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The contact dynamics (CD) method is an efficient simulation technique of dense granular
media where unilateral and frictional contact problems for a large number of rigid bodies
have to be solved. In this paper, we present a modified version of the CD to generate
homogeneous random packings of rigid grains. CD simulations are performed at constant
external pressure, which allows the variation of the size of a periodically repeated cell.
We follow the concept of the Andersen dynamics and show how it can be applied within
the framework of the CD method. The main challenge here is to handle the interparticle
interactions properly, which are based on constraint forces in CD. We implement the
proposed algorithm, perform test simulations, and investigate the properties of the final
packings.
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1. Introduction

Computer simulation methods have been widely employed in recent years to study

the behavior of granular materials. Among the numerical techniques, discrete el-

ement methods, including soft particle molecular dynamics (MD),1,2 event-driven

(ED),3,4 and contact dynamics (CD),5–8 constitute an important class where the
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material is simulated on the level of particles. In such algorithms, the trajectory of

each particle is calculated as a result of interaction with other particles, confining

boundaries and external fields. The differences between the discrete element meth-

ods stem from the way how interactions between the particles are treated, which

leads also to different ranges of applicability.

In low-density granular systems, where interactions are mainly binary collisions,

the ED method is an efficient technique. The particles are modeled as perfectly rigid

and the contact duration is supposed to be zero. The handling of dense granular

systems, where the frequency of collisions is large or long-lasting contacts appear,

becomes problematic in ED simulations.9,10

In the case of dense granular media, the approach of soft particle MD is more

favorable and widely used. In MD, the timestep is usually fixed and the original

undeformed shapes of the particles may overlap during the dynamics. These overlaps

are interpreted as elastic deformations, which generate repulsive restoring forces

between the particles. Based on this interaction, which is defined in the form of

a visco-elastic force law, the stiffness of the particles can be controlled. When the

stiffness is increased MD simulations become slower since the timestep has to be

chosen small enough so that the velocities and positions vary as smooth functions

of time.

The CD method considers the grains as perfectly rigid. Therefore, no overlaps

between the particles are expected and they interact with each other only at contact

points. The contact forces in CD do not stem from visco-elastic force laws but are

calculated in terms of constraint conditions (for more details, see Sec. 2). This

method has shown its efficiency in the simulation of dense frictional systems of

hard particles.

Packings of hard particles interacting with repulsive contact forces are

extensively used as models of various complex many-body systems, e.g. dense gran-

ular materials,11 glasses,12 liquids,13 and other random media.14 Jamming in hard-

particle packings of granular materials has been the subject of considerable interest

recently.15,16 Furthermore hard-particle packings, and especially hard-sphere pack-

ings, have inspired mathematicians and have been the source of numerous challeng-

ing theoretical problems,17 from which many are still open.

Real systems in the laboratory and in nature contain far too large number of

particles to model the whole system in computer simulations. Owing to the limited

computer capacity, the simulations are often restricted to test a small mesoscopic

part of a large system. Typically, the studies are focused to a local homogeneous

small piece of the material inside the bulk far from the border of the system.

Therefore, simulation methods are required that are able to generate and handle

packings of hard particles without side effects of confining walls.

The usual simulation methods of dense systems involve confining boxes where

the material is compactified by moving pistons or gravity. However, the properties

of the material differ in the vicinity of walls and corners of the confining cell from

those in the bulk far from the walls. The application of walls in computer simulations
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leads to inhomogeneous systems due to undesired side effects (e.g. layering effect).

Moreover, the structure of the packings becomes strongly anisotropic in these cases

due to the orientation of walls and special direction of the compaction. For studies

where such anisotropy is unwanted other type of compaction methods are needed.

In this paper, we present a compaction method where boundary effects are

avoided due to exclusion of side walls. This simulation method is based on the CD

algorithm where we applied the concept of the Andersen dynamics,18 which enables

us to produce homogeneous granular packings of hard particles with desired internal

pressure. The compaction method involves variable volume of the simulation cell

with periodic boundary conditions in all directions.

This paper is organized as follows. First, we present some basic features of CD

method in Sec. 2. Then, Sec. 3 describes the equations of motion for a system of

particles with variable volume. In Sec. 4, we present a modified version of CD with

coupling to constant external pressure. In Sec. 5 we report the results of some test

simulations. Section 6 concludes the paper.

2. Nonsmooth Contact Dynamics

CD, developed by Jean and Moreau,6–8 is a discrete element method in the sense

that the time evolution of the system is treated on the level of individual particles.

Once the total force Fi and torque Ti acting on the particle i is known, the problem

is reduced to the integration of Newton’s equations of motion, which can be solved

by numerical methods. Here we use the implicit first-order Euler scheme:

vi(t + ∆t) = vi(t) +
1

mi
Fi(t + ∆t)∆t , (1)

ri(t + ∆t) = ri(t) + vi(t + ∆t)∆t , (2)

which gives the change in the position ri and velocity vi of the center of mass of

the particle with mass mi after the timestep ∆t. ∆t is chosen so that the relative

displacement of adjacent particles during one timestep is small compared with the

particle size and with the radius of curvature of the contacting surfaces. Corre-

sponding equations are used also for the rotational degrees of freedom, describing

the time evolution of the orientation and the angular velocity ωi caused by the new

total torque Ti(t + ∆t) acting on the particle i.

The interesting part of the CD method is how the interaction between the par-

ticles are handled. For simplicity, we assume that the particles are noncohesive and

dry, we exclude electrostatic and magnetic forces between them and consider only

interactions via contact forces. The particles are regarded as perfectly rigid and the

contact forces are calculated in terms of constraint conditions. Such constraints are

the impenetrability and the no-slip condition, i.e. the contact force has to prevent

the overlapping of the particles and the sliding of the contact surfaces. This latter

condition is valid only below the Coulomb limit of static friction, which states that

the tangential component of a contact force R cannot exceed the normal component
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times the friction coefficient µ:

|Rt| ≤ µRn . (3)

If the friction is not strong enough to ensure the no-slip condition, the contact

will be sliding and the tangential component of the contact force is given by the

expression

Rt = −µRn
vrel

t

|vrel
t |

, (4)

where vrel
t stands for the tangential component of the relative velocity between the

contacting surfaces. In the CD method, the constraint conditions are imposed on

the new configuration at time t+∆t, i.e. the unknown contact forces are calculated

in a way that the constraints conditions are fulfilled in the new configuration.8 This

is the reason why an implicit timestepping is used.

In order to let the system evolve one step from time t to t + ∆t, one has to

determine the total force and torque acting on each particle, which may consist of

external forces (like gravity) and contact forces from neighboring particles. Let us

suppose that all the unknown contact forces are already determined except for one

force between a pair of particles already in contact or with a small gap between

them. Here we explain briefly how the constraint conditions help to determine the

interaction between these two particles. A detailed description of the method can

be found in Ref. 8.

The algorithm starts with the assumption that the contact force we are searching

for is zero and checks whether this leads to an overlap of the undeformed shapes

of the two particles after one timestep ∆t. This is done based on the timestepping

[Eq. (1)]: The external forces and other contact forces provide Fi(t+∆t) and Ti(t+

∆t) for both particles, thus the new relative velocity of the contacting surfaces

vrel, free can be calculated. Here we use the term contacting surfaces for simplicity

though the two particles are not necessarily in contact. There might be a positive

gap g between them, which is the length of the shortest line connecting the surfaces

of the two particles (Fig. 1). We will refer to the relative velocity of the endpoints

of the line as the relative velocity of the contact and denote the direction of the

n

g

Fig. 1. Two rigid particles before a possible contact.
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line by the unit vector n. In the limit of a real contact, g is zero and n becomes

the contact normal. Negative gap has the meaning of an overlap. The superscript

free in vrel, free denotes that the relative velocity has been calculated assuming no

interaction between the two particles. We use the sign convention that negative

normal velocity (n · vrel < 0) means approaching particles.

The new value of the gap (after one timestep) is estimated by the algorithm

based on the current gap g and the new relative velocity vrel, free according to the

implicit timestepping. If the new gap is positive:

g + vrel, free · n∆t > 0 (5)

then the zero contact force (no interaction) is accepted because no contact is formed

between the two particles. However, if the estimated new gap is negative then a

contact force has to be applied in order to avoid the violation of the constraint

conditions. Generally, one expects the following relation between the unknown new

contact force R and the unknown new relative velocity vrel:

R =
−1

∆t
M(vrel, free − vrel) , (6)

where M is the mass matrix that describes the inertia of the contact, i.e. M−1R

is the relative acceleration of the contacting surfaces due to the contact force R.

The mass matrix M depends on the shape, mass, and moment of inertia of the two

particles. On the one hand, the interpenetration of the two rigid particles has to be

avoided, which gives the following constraint for the normal component of vrel:

g + vrel · n∆t = 0 . (7)

On the other hand, the tangential component of vrel has to be zero in order to

ensure the no-slip condition

vrel
t = 0 . (8)

The required contact force that fulfills Eqs. (7) and (8) then reads

R =
−1

∆t
M
( g

∆t
n + vrel, free

)

. (9)

This contact force is acceptable only if it fulfills the Coulomb condition [Eq. (3)].

Otherwise we cannot exploit the nonslip contact assumption. In this case, vrel
t is not

zero, the contact slides and the contact force has to be recalculated. Equations (6)

and (7) then provide

R =
−1

∆t
M
( g

∆t
n − vrel

t + vrel, free
)

, (10)

where the number of unknowns (components of R and vrel
t ) exceeds the number

of equations. In order to determine the contact force R, one has to solve Eq. (10)

together with Eq. (4).

It is recommended to use gpos = max(g, 0) instead of g in Eqs. (9) and (10).

The gap size g should always be nonnegative and using gpos apparently makes no
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difference.7 However, due to the inaccuracy of the calculations small overlaps can

be created between neighboring particles. If g instead of gpos is used then these

overlaps are eliminated in the next timestep by imposing larger repulsive contact

forces to satisfy Eq. (7), which pumps kinetic energy into the system. Using gpos

instead of g eliminates this artifact on the cost that an already existing overlap is

not removed (which then serves to check the inaccuracies of the simulation19), only

its further growth is prevented. Regarding the above-mentioned points, we rewrite

Eqs. (9) and (10) as

R =
−1

∆t
M

(

gpos

∆t
n + vrel, free

)

and (11)

R =
−1

∆t
M

(

gpos

∆t
n − vrel

t + vrel, free

)

. (12)

A flowchart of the single contact force calculation is given in Fig. 2. So far we

have explained only how the CD algorithm determines a single existing or incipient

contact, based on the assumption that all the surrounding contact forces are known.

However, in a dense granular media, many particles contact simultaneously and

form a contact network. In this case, a contact force cannot be evaluated locally,

since it depends on the adjacent contact forces which are also unknown. To find a

globally consistent force network at each timestep, an iterative scheme is applied

in CD.

At each iteration step, all contacts are chosen one by one and the force at

the contact is updated according to the scheme shown in Fig. 2. The update is

sequential, i.e. the freshly updated contact force is stored immediately as the current

force and then a new contact is chosen for the next update.

After one iteration step, constraint conditions are not necessarily fulfilled for

each contact. In order to find a global solution, the iteration process has to be

repeated several times until the resulting force network converges. The convergence

of the iteration process is smooth, i.e. the precision of the solution increases with

the number of iterations NI . Higher NI provides more precise solution but also

requires more computational effort. The CD method can be used with a constant

number of iterations in subsequent timesteps19,8 or with a convergence criterion

that prescribes a given precision to the force calculation.6–8 In this latter case, the

number of iterations NI varies from timestep to timestep.

After the new force network is determined with a prescribed precision, the sys-

tem evolves at the end of the timestep according to the timestepping scheme de-

scribed at the beginning of this section. It is important to note that choosing small

NI and/or large timestep causes systematic errors of the force calculation, which

lead to a spurious soft particle behavior19 in spite of the original assumption of

perfect rigidity.

To conclude this section, we present briefly the scheme of the solver:
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Fig. 2. The flowchart of the force calculation of a single contact in contact dynamics.
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3. The Equations of Motion at Constant External Pressure

In the simulation of granular materials, it is often desirable to investigate systems,

which are not surrounded by walls and to apply periodic boundary conditions in

all directions. It is a nice feature of periodic boundary conditions that they make

points of the space equivalent, the boundary effects are eliminated. That way the

bulk properties of the material can be studied more easily. However, the application

of an external pressure becomes problematic since the total volume is fixed and the

system cannot be compressed by pistons or moving walls.

In order to overcome this problem, but at the same time keep the advantageous

periodic boundaries, Andersen18 proposed a method for MD simulations. Here, we

recall his method briefly as its basic ideas will be used later on in this paper.
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According to the Andersen method, the boundaries are still periodically con-

nected in all directions and no walls are present, but the volume of the system is

a dynamical variable, which evolves in time driven by constant external pressure.

When a system of N atoms is compressed or expanded it is done in an isotropic

and homogeneous way: The distances between the atoms are rescaled by the same

factor regardless of the relative or absolute positions.

Let us give the equations of motion of a system with particle positions

r1, r2, . . . , rN in a D-dimensional cubic volume V (D = 2, 3 and each component

of ri is between 0 and V 1/D):

dri(t)

dt
=

pi(t)

mi
+

1

D
ri(t)

d ln V (t)

dt
, (13)

dpi(t)

dt
= Fi(t) −

1

D
pi(t)

d ln V (t)

dt
, (14)

Mvd
2V (t)

dt2
= Pin(t) − Pext = ∆P (t) . (15)

Equation (13) describes the change in the position ri. The first term on the right is

the usual one, the momentum pi divided by the mass of the ith particle. The last

term is the extension by the Andersen method that rescales the position according

to the relative volume change.

Equation (14) provides the time evolution of the momentum due to two terms.

The first one is the usual total force Fi acting on the ith particle, which originates

from the interaction with other particles and/or from external fields. The additional

term leads to further acceleration of the particle if the volume is changing. For

example, if the system is compressed the kinetic energy of the particles is increased

due to the work done by the compression. The energy input is achieved by rescaling

all particle momenta regardless of their positions. This is in contrast to usual pistons

where the energy enters at the boundary.

Equation (15) can be interpreted as Newton’s second law that governs the

change of the volume. It describes the time evolution of an imaginary piston, which

has the inertia parameter Mv and is driven by the generalized force ∆P (t) =

Pin(t) − Pext. This latter is the pressure difference between the constant external

pressure Pext and the internal pressure of the system Pin(t). The pressure difference

∆P (t) drives the system toward the external pressure, the sensitivity of the system

to this driving force is controlled by the inertia parameter Mv.

In the limit of infinite inertia Mv → ∞ together with the initial condition

dV (t0)/dt = 0, the volume of the system remains constant and Eqs. (13) and (14)

correspond to the usual Newtonian dynamics of the particles.

In order to get more insight into the Andersen dynamics, let us consider a sim-

ple example of a system of noninteracting particles with all Fi(t) = 0. Initially, the

velocities and the volume velocity dV (t0)/dt are set to zero. Because the internal

pressure Pin is zero the system with finite inertia Mv and under external pressure
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Pext > 0 will start contracting according to Eq. (15). The acceleration of the par-

ticles [Eq. (14)] remains zero during the time evolution; one might say that the

particles are standing there all the time. However, the distances between them are

decreasing because of the contraction of the “world” around them. This is caused

by the second term on the right-hand side of Eq. (13) while the first term remains

zero.

This suggests the picture of an imaginary background membrane that contracts

or dilates homogeneously together with the volume and carries the particles along.

The velocity of this background at position ri is given by λ(t)ri where λ is the

dilation rate defined by the rate of the relative change in the system size L:

λ(t) ≡
L̇(t)

L(t)
=

1

D

d ln V (t)

dt
, (16)

and D is the dimension of the system. Then the right-hand side of Eq. (13) can

be interpreted as the sum of two velocities: the second one is the velocity of the

background at the position of the particle and the first one is the intrinsic velocity

of the particle measured compared with the background. The sum of these two

forces gives the changing rate of the absolute position ri. In the remainder of the

paper, the velocity vi will refer always to the intrinsic velocity. We rewrite Eq. (13)

in the following form:

dri(t)

dt
= vi(t) + λ(t)ri(t) . (17)

Next we turn to the modeling of granular systems. Our goal is to achieve static

granular packings that are compressed from a loose gas-like state. Here again it is

advantageous to exclude confining walls and in order to apply pressure and achieve

contraction of the volume we will use the concept of the Andersen method. However,

the equations of motion will be slightly changed in order to make them suit better

to our goals.

In granular materials, the interactions between the particles are dissipative.

When the material is poured into a container or is compressed by a piston, the

particles gain kinetic energy due to the work done by gravity or the piston. All

this energy has to be dissipated (turned into heat) by the interactions between the

particles before the material can settle into a static dense packing of the particles.

This relaxation process requires a massive computational effort when large packings

are modeled in computer simulations. One encounters the same problem if the

Andersen dynamics is applied straight to granular systems. The role of the second

term on the right-hand side of Eq. (14) is to conserve the total energy of the

system by taking into account the energy gain of the particles due to compaction.

The relaxation time can be reduced if this term is omitted, because then the total

amount of energy pumped into the system is reduced. In this case, the particles

are accelerated only by the forces Fi but they receive no additional energy due to

the decreasing volume. Thus, the following equation will be applied for granular
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compaction here

dvi(t)

dt
=

1

mi
Fi(t) , (18)

which results in a more effective relaxation rather than Eq. (14). This change is

advantageous also from the point of view of momentum conservation. If the system

is compactified by using Eq. (14) from an initial condition where the total mo-

mentum of the particles is nonzero, then this momentum will be increased inverse

proportionally to the size of the system L. Thus, the total momentum, e.g. due to

initial random fluctuations, is magnified, which can lead to nonnegligible overall

rigid body motion of the final static packing. This is in contrast to Eq. (18), which

provides momentum conservation in the absence of external fields.

We note that neglecting the term in Eq. (14) leads to an artificial dynamics in the

sense that the energy corresponding to the work of the compaction is not delivered

to the particles. However, our main goal here is to produce a static configuration

of grains and contact forces that can be used for further studies, thus we are not

interested in that part of the dynamics, where compaction rate is significant and

the neglected term makes a difference.

Concerning the equation that describes the time evolution of the system size,

we find it more convenient to control λ instead of dV/dt. This is actually not an

important change and leads to very similar dynamics. Our third equation reads

Mλ
dλ(t)

dt
= ∆P (t) . (19)

The equations of motion (17), (18), and (19) describe an effective compaction

dynamics for granular systems, they are able to provide static packings under the

desired pressure Pext and if they are restricted to the limit of Mλ → ∞ we receive

back the classical Newtonian dynamics.

We note that the force scale in our systems of rigid particles is determined

by the external pressure as there is no intrinsic force scale. Taking larger value

of Pext leads in principle to the same compaction dynamics (apart from rescaling

time, velocities, and forces). Consequently, the same final packing-configuration is

expected, independently of the external pressure. Of course, the value of Pext does

matter if an intrinsic force scale is present, e.g. when cohesion between the particles

is incorporated. In such cases, the final packing will strongly depend on the applied

external pressure.

In order to close the equations we need to define interactions between the par-

ticles. The interparticle forces provide Fi in Eq. (18) and they are also needed to

evaluate the inner pressure Pin.

The stress tensor σαβ is not a priori spherical in granular materials. The aver-

age σαβ of the system is determined by the interparticle forces20 and the particle

velocities as

σαβ =
1

V

(

Nc
∑

k=1

Fk,αlk,β +

N
∑

i=1

mivi,αvi,β

)

, (20)
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where N and Nc denote the number of particles and the number of contacts, re-

spectively. If two contacting particles at contact k are labeled by 1 and 2, then Fk

is the force exerted on particle 2 by particle 1, and the vector lk is pointing from

the center of mass of particle 1 to that of particle 2 where periodic boundary condi-

tions and nearest image neighbors are taken into account. Thus, lk is the minimum

distance between particles 1 and 2:

lk = |lk| = min |r2 − r1 + V 1/3a| , (21)

where a is an integer-component translation vector. The inner pressure is then given

by the trace of the stress tensor divided by the dimension of the system

Pin =
1

DV

[

Nc
∑

k=1

Fk · lk +

N
∑

i=1

mivi · vi

]

, (22)

which has the meaning of an average normal stress.

The implementation of the above method in computer simulations is straight-

forward if the interparticle forces are functions of the positions and velocities of the

particles, e.g. in soft particle MD simulations. The implementation is less trivial

for the case of the CD method where interparticle forces are constraint forces. We

devote the next section to this problem.

4. Contact Dynamics with Coupling to a Constant

External Pressure

In this section, we present a modified version of the CD algorithm, which enables

us to perform CD simulations at constant external pressure. According to Sec. 3,

let us suppose that the system is subjected to a constant external pressure Pext and

its time evolution is given by Eqs. (17), (18), and (19).

Here we will follow the description of the CD method given in Sec. 2 and discuss

the required modifications. Once the force calculation process is completed, the

implicit Euler integration can proceed one timestep further. Now the timestepping

has to involve also the equations of motion of the system size. By discretizing the

Eqs. (16) and (19) in the same implicit manner as for the particles [Eqs. (1) and

(2)] we obtain the new values of the system size L and the dilation rate λ:

λ(t + ∆t) = λ(t) +
∆P (t + ∆t)

Mλ
∆t , (23)

L(t + ∆t) = L(t)[1 + λ(t + ∆t)∆t] (24)

where the “velocity” λ(t) and the “position” L(t) are updated by the new “force”

∆P (t + ∆t) and by the new “velocity” λ(t + ∆t), respectively.

The discretized equations governing the translational degrees of freedom of the

particles [Eqs. (1) and (2)] are rewritten according to Eqs. (17) and (18) in the
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following form:

vi(t + ∆t) = vi(t) +
1

mi
Fi(t + ∆t)∆t and (25)

ri(t + ∆t) = ri(t)[1 + λ(t + ∆t)∆t] + vi(t + ∆t)∆t . (26)

The timestepping for the rotational degrees of freedom remains unchanged because

the dilation (contraction) of the system has no direct effect on the rotation of the

particles.

In the CD method, as we explained in Sec. 2 the particles are perfectly rigid

and are interacting with constraint forces, i.e. those forces are chosen between con-

tacting particles that are needed to fulfill the constraint conditions. For example,

the contact force has to prevent the interpenetration of the contacting surfaces.

If a constant external pressure is used then the calculation of the constraint

forces has to be reconsidered because the relative velocity of the contacting surfaces

is influenced by the variable volume. When the system is dilating or contracting,

particles gain additional relative velocities compared with each other. For a pair

of particles, this velocity is λl where l is the vector connecting the two centers of

mass. The same change appears in the relative velocity of the contacting surfaces as

the size of the particles is kept fixed. If this change led to interpenetration then it

has to be compensated by a larger contact force. It may also happen that existing

contacts open up due to expansion of the system resulting in zero interaction force

for those pair of particles.

In the calculation of a single contact force, the relative velocity λl (i.e. the

contribution of the changing system size) has to be added to vrel, free. The new

relative velocity of the contact assuming no interaction between the two particles

vrel, free is calculated here in the same way as in Sec. 2, i.e. based on the intrinsic

velocities of the particles. Thus, the effect of the dilation/contraction of the system

is not taken into account in vrel, free. Therefore, one has to replace vrel, free with

(vrel, free +λl) in all equations of Sec. 2 in order to impose the constraint conditions

properly. Let us first suppose that the system has infinite inertia (Mλ = ∞) thus the

dilation rate λ is constant. In this case the modified equations of the force update

(containing already the term vrel, free+λl) provide the right constraint forces at the

end of the iteration process. These forces will alter the relative velocity (vrel, free+λl)

in such a way that the prescribed constrain conditions will be fulfilled in the new

configuration at t + ∆t.

More consideration is needed if finite inertia Mλ is used and the dilation rate λ is

time-dependent. The problem is that in order to calculate the proper contact force

one has to know the new dilation rate. The new dilation rate, however, depends on

the new value of the inner pressure [Eq. (23)], which, in turn, depends on the new

value of the contact forces. This problem can be solved by incorporating λ and Pin

into the iteration process. Instead of using the old values λ(t) and Pin(t) during the

iteration, we always use the expected values λ∗ and P ∗

in. These represent our best

guess for the new dilation rate λ(t+∆t) and for the new inner pressure Pin(t+∆t).
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P ∗

in is defined based on the current values of the contact forces F∗

k during the force

iteration. Whenever a contact force is updated, we recalculate the expected inner

pressure P ∗

in. With the help of the current contact forces F∗

k we can determine the

total forces acting on the particles and then, following Eq. (25) we also obtain the

expected new velocities of the particles v∗

i . The expected inner pressure, according

to Eq. (22), then reads

P ∗

in =
1

DV

[

Nc
∑

k=1

F∗

k · lk +

N
∑

i=1

miv
∗

i · v∗

i

]

. (27)

Of course, there is no need to recalculate all the terms in Eq. (27) in order to update

P ∗

in. When the force at a single contact is changed it affects only three terms: one

due to the force itself and two due to the velocities of the contacting particles. In

order to save computational time, only the differences in these three terms have to

be taken into account when P ∗

in is updated. Following Eq. (23), we also obtain the

corresponding value of the expected dilation rate:

λ∗ = λ(t) +
P ∗

in − Pext

Mλ
∆t (28)

In this way, λ∗ and P ∗

in are updated many times between two consecutive timesteps

(in fact they are updated NINc times) but in turn λ∗ and P ∗

in are always consistent

with the current system of the contact forces. At the end of the iteration process

P ∗

in and λ∗ provide not just an approximation of the new inner pressure and new

dilation rate but they are equal to Pin(t + ∆t) and λ(t + ∆t), respectively.

To complete the algorithm, we list here also the equations that are used for the

force calculation of a single contact. The inequality (5) is replaced by

g + (vrel, free + λ∗l) · n∆t > 0 , (29)

i.e. there is no interaction between the two particles if the inequality is satisfied.

Otherwise we need a contact force. The force, previously given by Eq. (11), that is

required by a sticking contact is

R =
−1

∆t
M

(

gpos

∆t
n + λ∗l + vrel, free

)

. (30)

This force again has to be recalculated according to a sliding contact if R in Eq. (30)

violates the Coulomb condition:

R =
−1

∆t
M

(

gpos

∆t
n− vrel

t + λ∗l + vrel, free

)

, (31)

which replaces the original Eq. (12).

Except the above changes, the CD algorithm remains the same. In each timestep,

the same iteration process is applied in order to reach convergence of the contact

forces. After the iteration process we apply Eqs. (23)–(26) to complete the timestep.



June 30, 2009 11:50 WSPC/141-IJMPC 01404

860 M. R. Shaebani, T. Unger & J. Kertész

The scheme of the solver for the modified version of CD can be presented as

































t = t + ∆t (timestep)
Evaluating the gap g for all contacts
















NI = NI + 1 (iteration)








k = k + 1 (contact index)

Evaluating v
rel, free
k

Evaluating Rk [using Eqs. (30) and (31)]
Evaluating P ∗

in [Eq. (27)] then λ∗ [Eq. (28)]
Convergence test for contact forces

Timestepping for the dilation rate and the system size [using Eqs. (23) and (24)]
Timestepping for velocities and positions of all particles [using Eqs. (25) and (26)]

In the next section, we will present some simulations with the above method. We

will test the algorithm and analyze the properties of the resulting packings.

As an alternative to this fully implicit method, we considered another possibility

to discretize Eqs. (16)–(19) in the spirit of the CD and, at the same time, impose

the constraint conditions on the new configuration. The main difference is that the

new value of the inner pressure Pin(t+∆t) is determined based on the old velocities

vi(t) and not on the new ones vi(t + ∆t), while the contribution of the forces are

taken into account in the same way, i.e. the new contact forces Fk(t + ∆t) are

used in Eq. (22). Therefore, this version of the method is only partially implicit,

however, the constraint conditions and the force calculation [Eqs. (29)–(31)] can be

applied in the same way. Only, the expected values λ∗ and P ∗

in has to be changed

consistently with the new pressure Pin(t + ∆t):

P ∗

in =
1

DV

[

Nc
∑

k=1

F∗

k · lk +

N
∑

i=1

mivi(t) · vi(t)

]

(32)

and then this modified P ∗

in is used to determine the expected dilation rate λ∗ with

the help of Eq. (28). Again here, P ∗

in and λ∗ are calculated a new after each force

update during the iteration process and their last values equal the new pressure

Pin(t + ∆t) and the new dilation rate λ(t + ∆t).

We implemented and tested this second version of the method and found that

the constraint conditions are handled here also with the same level of accuracy.

Although the second method is perhaps less transparent than the fully implicit ver-

sion, for practical applications it seems to be more useful. First, the second version

of the method is easier to implement into a program code, second, it turned out to

be faster by 25% in our test simulations. The improvement of the computational

speed originates from the smaller number of the operations. One does not have to

handle the expected particle velocities v∗

i and the recalculation of P ∗

in is more sim-

ple as the change of a contact force F∗

k affects only one term in Eq. (32). We note

that here the distinction “partially implicit” and “fully implicit” refer only to the

difference, whether the velocities are or are not included in the iteration process.
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5. Numerical Results

We perform numerical simulations using the CD algorithm with the fully implicit

constant pressure scheme of Sec. 4. This algorithm has been used to study mechan-

ical properties of granular packings in response to local perturbations.21,22,26 Here,

the main goal is to show that the algorithm works indeed in practical applications

and to test the method from several aspects. We investigate how the simulation

parameters influence the required CPU time and the accuracy of the simulation.

Such parameters are the external pressure Pext, the inertia parameter Mλ, and

the computational parameters, such as the number of iterations per timestep NI

and the length of the timestep ∆t. We also analyze the properties of the resulting

packings.

Here, we report only simulations of two-dimensional systems of disks, where the

behavior is very similar to that we found for spherical particles in three-dimensional

systems. Length parameters, the time, and the two-dimensional mass density of the

particles are measured in arbitrary units of l0, t0, and ρ0, respectively. The samples

are polydisperse and the disk radii are distributed uniformly between 0.8 and 1.2,

thus the average grain radius is 1. The material of the grains has unit density and

the masses of the disks are proportional to their areas. In this section, we have one

reference system that contains 100 disks. The interparticle friction coefficient is set

to 0.5. The value of other parameters are NI = 100, ∆t = 0.01, Pext = 1 (this

latter is expressed in units of ρ0l
2
0/t20), and the inertia Mλ = 100 (in units of ρ0l

2
0).

Throughout this section, we either use these reference parameters or the modified

values will be given explicitly. Usually, we will vary only one parameter to check its

effect while other parameters are kept fixed at their reference values.

In each simulation, we start with a dilute sample of nonoverlapping rigid disks

randomly distributed in a two-dimensional square-shaped cell [Fig. 3(a)]. No confin-

ing walls are used according to the boundary conditions specified in Sec. 4. Gravity

and the initial dilation rate are set to zero. Owing to imposing a constant external

pressure, the dilute system starts shrinking. As the size of the cell decreases, par-

ticles collide, dissipate energy and after a while a contact force network is formed

between touching particles in order to avoid interpenetrations. The contact forces

build up the inner pressure Pin, which inhibits further contraction of the system.

Finally, a static configuration is reached in which Pin equals Pext and mechani-

cal equilibrium is provided for each particle [Fig. 3(b)]. Technically, we finish the

simulation when the system is close enough to the equilibrium state: We apply a

convergence threshold for the mean velocity vmean and mean acceleration amean

of the particles (which are measured in units l0/t0 and l0/t20, respectively). Only

if both vmean and amean become smaller than the threshold 10−10 we regard the

system as relaxed and stop the simulation.

The typical time evolution can be seen in Fig. 4 where we show the compaction

process in the case of the reference system. Figure 4(left) implies that the magnitude

of λ grows linearly in the beginning when the inner pressure is close to zero. The
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(a) (b)

Fig. 3. Schematic picture of a two-dimensional granular system controlled by a constant external
pressure: (a) the initial gas state, and (b) the final homogeneous packing. The dashed lines mark
periodic boundaries.
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Fig. 4. Typical time evolution of the dilation rate λ (left), the inner pressure Pin (middle), and
the system size L (right) during the compression of a two-dimensional polydisperse sample. The
data shown here were recorded in the reference system specified in the text.

negative value of the dilation rate indicates contraction, which becomes slower after

the particles build up the inner pressure [Fig. 4(middle)]. The fluctuations in Pin

are due to collisions of the particles. In the final stage of the compression, λ goes

to zero, Pin converges to the external pressure, and the size of the system reaches

its final value [Fig. 4(right)].

Next we investigate how the required CPU time of the simulation is affected

by the various parameters. All simulations are performed with a processor Intel(R)

Core(TM)2 CPU T7200 @ 2.00 GHz and the CPU time is measured in seconds.

Figure 5 reveals that the variation of Pext, ∆t, NI , and Mλ have direct influence

on the required CPU time. The final packing is achieved with less computational

expenses if larger Pext, larger ∆t, or smaller NI is used. The role of system inertia

Mλ is more complicated. Mλ reflects the sensitivity of the system to the pressure

difference Pin − Pext. If the level of the sensitivity is too small or too large, the
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simulation becomes inefficient. It is advantageous to choose the inertia Mλ near to

its optimal value, which depends on the specific system (e.g. on the number and

mass of the particles).23

Regarding the efficiency of the computer simulation, not only the computational

expenses play an important role but the accuracy of the simulation is also essen-

tial. Here we use the overlaps of the particles as a measure of the inaccuracy of

the simulation (see Sec. 2). In an ideal case, there would be no overlaps between

perfectly rigid particles. Figure 6 shows the mean overlaps measured in the final

packings. It can be seen for the parameters Pext, ∆t, and NI that the reduction

of the computational expenses at the same time leads also to the reduction of the

accuracy of the simulation. In Fig. 7(left), we plot the CPU time vs the mean

overlap for these three parameters. The data points collapse approximately on the

same master curve, which tells us that the computational expenses are determined

basically by the desired accuracy; smaller errors require more computations. The

efficiency of the simulation is approximately independent of the parameters Pext,

∆t, and NI . The situation is, however, different for the inertia of the system Mλ.

First, it has relatively small effect on the accuracy of the simulation (Fig. 6). Vari-

ation of Mλ by seven orders of magnitude could hardly change the mean overlap of

the particles. Second, Mλ affects strongly the efficiency of the simulation, which is

shown clearly by Fig. 7(right). If Mλ is varied then larger computational expense is

not necessarily accompanied with smaller errors. In fact, in the whole range of Mλ



June 30, 2009 11:50 WSPC/141-IJMPC 01404

864 M. R. Shaebani, T. Unger & J. Kertész

1

101

102

103

104

 110-110-210-310-410-510-610-710-8

C
P

U
 T

im
e 

(s
ec

)

Mean Overlap

Pext
NI   
∆t   

101

102

103

104

10-55x10-62x10-610-6

C
P

U
 T

im
e 

(s
ec

)

Mean Overlap

Mλ

Fig. 7. CPU time in terms of the mean overlap. The different curves are obtained by the variation
of different parameters according to Figs. 5 and 6. These parameters are the external pressure
Pext, the number of iterations per timestep NI , the length of the timestep ∆t (left), and the inertia
of the system Mλ (right). The open circle on the right indicates the most efficient simulation we
could achieve by controlling the inertia Mλ.

 0.9

 0.8

 0.7

102110-2

V
ol

um
e 

F
ra

ct
io

n

Pext

110-210-4

∆t
103102101

NI

104102110-2

Mλ

Fig. 8. Volume fraction vs the simulation parameters.

studied here, the fastest simulation turned out to be the most accurate one [open

circle in Fig. 7(right)].

Next we turn to the question whether the parameters of the simulation used

in the compaction process influence the physical properties of the final packing.

There are many ways to characterize static packings of disks. Here we test only one

quantity, the frequently used volume fraction. The volume fraction gives the ratio

between the total volume (total area in two dimensions) of grains and the volume

(area) of the system. Figure 8 shows the volume fraction of the same packings that

were studied already in Fig. 6. It can be seen that the volume fraction remains

approximately unchanged under the variation of the four parameters Pext, NI , ∆t,

and Mλ. This is except for one data point for large timestep ∆t, where the simu-

lation is very inaccurate. The corresponding mean overlap (Fig. 6) is comparable

to the typical size of the particles which is the reason, why the volume fraction

appears to be much larger.

Finally, we investigate the inner structure of the resulting random packings.

For that, we study larger samples with N = 1000 particles; otherwise, the default

parameters are used during the compaction. To suppress random fluctuations, we
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Fig. 9. (left) The angular distribution of the contacts. The number of contacts is plotted in terms
of the direction of their normal vectors. (right) Spatial distribution of the contacts. The system
contains N = 1000 disks in both figures.

produce five different systems and all quantities reported hereafter represent av-

erage values over these systems. In Fig. 9(left) we study the angular distribution

of the contact normals and find that it is very close to uniform. However, there

is a small but definite deviation (around 3%): the density of the contact normals

are slightly larger parallel to the periodic boundaries. In this sense, the packing is

not completely isotropic. Although the effect is very small, the orientation of the

boundaries can be observed also in such local quantities like the direction of the

contacts.

In connection to the question of the isotropy, we checked also the global stress

tensor σ. In the original frame σ reads

σ =

(

1.00909 −0.01334

−0.01332 0.99091

)

. (33)

This stress is isotropic with good approximation. The diagonal entries are close to 1

which equals Pext while the off-diagonal elements are approximately zero. Compared

with the unit matrix, the elements deviate around 1% of Pext.

The final packings are expected to be homogeneous as all points of the space are

handled equivalently by the compaction method. Apart from random fluctuations,

we do not observe any inhomogeneity in our test systems. As an example, we

show the spatial distribution of the contacts in Fig. 9(right), where the density is

approximately constant.

6. Concluding Remarks

In this work, we have proposed and tested a simulation method to produce ho-

mogeneous random packings in the absence of confining walls. We combined

the CD algorithm with a modified version of the Andersen method to perform

constant pressure simulations of granular systems. Our main concern was to
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discuss how constraint conditions can be applied to determine the interaction

between the particles in an Andersen-type of dynamics. We have presented the

results of some numerical tests and discussed the effect of the main parameters

on the efficiency of the simulations and on the physical properties of the final

packings.

We restricted our study to the simple case where we allow only spherical strain

of the system in order to achieve the desired pressure. However, the method can

be generalized to apply other type of constraints to the stress tensor and, conse-

quently, to allow more general strain deformations where shape as well as size of

the simulation cell can be varied.24,25
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