there in the step before and we have chosen a position smaller than k. The second
term shows that it can also happen if an A was at the k− 1th position, and we have chosen a task
from position greater than k.

The Master equation can be written in a vectorial form:

PA(t +1) = PA(t)A (29)

where the transition matrix

A =


w1 ∑

N
i=2 wi 0 · · · 0

w2 w1 ∑
N
i=3 wi 0

...
w3 0 w1 +w2 ∑

N
i=4 wi 0

...
... 0 . . . wN

wN 0 · · · 0 ∑
N−1
i=1 wi

 (30)

Remark. In the L = N−1 model the transition matrix W of the Markov chain and A of the Master
equation are equivalent if the ordering of the states are identical.

Remark. The Master equation can be derived from the transition matrix of the Markov chain.

For many questions it is enough to study the Master equation with a transition matrix of size
N×N instead of the transition matrix of the original Markov chain of size

(N
L

)
×
(N

L

)
.

4.3 Stationary autocorrelation function
We are going to use the autocorrelation function with different normalisation for this model: we
subtract the stationary value of the autocorrelation function and we normalise it. In terms of the
indicator function of events X(t) it reads

A (t) =
E [X(0)X(t)]−〈E [X(t)]〉2t
〈E [X(t)]〉t−〈E [X(t)]〉2t

. (31)

We can simplify this formula using proposition 1 for stationary processes:

A (t) =
P(X(t) = 1|X(0) = 1)−〈E [X(t)]〉t

1−〈E [X(t)]〉t
. (32)

This definition is more convenient to study stationary processes than (8).
The sequence of the executed tasks is given by the time evolution of the first element of the

list. The probability of finding a task of type A in the first position of the list at time t is given by
PA,1(t). The stationary distribution is uniform:

PA(1, t→ ∞) =
N−L

N
(33)
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We use the following initial condition:

P(L)
A (t0) =

(
1,

N−L−1
N−1

, . . . ,
N−L−1

N−1

)
(34)

because we are interested in the question how the list relaxes to the stationary state after a small
perturbation.

A (L)(t) =
PA(1, t)− N−L

N

1− N−L
N

(35)

Here we used the property that 〈E [X(t)]〉t gives the average density of calls.

Proposition 3. The stationary autocorrelation function does not depend on the parameter L(∈
[1,N−1]), i.e. from the quantity of tasks type A and B, only from the length of the list.

Proof. It is the consequence of the linearity of the problem. (The details of the proof are shown in
the Appendix).

Time dependence

It is sufficient to study the model with L = N−1.

Proposition 4. The autocorrelation function is a sum of N exponential functions.

The transition matrix A is (doubly) stochastic which yields that the eigenvalues lie inside the
unit circle in the complex plane. The eigenvalue λ1 = 1 is non-degenerate because of ergodicity,
and the other eigenvalues are |λi|< 1 for i = 2..N For the cases I have studied with concrete form
of wi I found the matrix A to be diagonalisable (numerically). If this is true then

A =V−1 DV , (36)

where the rows vi of V are the eigenvectors of A from the left.

PA(t) =
N

∑
i=1

aiviA
t =

N

∑
i=1

aiviλ
t
i (37)

PA(1, t) =
N

∑
i=1

aivi,1λ
t
i (38)

We need the concrete form of the wi transition probabilities to get further. The list is assumed
to be arranged by priorities, therefore wi is monotonically decreasing in i. I have studied several
examples for wi, but only the model with power-law decaying wi can produce a power-law decaying
region in the autocorrelation function. For example when wi is exponential in i, the autocorrelation
function decays more slowly than power function with a system size dependent cutoff at the end.

We will study the model with wi ∼ i−σ , where σ is a parameter of the model.
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4.4 Interevent time distribution
Expectation values (waiting times)

Let us investigate the expected timing of execution for the ith element of the list. Let τi be the ran-
dom time when the task with initial position i gets to the first position. We calculate the expectation
value for τi by conditioning on the step before. Let E1..i−1 denote the event that we have chosen
from the first i−1 positions (then the ith element does not move), Ei be the event of choosing the
ith element (then it moves to the front of the list) and Ei+1..N be the event of choosing a position
greater than i in the last step (then the ith elements steps to the right).

E(τi) = E(τi|E1..i−1)P(E1..i−1)+E(τi|Ei)P(Ei)+E(τi|Ei+1..N)P(Ei+1..N) (39)

= [E(τi)+1]
i−1

∑
j=1

w j +wi +[E(τi+1)+1]
N

∑
j=i+1

w j (40)

The waiting time for the ith element can be expressed by the waiting time of the i+1th element:

E(τi) =
1+E(τi+1)∑

N
j=i+1 w j

1−∑
i−1
j=1 w j

(41)

The waiting time for the last element of the list is (optimistic) geometrically distributed with
parameter wN , because in each step the Nth element is chosen with probability wN .

P(τN = k) = (1−wN)
k−1wN (42)

E(τN) =
1

wN
(43)

The recursion can be solved after knowing this:

E(τk) =
1+N− k

∑
N
j=k w j

(44)

The expected waiting time for the first element of the list is N independently from the transition
probabilities wi (while they guarantee ergodicity). This is a manifestation of Little’s law [23].

Recursion for generating functions (waiting times)

With similar train of thought we can find a recursion equation for the distribution of τls (strictly
speaking, for their generating function).

P(τl = k) = P(τl = k|E1..l−1)P(E1..l−1)+P(τl = k|El)P(Ei)+P(τl = k|El+1..N)P(El+1..N) (45)

= P(τl = k−1)
l−1

∑
i=1

wi +δk,1wl +P(τl+1 = k−1)
N

∑
i=l+1

wi (46)
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We multiply these equations with zk and we sum them from k = 1 to ∞. Let Gτl(z) denote the
generating function of τl:

Gτl(z)≡
∞

∑
k=1

P(τl = k)zk (47)

and the recursion equation

Gτl(z) =
zwl + zGτl+1(z)∑

N
i=l+1 wi

1− z∑
l−1
i=1 wi

(48)

we know the generating function for τN (from (42) and (47)):

GτN (z) =
∞

∑
k=1

(1−wN)
k−1wNzk = zwN

∞

∑
k=0

[z(1−wN)]
k =

zwN

1− z(1−wN)
(49)

This generating function is meaningful for z < 1
1−wN

. I could not solve the recursion analytically,
but I used these formulae to calculate the interevent time distribution by numerical methods.

Remark. The recursion (41) for the expectation values can be derived from the recursion (48) for
the generating functions by differentiating the latter in z = 1.

In the L = N− 1 model (#ofA = 1) the interevent time distribution is the waiting time for the
first element of the list. This model is going to be the most interesting because it can produce
power-law decaying interevent time distribution. The probability mass function can be calculated
by differentiating the generating function:

P(τl = k) =
1
k!

G(k)
τl (0) (50)

This equation is going to be evaluated numerically in the next subsection.
When 1 < L < N− 1 there are more As in the list, and the interevent time is the waiting time

until an A is getting to the first position. If the tasks of type A are in the i1 . . . iN−L positions and
i1 = 1, then the interevent time reads

τA = min
k
{τik} (51)

We need the joint probability distributions of the random variables τik to compute the distribution of
the interevent times. This is a hard problem in general and I am going to analyse the L dependence
of the interevent time distribution by simulations.

The L = 1 case can be solved analytically. If we know the position of the (unique) task B, then
the probability mass function of the interevent time τA can be determined. The stationary distribu-
tion is uniform, which means that the stationary interevent time distribution has to be calculated
such that the position of B is uniform in 2 . . .N. Applying the law of total probability yields

P(τA = 1) =
N

∑
k=2

P(τA = 1|{pos(B) = k})P({pos(B) = k}) (52)

=
N

∑
k=2

(1−wk)
1

N−1
= 1− 1−w1

N−1
(53)
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P(τA = l) =
N

∑
k=2

P(τA = l|{pos(B) = k})P({pos(B) = k}) (54)

=
N

∑
k=2

wk(1−w1)wl−2
1

1
N−1

= (1−w1)
2wl−2

1
1

N−1
(55)

which is an exponential decay. We used the notation pos(B) for the position of task B.

4.5 Number of bursty events
Bursty periods are sequences of events straddled by pure sequences of B of fixed length (which is
defined as the time window). The quantity of tasks type A in a bursty train is denoted by E. A
bursty period is demonstrated on an example below, where the time window ∆t is chosen to be 4:

. . .BBBBABAABABBAAAAABAABBBAABBBB . . .

The distribution of number of bursty events for this model is the dual of the interevent time
distribution in some sense. Let us investigate the limits of the list composition.

Example. L = N−1 case

The list contains only one task type A, and the interevent times are independent identically
distributed. Form equation (2) (we mean the discrete version of that formula) it follows that the
P(E) distribution has exponential decay (where the exponent depends on the time window).

Example. L = 1 case

If the time window is chosen to be 1, then the PE probability mass function is connected to the
waiting time of the first element of the list (which is the only element of type B):

P(E = k) = P(τ1 = k+1|τ1 ≥ 2) =
P(τ1 = k+1)
1−P(τ1 = 1)

I(k ≥ 2) , (56)

for which we are going to see a power-law decay in the following subsection.
I have run simulations to analyse the L and ∆t dependence of the model (fig.20). When 1 <
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Figure 20: Probability mass function of the number of bursty events (simulation results). The decay gets
slower as the time window is increased.

L < N−1 we observe a crossover between the power and the exponential behaviour: the decay of
the PE distribution is faster than a power but slower than an exponential function.
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4.6 Numerical results
Autocorrelation function

I have done calculations for the stationary autocorrelation function for various values of list sizes
(N) and transition probabilities (σ ).

wi =
i−σ

∑
N
i=1 i−σ

(57)

The probability of choosing an element from the tail of the list is small, that is why we expect
the autocorrelation function not to depend on the length of the list on short times (if σ is large
enough).
When σ is increased, the probability of choosing an element from the beginning of the list is also
increased, and the decay of the autocorrelation function is getting slower.

Program code The program calculates the autocorrelation function by multiplying the initial
vector by the transition matrix after one by one. After every 10th steps the timestep is changed to
10 times larger (by using the 10th power of the transition matrix).

Results The results of the computation are shown in fig.21. The autocorrelation functions show
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Figure 21: Stationary autocorrelation functions for various list sizes (σ = 1 . . .5)
.

a wide power-law decaying region with an exponential cutoff. This cutoff can be explained by
equation (38): for large t the autocorrelation function decays exponentially with the second largest
eigenvalue. As the size of the list is increased, the cutoff moves further. This suggests that the
stationary autocorrelation function is power-law decaying in the N → ∞ limit. This behaviour is
given as a sum of infinitely many exponential functions.

We can also notice that the transient region of the autocorrelation functions fit each other for
various list sizes when σ is fixed. This behaviour is determined by the smallest eigenvalues of the
transition matrix.
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Observation. Given σ , the autocorrelation functions for various list sizes can be rescaled to fit
each other except for the transient region (fig.22, equation (58)).
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Figure 22: Stationary autocorrelation functions can be rescaled to fit each other when σ is fixed. The
scaling parameters γ and δ are listed in tab.3. The curves determined by the scaled functions are described
by fσ (t) (equation (58))

A (t,N,σ) = N−δ fσ

( t
Nγ

)
(58)

The scaling parameters γ and δ corresponding to different values of σ are listed in tab.3.

σ 0.5 0.8 1 1.5 1.8 2 3 4 5
γ 1.07 1.15 1.17 1.57 1.8 2 3 4 5
δ 1 1 1 1 1 1 1 1 1

Table 3: Scaling parameters γ and δ for various values of σ .

Equation (58) implies that the stationary autocorrelation function is a generalised homogeneous
function of the length of the list and of time (the transient region is left out of consideration).

A (byt t,
N
b
,σ) = bδ N−δ fσ

(
byt bγt

Nγ

)
, (59)

if we substitute yt =−γ ,

A (t,N,σ) = b−δ A (b−γt,
N
b
,σ) (60)

The scaling function fσ can be expressed from this:

fσ

( t
Nγ

)
= A (

t
Nγ

,1,σ) (61)

Equation (58) can be written in a different form (by using b = t
1
γ ):

A (t,N,σ) = t−
δ

γ f̃σ

( t
Nγ

)
, (62)

33



where
f̃σ

( t
Nγ

)
= A (1,

N
t1/γ

,σ). (63)

We conclude that between the transient and the cutoff region the autocorrelation function has
a power decay:

A (t)∼ t−α . (64)

Equation (62) allows us to express α in terms of γ and δ when N→ ∞.

A (t,N,σ) = t−
δ

γ f̃σ

( t
Nγ

)
→ t−

δ

γ f̃σ (0) , (65)

thus α = δ

γ
. Comparing this with tab.3 gives rise to a conjecture between the model parameter σ

and the exponent of the autocorrelation function.

Conjecture 1. When N→ ∞

α=
1
σ
, (66)

and the difference from it may be caused by finite size effects.

This conjecture is in agreement with the fits of power function to the autocorrelation functions
(tab.4). The conjecture is going to be proved for σ = 2 and demonstrated for other integer values
of σ at the end of this section.

σ 1 2 3 4 5
α 0,755 0,535 0,356 0,274 0,222

Table 4: Exponents of the power decay of the autocorrelation function (and of fσ (t)).

Interevent time distribution

L = N−1 model The calculations were done by numerically evaluating the equation (50) for the
first element of the list. The results are shown on fig.23.(a) for various values of σ . The interevent
time distribution can be approximated by a power function on a wide range.

P(tie)∼ t−β

ie , (67)

which is followed by an exponential cutoff. The exponential decay ∼ (1−wN)
t comes from the

event that the task A has reached the end of the list (which have occurred with high probability
when t is large).

I have determined the exponents for the power-decaying region for various values of σ (tab.5).
The results suggest that the exponents satisfy the following formula 2σ−1

σ
.

Conjecture 2.

β=2− 1
σ

(68)
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We can observe small waves in the interevent time mass function for high values of σ . This is
in correspondence with the increasing transient region in the autocorrelation function, which is a
consequence of opening a gap at small λ in the transition matrix (30) of the Master equation.

The conjectures for the values of α and β suggest a scaling relation:

Conjecture 3.
α +β = 2 (69)

Assuming equation (69) we have to calculate only one of the exponents and the other will be
determined by the scaling relation. In section 4.7 I am going to calculate the exponent for the
interevent time distribution for integer values of σ . At last in section 4.8 I am going to prove
conjecture 3 for a wide range of models.

σ 2 3 4 5
β 1.501 1.668 1.753 1.7998

Table 5: Exponents of the power decay of interevent time distributions P(τ1) for various values of σ in the
L = N−1 model.
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Figure 23: (a) σ dependence of the interevent time distribution in the L = N−1 model (numerical results).
(b,c) L dependence of the interevent time distribution for σ = 2 (simulation results). The axes are logarithmic
on (a,b), and semi-logarithmic on (c).

L dependence The L=N−1 model produces power-decaying interevent time distribution and as
it has been mentioned before the L = 1 model produces exponential decay. I have run simulations
for various values of L, the results are shown in fig.23.(b)-(c). For 1 < L < N− 1 we observe a
decay faster than a power, but slower than an exponential function.

4.7 Analytic calculation for the interevent time exponent
When the list contains only one task of type A, both of the autocorrelation function and the in-
terevent time probability mass function are power-law decaying with an exponential cutoff. As
the size of the list is increased the position of cutoff goes further. We expect to get a pure power
decay in the N → ∞ limit. It might be easier to determine the exponents in the case of infinitely
long list because then the power-law decay is not only a finite region but also the asymptotic of the
functions.
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So we want to calculate the recurrence time τ of the first element of the infinite list. Let us deal
with the case when τ 6= 1, i.e. the observed element moves to the second position. We set the origin
of the time to this event (the first step was in t = −1). Let qn(t) (n ≥ 2) denote the probability
of finding the observed element at position n after t timesteps (after the first step) without any
recurrences up to time t. The restriction not to recur is going to be important because this makes
large jumps to the front of the list forbidden for the observed element.

qn(0) = (1−w1)δn,2 (70)

qn(t +1) =

{
P1q2(t) if n = 2,
Pn−1qn(t)+(1−Pn−1)qn−1(t) if n > 2

(71)

where Pn = ∑
n
k=1 wi. The latter equation expresses that the observed element steps to the right if

the position chosen is greater than its current position. The probability of not to recur until time t
is Q(t) = ∑

∞
n=2 qn(t). The probability of the (first) recurrence at t is equal to Q(t)−Q(t +1).

q2(t +1) = P1q2(t) (72)
q3(t +1) = P2q3(t)+(1−P2)q2(t) (73)

...

The probability of not having recurrence is monotonous decreasing in time (by summing the equa-
tions above):

Q(t +1) = Q(t)−
∞

∑
k=2

qk(t)wk (74)

that is, if the observed element is at the kth position and we choose the same position then a
recurrence will occur.

Here we introduce the logarithmic generating function (discrete Laplace-transform):

Γ(λ , t) =
∞

∑
k=2

qk(t)e−kλ (75)

From this quantity we can calculate the required probability Q(t) = Γ(0, t). The boundary condi-
tions:

Γ(λ ,0) = (1−w1)e−2λ (76)

Γ(λ → ∞, t) = (1−w1)wt
1e−2λ . (77)

The second equation is the consequence of the fact that in ∑
∞
k=2 qk(t)e−λk the leading order term

is when k = 2, and q2 = (1−w1)wt
1 (see equations (70)-(71)).

Time evolution:

Γ(λ , t +1) =
∞

∑
k=2

Pk−1qk(t)e−kλ +
∞

∑
k=2

(1−Pk)qk(t)e−(k+1)λ (78)

= Γ(λ , t)−
∞

∑
k=2

(1−Pk−1)qk(t)e−kλ +
∞

∑
k=2

(1−Pk)qk(t)e−(k+1)λ (79)

We are interested in the case when wi ∼ i−σ and we use integral approximation for P(k):
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Integral approximation

Pk ≈
∫ k+1

1 i−σ di∫
∞

1 i−σ di
= 1− (k+1)−σ+1 (80)

Γ(λ , t +1) = Γ(λ , t)−
∞

∑
k=2

k−σ+1qk(t)e−kλ +
∞

∑
k=2

(k+1)−σ+1qk(t)e−(k+1)λ (81)

We restrict ourselves to integer values of σ(≥ 2), and we affect with the operator (− ∂

∂λ
)σ−1 on

both sides of the equation:(
− ∂

∂λ

)σ−1

[Γ(λ , t +1)−Γ(λ , t)] =
(

e−λ −1
)

Γ(λ , t) (82)

If we redefine our model in such a way that w̃i = i−σ+1−(i+1)−σ+1 (for i≥ 1) then the asymptotic
remains the same: wi ∼ i−σ and for that model Pk = 1− (k+ 1)−σ+1. I have also calculated the
exponents of the interevent time distribution numerically for this model and it gave the same result
as for the original model.

Continuous time approximation

We assume that functions qi(t) are smooth in variable t especially for large values of t. This is
supported by the dynamics in equation (71) which says that qi(t + 1) is a weighted average of 0,
qi(t) and qi−1(t). Then we are using the following approximation: qi(t + 1)− qi(t) =

dqi(t)
dt , or

equivalently Γ(λ , t +1)−Γ(λ , t) = ∂Γ(λ ,t)
∂ t .(

− ∂

∂λ

)σ−1
∂Γ(λ , t)

∂ t
= (e−λ −1)Γ(λ , t) (83)

We are interested in the small λ and large t limit of this equation to get the asymptotic behaviour
of Q(t). The linearised version of this equation:(

− ∂

∂λ

)σ−1
∂Γ(λ , t)

∂ t
=−λΓ(λ , t) . (84)

Now we are looking for a scaling solution for this equation:

Γ(λ , t) = t−ζ
φ

(
λ

tθ

)
(85)

Substituting this into (84) and rearranging the terms result in

−t−ζ−1−θσ

(
(θ(σ −1)+ζ )tθ

φ
(σ−1)

(
λ

tθ

)
+λθφ

(σ)

(
λ

tθ

))
= (−1)σ

λ t−ζ
φ

(
λ

tθ

)
(86)

To get a consistent equation we have to choose θ and ζ such that

ζ =−θ(σ −1) (87)
1 =−θσ (88)
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The solution of these equations are θ =− 1
σ

and ζ = 1− 1
σ

, and with them the remaining differen-
tial equation reads

φ
(σ)(µ) = (−1)σ

σφ(µ) . (89)

The solutions of this equation are

φi(µ) = e−εiσ
1
σ µ (90)

for i = 1 . . .σ where εi are the σ th roots of unity. Functions φi behave well at zero, thus we have

Γ(0, t) = t
1
σ
−1

σ

∑
i=1

ciφi(0) (91)

By differentiating Pie(t)∼ t−(2− 1
σ ), so we have proved conjecture 2 for integer values of σ .

Remark. The continuous time approximation is the solution of the model with continuous time
Markov-chain when tasks are executed corresponding to an exponential rate function.

Remark. The asymptotic behaviour of the interevent time distribution can be determined without
the continuous time approximation using a second Laplace transform in the time variable. This
method requires more calculation, thus it is not shown here.

4.8 Proof of the scaling relation between the exponents
Let us remind of conjecture 3 which connected the exponents of the autocorrelation function and
the interevent time distribution for the L = N−1 models.

α +β = 2 (92)

The essential properties of the model for this scaling relation are that the interevent times are
independent and power-law decaying. That is, the scaling law can be extended for any point
processes with independent power-law decaying interevent times (i.e. for renewal processes with
power-law decaying interevent times). The definition of the autocorrelation function is given in
(32):

A (t) =
P(X(t) = 1|X(0) = 1)−〈E [X(t)]〉t

1−〈E [X(t)]〉t
. (93)

Theorem 1. For any renewal processes with power-law decaying interevent times:

Pie(t)∼ t−β as t→ ∞ ,

with β ∈ (1,2) the autocorrelation function is power-law decaying

A (t)∼ t−α as t→ ∞

and the exponents satisfy the scaling relation α +β = 2.
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Proof. Let τm denote the recurrence times: τ0 = 0, τm+1 = in f{t > τm|X(t) = 0}, and let T denote
the set of recurrence times: T = {τm : m = 0,1,2, . . .}. Thus X(t) is non-zero only for ts that are
elements of T . We are going to use the notation τ1 = τ for the interevent times which are indepen-
dent and identically distributed.
The average density of calls can be given by 〈E [X(t)]〉t = 1

E[τ] . Using these notations the autocor-
relation function can be written in the form

A (t) =
P(t ∈ T )− 1

E[τ]

1− 1
E[τ]

(94)

In the case of β ∈ (1,2) the expectation value for the interevent time is infinite, which yields

A (t) = P(t ∈ T ) (95)

Proposition 5. The Laplace transform of the autocorrelation function can be expressed by the
Laplace transform of the interevent time distribution.

Proof.

g(λ )≡
∞

∑
t=0

A (t)e−λ t (96)

g(λ ) =
∞

∑
t=0

e−λ tP(t ∈ T ) =
∞

∑
t=0

e−λ t
∞

∑
m=0

P(τm = t) =
∞

∑
m=0

E
(

e−λτm
)

=
∞

∑
m=0

E
(

e−λmτ

)
=
(

1−E
[
e−λτ

])−1
, (97)

because τm can be written as a sum of m independent τ distributed random variables.

Definition 1. A function u is ultimately monotone if ∃x0 > 0: u is monotone in the interval (x0,∞).

Theorem 2. [Tauber,[24]] Let 0 ≤ ρ < ∞. If u is ultimately monotone with Laplace transform ω

and L is slowly varying in infinity then the following statements are equivalent:

u(x)∼ 1
Γ(ρ)

xρ−1L(x) t→ ∞ (98)∫
∞

0
e−λxu(x)dx≡ ω(λ )∼ λ

−ρL
(

1
λ

)
λ → 0 (99)

Direction (98)⇒(99) is called Abelian theorem while the opposite direction is called Tauberian
theorem.

We want to use the Abelian theorem for the interevent time distribution. The probability density
(or mass) function have to be normalised, which means that β ≥ 1. This corresponds with the
domain ρ ≤ 0 for which the original version of the theorem cannot be applied.
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Theorem 3 (Abel, extended version). Let −1 < ρ < 0. If u is ultimately monotone with Laplace
transform ω and xu(x) is also ultimately monotone and L is slowly varying in infinity then the
asymptotic behaviour of u at infinity and its Laplace transform at 0 satisfy the relation: (100)⇒(101)

u(x)∼ 1
Γ(ρ)

xρ−1L(x) t→ ∞ (100)

ω(λ )−
∫

∞

0
u(x)dx∼ λ

−ρL
(

1
λ

)
λ → 0 (101)

Proof. We trace back this statement to the original version of the Tauber theorem. Let−1 < ρ < 0,
then v(x) = 1

ρ
xu(x) satisfy the conditions for theorem 2. Let η denote the Laplace transform of v.

∫
∞

0
e−λxu(x)dx =

∫
∞

0

e−λx

x
ρv(x)dx =

∫
∞

0

∫
∞

λ

e−νxdνρv(x)dx = (102)

=
∫

∞

λ

∫
∞

0
e−νx

ρv(x)dxdν = ρ

∫
∞

λ

η(ν)dν = (103)

= ρ

∫
∞

0
η(ν)dν−ρ

∫
λ

0
η(ν)dν =

∫
∞

0
u(x)dx+λ

−ρL(
1
λ
) (104)

in leading order in λ .

Now we are ready to evaluate the asymptotic behaviour of the Laplace transforms in (97).
Applying the Abelian theorem (100)⇒(101) to the right side of (97) yields

g(λ ) =
(

1−E
[
e−λτ

])−1
∼ λ

1−β
λ → 0 (105)

The asymptotic decay of the autocorrelation function can be determined by using Tauberian theo-
rem (99)⇒(98) on g(λ ):

A (t)∼ tβ−2 (106)

With the same train of thought we can extend our results to the β ∈ (2,3) region. The result is
A (t)∼ t−(β−2) in agreement with [25]. The authors of [25] have not discussed the case when the
expectation value is infinite for the interevent times (β ∈ (1,2).

It was essential in the scaling theorem that the interevent times were independent. If the in-
terevent times show long-range dependencies then the autocorrelation exponent may change. In the
following subsection we compose a dependent set of interevent times by the Metropolis algorithm
and show that the scaling law can be violated when the interevent times are not independent.

Dependent set of power-law decaying interevent times

We use the Metropolis algorithm to obtain a dependent sequence of power-law distributed random
variables. For this sake we construct a Markov chain on the integers that has power-law decay-
ing stationary distribution P(x) ∼ x−β .The value of the random variable in the next step depends
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only on its current value. The algorithm uses a proposal density (transition rate) Q(x′,xn) which
generates a proposal sample. This sample is accepted for the next value with probability

α(x′,xn) = min
{

Q(xn,x′)P(x′)
Q(x′,xn)P(xn)

,1
}

(107)

The algorithm:

1. Choose an x0 as initial value

2. Generate x′ from the distribution Q(x′,xn)

3. Accept this value as xn+1 with probability α(x′,xn), otherwise xn+1 = xn

4. Go to step 2

Our goal is to generate a power-law distributed sample with long-range dependency. Therefore the
mixing of the Markov chain should be slow, i.e. the gap in the Markov chain should be equal to 0.

In the proposal density we allow only small differences between consecutive interevent times:
Q(x′,xn) =

1
2DI(xn−D,xn +D) or equivalently x′ as a random variable is discrete uniformly dis-

tributed: x′ ∼ DU [xn−D,xn +D]. The simulation results show that the autocorrelation function
decays more slowly than it would be assumed from the scaling law (24).
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Figure 24: Simulation results for the Metropolis algorithm. The exponent of the interevent time distribution
is varied in subfigure (a) and (b). In subfigure (c) β = 1.5 and the parameter D of the proposal density is
varied.

Analysing processes with interevent times given from a Markov chain might be useful also
for the modelling because this is one of the simplest ways to generate dependent interevent times.
However in this section we use the Markov chain of interevent times only to show that the scaling
law α +β = 2 is true for independent processes and can be violated when the interevent times are
dependent. In this sense power-law decaying autocorrelation function signs long-range dependen-
cies only if the exponent violates the scaling relation (69).

I have derived a formula for the Laplace transform of the autocorrelation function when the
interevent times are given from a Markov chain (for details see the Appendix), but I couldn’t
determine the exponent of the autocorrelation function analytically for the Metropolis algorithm.
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4.9 Modified model
I have also studied a modified version of the priority arranged list model. In this model at each step
we choose an activity from the list and the chosen activity switches places with its left neighbour
if it exists. Besides this the first element of the list is executed in each step. This model has similar
properties to the original one. The model defines a Markov chain and the stationary distribution
is uniform. The autocorrelation function can be derived from the Master equation and it also does
not depend on the quantity of phoning tasks. I studied the wi ∼ i−σ function for choosing the
ith element of the list. I found numerically that the autocorrelation functions show a power-law
regime, and the curves for different list sizes can be rescaled to fit each other. The conjecture
for autocorrelation exponent is α = 1

σ+2 . The L = N− 1 model produces a power-law decaying
interevent time distribution with exponent conjectured to be 2− 1

σ+2 . The scaling law (69) also
holds for this model because the interevent times are independent and numerically power-law
decaying. This model has interesting mathematics because the paths of the elements of the list
define a nearest neighbour random walk with drift depending on the position. I have calculated
the distribution of the maximal distance ξ reached by the random walker before recurrence to
the front of the list: P(ξ = x) ∼ x−(σ+2). I havent found the connection between this and the
autocorrelation exponent. The details of this model can be found in Hungarian in my essay for the
Students’ Scientific Association contest [26].
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5 Summary
I have been studying the human communication behaviour in my MSc thesis. My aim was to find
an appropriate model that can reproduce the most essential properties of human communication
patterns. These patterns are very complicated and I also had to decide what should be taken as
essential property. The most studied quantity in the literature is the interevent time distribution
which is found to be power-law decaying for a lot of activities like email, surface mail commu-
nication, web-browsing or telecommunication. In many cases the measurements show an average
over the users, and I was interested if we can see more structures on the individual level. The
power-law decay is usually explained by task-queuing models, however there is another approach
that explains the heavy tail in the interevent time distribution with the circadian and weekly cy-
cles. The model they proposed is a cascading nonhomogeneous Poisson process. In my thesis I
also wanted to decide between these two approaches. Beside the interevent time distribution, the
correlation or dependence between the calls is a similarly important question, but this is barely
discussed in literature. I have been doing my work in collaboration with a research group at Aalto
University. They have also measured the autocorrelation function and the distribution of the num-
ber of bursty events averaged over the dataset. The latter is a quantity introduced by the research
group to measure deeper dependencies in time-series.

To make measurements and observations on the individual level, I have got access to a small
database which contains the interevent times of 70 individuals over 180 days. I have measured the
interevent time distribution, the autocorrelation function, the distribution of the number of burtsy
events and the number of daily calls. I have found peaks in the interevent time distribution at
about 12 hours for the active and at integer times a day for the less active users. The autocorrela-
tion function is periodic in case of times larger than one day for almost all users in the dataset. I
have shown that these peaks and the shape of the long time autocorrelation function can be well
described by the circadian pattern, especially by a nonhomogeneous Poisson process. However I
have also found that the approximately power-law decaying regime of the interevent time distri-
bution and the autocorrelation function cannot be explained by a cascading Poisson process if the
cascade process is also Poissonian. To reproduce the short time behaviour of the measured quanti-
ties it is worth studying the processes with slowly decaying autocorrelation function and interevent
time distribution, for example task-queuing models. There are two ways to get a good description
of the long time behaviour as well: these processes can be considered as cascades triggered by a
nonhomogeneous Poisson process or a rate function can be introduced directly to these processes.
Analysing these combinations is planned to be done in the future. I have also found that the users
tend to change their average activity on the scale of 180 days and this should be considered in an
appropriate modelling.

As another part of my work I have studied a task-queuing model that can be thought of as a
generalisation of the Barabási-model. I have proved that the autocorrelation function does not de-
pend on the composition of the list. By numerical calculations I found out that the autocorrelation
function is power-law decaying with an exponential cutoff. I observed that the curves correspond-
ing to different list sizes can be rescaled to fit each other, and I have determined the exponent of the
power-law decay as a function of the model parameters using this property. I have investigated the
interevent time and the bursty event number distribution by numerical methods. I have found that
these quantities are complementary because if one is power-law decaying then the other is expo-
nential and vice versa. I have analysed the case when the interevent time distribution is power-law
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decaying and I have calculated the exponent analytically (for integer values of the model parameter
σ ). I have noticed that the sum of the autocorrelation and interevent time exponents equals to 2,
and I have proved this scaling law for every renewal processes with power-law decaying interevent
times. With this theorem and with the calculation for the interevent time exponent I have also
determined the asymptotic behaviour of the autocorrelation function.

As a continuation of my work some of my measurements should be repeated in the large
telecommunication dataset at Aalto University. I would like to determine the interevent time expo-
nent of the task-queuing model for arbitrary values of the model parameter σ . I am also planning
to analyse the effects of introducing a rate function in task-queuing models.
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6 Appendix

6.1 Independence of the autocorrelation function from parameter L
The autocorrelation function is given in (35) and the initial condition for the stationary autocorre-
lation function is given in (34). We exploit the linearity of the Master equation, and we write the
state vector as a sum of two terms:

P(L)
A (t0) =

L
N−1

(1,0,0, . . . ,0)+
N−L−1

N−1
(1,1,1, . . . ,1)

P(L)
A (t) =

L
N−1

(1,0,0, . . . ,0)At +
N−L−1

N−1
(1,1,1, . . . ,1)At (108)

=
L

N−1
(1,0,0, . . . ,0)At +

N−L−1
N−1

(1,1,1, . . . ,1) (109)

For any L the time evolution of the first element of the list can be expressed by the L = N−1 model
(in which there is only one A in the list).

P(L)
A (1, t) =

L
N−1

P(N−1)
A (1, t)+

N−L−1
N−1

(110)

=
L

N−1
[
At]

11 +
N−L−1

N−1
(111)

From this

A (L)(t) =
P(L)

A (1, t)− N−L
N

1− N−L
N

=
L

N−1P(N−1)
A (1, t)+ N−L−1

N−1 −
N−L

N

1− N−L
N

(112)

=

L
N−1

(
P(N−1)

A (1, t)− 1
N

)
L

N−1

(
1− 1

N

) =
P(N−1)

A (1, t)− 1
N

1− 1
N

= A(t) (113)

The autocorrelation function can be expressed by the left upper element of the powers of the
transition matrix.

A (t) =
[At ]11− 1

N

1− 1
N

(114)

6.2 Autocorrelation function for interevent times given from a Markov chain
I have derived a formula for the Laplace transform of the autocorrelation function when the in-
terevent times are given from a Markov chain. Let B denote the transition matrix of the Markov
chain and let us introduce the diagonal matrix D(λ ) whose matrix elements are Ds,t(λ ) = δste−λ s.
The Laplace transform of the autocorrelation function can be expressed by the resolvent of the
matrix BD(λ ):

g(λ ) = 1+
∞

∑
m,n

P(τ1 = m)(1−D(λ )B)−1
mn e−λn (115)
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Proof. The description will be similar to the case of independent variables. Let Tm denote the
recurrence times: T0 = 0, Tm+1 = in f{t > Tm|X(t) = 0} and T denote the set of recurrence times:
T = {Tm : m= 0,1,2, . . .}. The interevent times: τi = Ti−Ti−1, which are generated from a Markov
chain. We use the following autocorrelation function A(t) = P(t ∈ T ) from equation (95), and we
calculate the Laplace transform similarly to the independent case:

g(λ )≡
∞

∑
n=0

A(n)e−λn =
∞

∑
m=0

E
[
e−λTm

]
=

∞

∑
m=0

E
[
e−λ ∑

m
i=1 τi

]
(116)

By the definition of the transition matrix of the Markov chain:

P(τi+1 = s) = ∑
k
P(τi = k)Bk,s (117)

We are interested in the stationary autocorrelation function, i.e. P(τ1 = k)∼ k−β .

E
[
e−λT0

]
= 1 (118)

E
[
e−λT1

]
= E

[
e−λτ1

]
=

∞

∑
n=0

P(τ1 = n)e−λn (119)

E
[
e−λT2

]
= E

[
e−λ (τ1+τ2)

]
= E

[
E
[
e−λτ1e−λτ2 | τ1

]]
(120)

= E
[
e−λτ1E

[
e−λτ2 | τ1

]]
(121)

To continue we have to calculate

E
[
e−λτ2 | τ1

]
=

∞

∑
n=0

P(τ2 = n |τ1)e−λn =
∞

∑
n=0

Bτ1ne−λn (122)

With this

E
[
e−λT2

]
= E

[
e−λτ1

∞

∑
n=0

Bτ1ne−λn

]
(123)

=
∞

∑
m,n=0

P(τ1 = m)e−λmBmne−λn (124)

and similarly

E
[
e−λT3

]
=

∞

∑
m,n,k=0

P(τ1 = m)e−λmBmne−λnBnle−λ l (125)

...

Let us introduce the matrix D(λ ) whose matrix elements are Ds,t(λ ) = δste−λ s. With this quantity

we can write the general term E
[
e−λTk

]
for k ≥ 1:

E
[
e−λTk

]
=

∞

∑
m,n

P(τ1 = m)(D(λ )B)k−1
mn e−λn (126)
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Now we can substitute this to g(λ ):

g(λ ) =
∞

∑
m=0

E
[
e−λTm

]
= 1+

∞

∑
k=0

∞

∑
m,n

P(τ1 = m)(D(λ )B)k
mn e−λn (127)

g(λ ) = 1+
∞

∑
m,n

P(τ1 = m)(1−D(λ )B)−1
mn e−λn (128)

If every row of B is the same, i.e. the interevent times are independent, then this formula reduces

to g(λ ) =
(

1−E
[
e−λτ1

])−1
.

We are interested in the λ → 0 asymptotic of this formula, but either this may be hard to
calculate for a concrete transition matrix B.
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