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The finer a powder, the more its behaviour is dominated by cohesion. This is the reason why fine powders
in the submicrometer range are highly porous. The stress that is needed to reduce the porosity by a de-
sired amount is shown to be different in quasi-static and in shock compaction. The product of (consolidation
stress)·(compactible pore volume)1/α turns out to be constant for a powder of rigid, round particles with an
exponent 1/α ≈ 2. How this constitutive law is modified in the case of shock compaction due to inertia effects,
is derived analytically. Results of Contact Dynamics simulations and experiments are reviewed.

1 INTRODUCTION
The flow of fine powders in the micrometer and sub-
micrometer range is strongly influenced by cohesion.
For instance, a fine powder does not collapse into a
random dense packing under its own weight (Fig. 1):
Its porosity depends on the preparation history and
can be as large as 90%.

Cohesion is particularly important in nano-powder
and aerosol technology. As an example, Fig. 2 shows
a snapshot from a simulation (Hänel & Lantermann
2005) of nanoparticles carried by a gas through a fil-
ter, where some of them are deposited, forming flakes
which have a structure similar to ballistic deposits
(Vold 1959; Jullien & Meakin 1989).

In order to obtain a nano-crystalline solid one has to
avoid sintering at high temperature, because it would
lead to coarsening of the crystallites. Instead one ap-
plies high pressure to compactify the porous nano-
powder (Srdić et al. 2000). Another important appli-
cation is the compaction of cohesive medical powders

Figure 1. Electron microscope image of carbonyl-iron-powder
with typical particle radius of 1µm.

into tablets (Masteau et al. 1997). Here we review re-
cent progress made in understanding the compaction
of cohesive powders (Kadau et al. 2003; Brendel et al.
2003; Bartels et al. 2005) and present new results con-
cerning the relation between quasi-static and shock
compaction.

The van-der-Waals attraction leads to solid necks
between particles which form instantaneously due to
elastic deformation, when two particles come into
contact (Johnson et al. 1971). These necks can have
an initial diameter of half the particle radius for nano-
particles and subsequently grow by surface and grain
boundary diffusion (see e.g. Westerhoff (2005)). Rel-
ative motion at such a contact is assumed in the fol-
lowing to require that tensile or shear forces exceed
a threshold at which the solid bridge connecting the
two particles breaks. Moreover instantaneous forma-
tion of a solid neck is assumed whenever a contact
forms. Slow aging or sintering which reinforce long
lived solid bridges beween particles are not taken into
account here.

Figure 2. Nano-particles filtered from the gas phase. Simulation
by U. Lantermann (2002).
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Figure 3. Simplified view of the stability regions of a cohesive
powder for two different porosities, E1 > E2. Where the bound-
ary of the stability region intersects the Roscoe line (dashed),
one gets steady state flow. The point, where uniaxial compaction
sets in, is the intersection of the stability boundary with the dot-
ted curve. The Mohr-circle tangential to the stability boundary at
such a point intersects the σ-axis at the principal stresses char-
acteristic for quasi-static uniaxial compaction of a powder of the
corresponding porosity. The larger one, σy , is the stress at the
piston in the experiments described in the text.

2 THE GENERAL FRAMEWORK
One commonly assumes that a cohesive powder with
a given porosity sustains stationary combinations of
shear and normal stresses within a convex region,
the “stability region”, in (σ, τ)-space, Fig. 3 (Roscoe
1970; Schwedes 1975). σ is the normal and τ the
tangential force per unit area transmitted through a
plane with normal vector ~n inside the material. (Ten-
sile forces are defined as being negative here.) Usually
one assumes that the material is isotropic. Then only
vectors ~n that are linear combinations of the eigen-
vectors for the largest and smallest eigenvalue of the
stress tensor are taken into account, because the corre-
sponding Mohr circle is largest and therefore reaches
the boundary of the stability region first. Quasi-static
compaction takes place at the boundary of the stabil-
ity region. We shall also discuss shock compaction in
this paper, where a load in the unstable region is ap-
plied.

This picture is certainly oversimplified: Porosity is
not the only property of the cohesive powder that de-
termines to what stresses it yields. Moreover, it was
shown in recent simulations of non-cohesive, polygo-
nal, elastic particles that periodically varying stresses
inside the stability region cause local, irreversible par-
ticle displacements (ratcheting), which can accumu-
late on long time scales to macroscopic deformations
(Alonso-Marroquı́n & Herrmann 2004).

We did Contact Dynamics simulations of cohe-
sive, rigid particles with Coulomb friction, rolling
friction (and in three dimensions torsion friction, as
well (Bartels et al. 2005)). An introduction to the
simulation method is given in (Brendel et al. 2004).
Figure 4 shows the initial and the final configura-
tion of a two-dimensional simulation of uniaxial com-

Figure 4. Initial and final configuration of simulated uniaxial
compaction with given stress σy at the piston.

paction (Kadau 2003): A piston pushes downwards
(y-direction) with a given force, while the lateral sys-
tem size (x-direction) is kept fixed. As friction at the
bottom and at the piston is set equal to zero in the sim-
ulation, and periodic boundary conditions are used in
the x-direction, the principal axes of the stress ten-
sor must be the x- and y-direction. Therefore we de-
note the eigenvalues by σx and σy, the latter being the
stress exerted by the piston.

From experiments (Nowak 1994) it is known that
the eigenvalues of the stress are proportional to each
other. We confirmed this in our simulations by mov-
ing the piston with a fixed velocity and measuring
σy as well as σx as the powder becomes denser and
denser. The result is shown in Fig. 5.

Parallel to our simulations, experiments were done
by Morgeneyer and Schwedes (Morgeneyer 2004),
who compactified carbonyl-iron powder (Fig. 1) uni-
axially by means of a true biaxial shear tester
(Schwedes 2003). Here too, wall friction was practi-
cally eliminated by covering the walls with lubricated
elastic membranes. Carbonyl-iron powder consists of
spherical iron particles which are very rigid. There-
fore it serves as a model substance for comparison
with Contact Dynamics simulations.

The density of a powder can be quantified by its
solid fraction ν, which is the ratio between the solid
volume and the total volume, or by the porosity,

E = 1− ν . (1)

Extrapolating to infinite stress at the piston, the mini-
mal porosity Emin of a powder of perfectly rigid parti-
cles is not zero. As we shall see below, from a theoret-
ical point of view it turns out to be convenient to use
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Figure 5. In strain controlled uniaxial compaction the principal
stresses increase proportional to each other.

the relative compactible pore volume, instead, which
we call “volume excess”:

Ẽ ≡
V − Vmin

Vmin
=

νmax

ν
− 1 =

E −Emin

1−E
, (2)

where the last transformation results from inserting
Eq. (1). Vmin is the minimal volume a powder sample
of rigid particles can have, when compacted uniaxi-
ally with infinite pressure. (The variation of Vmin for
different random dense packings is small enough that
it may be neglected here.) In the simulations we de-
termined Vmin by switching off cohesion and rolling
friction so that any nonzero stress exerted by the pis-
ton leads to maximal compaction.

In the experiments with the biaxial shear tester the
sample was always near the stability limit (quasi-
static compaction). The stress at the piston could
therefore be identified with the consolidation stress
σy(Ẽ) for the current volume excess or porosity (see
Fig. 3).

By contrast, in the simulation, the same initial con-
figuration was subjected to different stresses σpiston,
which could exceed the consolidation stress by a fac-
tor of 100 or even 1000: The simulated compaction
is then far from quasi-static (shock compaction). This
gives rise to inertia effects, which will be discussed in
Sections 5 to 7. As a consequence one arrives at the
desired compaction with a smaller stress than in the
quasi-static case.

3 THE COMPACTION LAW
In this section the question is anwered, down to what
value the volume excess decreases, when a certain
stress is applied at the piston. At first one has to re-
alize that Ẽ, like porosity or solid fraction, is di-
mensionless, while the stress is not. Therefore an
intrinsic stress scale is needed which enables us to
dedimensionalize σ. For perfectly rigid particles the
only parameter combination with this property is the
cohesion force Fc between two particles divided by
the particle radius squared (in three dimensions). We
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Figure 6. Log-log-plot of the final volume excess, Eq. (2), as
a function of the dimensionless stress at the piston for a two-
dimensional simulation of shock compaction. For large stress, Ẽ
vanishes with a power law. Dashed line has slope −3/4.

conclude that the volume excess must be a function of
the dimensionless stress

σ̃ =
σrd−1

Fc
, (3)

where d denotes the space dimension, which in the
simulations presented here was 2. Equation (3) ex-
plains why the compaction of nano powders requires
much larger stresses (several Mega-Pascal) than for
powders in the micrometer range (kilo-Pascal). Of
course there are other dimensionless quantities, on
which the volume excess can depend in addition, such
as aspect ratio of the system, friction coefficients, par-
ticle shape parameters (Kadau et al. 2003), and the
fabric (Radjai & Roux 2004).

Figure 6 shows simulation data for four systems.
The initial configurations were ballistic deposits like
in Fig. 4 with the same solid fraction. The particles
were round and had all the same size. The coefficients
of Coulomb and rolling friction were the same in all
four systems. The systems differed by their aspect ra-
tio (Ly/Lx between 1 and 4), total particle number
(between 242 and 2746) and piston mass (between
0.1 and 1.7 times the total mass of all particles). The
dependence on these dimensionless parameters is ob-
viously much weaker than the dependence on the di-
mensionless stress.

For small stress the volume excess remains essen-
tially unchanged. Around a characteristic stress value,
which we identify with the consolidation stress for the
initial configuration, the volume excess crosses over
into a power law. For larger stresses we find (Kadau
2003)

Ẽ ∼ σ̃−β
piston (shock compaction) (4)

with an exponent β ≈ 3/4.
Such a crossover into a power law was subse-

quently also found in quasi-static experiments (Bren-
del et al. 2003; Morgeneyer 2004). For the analysis of
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Figure 7. Experimental results for three carbonyl-iron powders
with particle diameters of about 2, 4, and 6 µm, respectively, and
different initial porosities (Morgeneyer 2004). For large stress
the porosity E approaches its minimal value with a power law.
Dashed line has slope −1/2.

the data obtained with the biaxial shear tester (Fig. 7)
it is very important to have additional microscopic
information about the radius dependence of the co-
hesion force between the particles. This information
was provided by atomic force measurements on indi-
vidual particles from the three carbonyl-iron-powder
samples (Heim 2005). Each sample had a rather nar-
row distribution of the particle diameters around 2,
4 and 6 µm. It turns out, that the cohesion force for
particles from the three samples is dominated by the
particle roughness, so that no significant radius de-
pendence can be found. According to the definition
of the dimensionless stress, Eq. (3), one can therefore
expect that the porosity depends on σyr

2. Extrapolat-
ing slightly different minimal porosities for the limit
of infinite stress for the three samples, the data can
be presented in the form of Fig. 7. As the difference
E − Emin is in first order proportional to the volume
excess Ẽ, one obtains for large stress the power law

Ẽ ∼ σ̃−α
y (quasi− static comp.) (5)

with an exponent α ≈ 1/2.
This raises the question, whether the exponents α

for quasi-static compaction and β for shock com-
paction are the same. The answer, which will be de-
rived below in Sec. 8, is that the two exponents are not
equal: β = α(1+α). The value of β ≈ 3/4 obtained in
the simulations of two dimensional shock compaction
therefore implies α ≈ 1/2 for two dimensional quasi-
static compaction. This happens to agree with the ex-
ponent found in the three-dimensional experiments
with carbonyl-iron-powder. Preliminary results from
three-dimensional simulations of shock compaction
(Johnson & Wolf 2005) indeed support the relation
between β and α.

4 COMPARISON OF COMPACTION LAWS
In (Kawakita & Lüdde 1970) experimental results for
the porosity E led to a compaction law which can be
written as

E =
E0

(1−E0)σ/σ∗ + 1
. (6)

This equation means that E approaches the initial
porosity E0 for σ � σ∗ and drops to zero as a power
law with exponent α = −1 for σ � σ∗. The charac-
teristic stress σ∗ should be identified with the con-
solidation stress. This equation describes the smooth
crossover between the two regimes. It does not agree
with our findings in several respects: The exponent is
different, the porosity depends on the initial one even
for large stress, an arbitrarily small stress suffices to
make a powder denser no matter how much precom-
pacted it already is, and the asymptotic porosity is as-
sumed to be Emin = 0.

The equation reported by (Masteau et al. 1997),

(

E

1−E

)1−a

−

(

E0

1−E0

)1−a

= σ/σ∗ , (7)

where a = 2, differs from our results in the same re-
spects as Eq. (6). Note, however, that our results were
obtained for rigid, round particles.

5 THE DYNAMICS OF SHOCK COMPACTION
In order to compare the simulation results with quasi-
static experiments one needs to understand the dy-
namical implications of shock compaction. The piston
accelerates for a short time until it reaches a velocity v

�

Figure 8. Snapshot of simulated shock compaction due to a sud-
den increase of σpiston. The front between the regions of high and
low porosity can be clearly seen.
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Figure 9. Piston position as a function of time t. Full line: Simu-
lation with cohesion, Coulomb friction and rolling friction. The
final piston position reached, when cohesion and rolling friction
are switched off (dashed line), was used to calculate Vmin for the
definition of the volume excess. For increasing stress at the pis-
ton the solid line will come down to the dashed one.

which remains approximately constant (Fig. 9), while
a compaction front runs through the system (Fig. 8). It
separates a compacted region (solid fraction ν1 > ν0)
in front of the piston, moving at velocity v, from the
yet uncompacted part of the system (solid fraction ν0),
which is still at rest. The mass through which the front
propagates, gets compactified and accelerated. There-
fore we call it the “acceleration front”. It is not math-
ematically sharp, but should interpolate smoothly be-
tween the two regions. The slower the piston moves,
the wider the transition region is expected to be. In the
quasi-static case it should span the whole system, so
that one cannot speak of a “front” any more. Here we
consider high compaction velocities, however, where
the acceleration front is reasonably narrow.

When the acceleration front reaches the bottom
wall opposite the piston, the whole powder moves
at a velocity v together with the piston. In order to
stop it instantaneously, an infinite force would be re-
quired. Such a force cannot be sustained by the pow-
der so that a second, reflected compaction front moves
towards the piston and stops it, provided the piston
mass is zero. (The influence of a finite piston mass
will be discussed briefly in the conclusion, Sec. 10.)
This time the mass through which the front propa-
gates, gets compactified and stopped. Therefore we
call it the “deceleration front”.

6 THE ACCELERATION FRONT
The following theory describes the regime, where
the piston moves at constant velocity. Furthermore,
the acceleration front is idealized as mathematically
sharp.

During a short time interval δt the piston moves a
distance vδt, and the acceleration front propagates a
distance δy into the not yet compacted region, com-
pacting it from solid fraction ν0 to ν1. Mass conserva-

Ε~

0Ε~

1Ε~

σ0 σ1

v 2ν     ρmax

σy

Figure 10. The constitutive law, Eq. (5), which relates the volume
excess Ẽ to the uniaxial consolidation stress σy, determines the
velocity v of the piston, if the stress at the piston is suddenly
raised from σ0 = σy(Ẽ0) to σ1.

tion relates the two lengths:

vδt = δy

(

1−
ν0

ν1

)

. (8)

In our simplified view only the slab of width δy
with mass

δM = ρν0Aδy (9)
(ρ being the mass density of the particles and A the
piston area) changes its momentum during the time
interval δt. This slab divides the system into two
parts. The one next to the piston is already compacted
to solid fraction ν1 and therefore transmits the com-
paction stress σ1. The region far from the piston, how-
ever, still has the smaller solid fraction ν0, hence sus-
tains only the stress σ0. The momentum balance for
the slab in between therefore reads

(σ1 − σ0)Aδt = δM v . (10)

Inserting Eqs. (8) and (9) results in a simple relation
between the piston velocity v and the change of vol-
ume excess, which is the main result of this section:

ρv2 = (Ẽ0 − Ẽ1)(σ1 − σ0)/νmax (11)

Eq. (11) shows that the piston velocity is in leading
order linear in the difference between the stress at the
piston σ1 and the quasi-static consolidation stress σ0.
Fig. 10 illustrates the result Eq. (11) schematically.

The work done by the piston in the time interval
δt, σ1Avδt, is partly converted into kinetic energy,
δMv2/2. The rest is dissipated as heat during the ir-
reversible compaction process:

σ1Avδt =
1

2
δMv2 + δEdiss . (12)

Inserting Eq. (10) an expression for the compaction
work of a slab of mass δM is obtained, the second
important result of this section:

δEdiss =
1

2
δMv2 + σ0vδt

= δM

(

1

2
v2 +

σ0 (Ẽ0 − Ẽ1)

ρνmax

)

. (13)

5



2vν     ρmax

0

1

2

Ε

Ε

Ε
Ε

σ0 σ1 σ2 σ y

~
~

~

~

Figure 11. The deceleration front reduces the volume exess fur-
ther to Ẽ2, compare Fig. 10. σ1 is the stress at the piston.

7 THE DECELERATION FRONT
If one considers the system in the comoving frame of
the piston, the piston and the powder are at rest, when
the acceleration front reaches the bottom wall. The
bottom wall having infinite mass runs with an velocity
−v into the powder and compactifies it further to a
solid fraction ν2 > ν1 while accelerating it to the same
velocity (which in the laboratory frame means that the
powder comes to rest). Now the stress near the bottom
wall is σ2 > σ1 and drops to σ1 on the other side of
the deceleration front, near the piston. Ẽ2 and σ2 are
determined by

ρv2 =
(

Ẽ1 − Ẽ2

)

(σ2 − σ1)/νmax (14)

and the constitutive law (5) (Fig. 11). The compaction
work

δEdiss = δM

(

1

2
v2 +

σ1 (Ẽ1 − Ẽ2)

ρνmax

)

. (15)

is partly provided by the kinetic energy of the powder
(first term) and by the piston whose motion reduces
the container volume accordingly (second term).

The combined action of the acceleration and the de-
celeration front leads to a final solid fraction ν2 which
is larger than expected from the stress at the piston,
σ1. A further compaction requires a stress larger than
σ2, the uniaxial consolidation stress of a powder of
solid fraction ν2.

The simulation results presented here therefore do
not represent the constitutive law for the consolidation
stress as function of the volume excess (σ2 = σy(Ẽ2)),
as obtained in quasi-static experiments, but the rela-
tion between the stress σ1 at the piston and the final
volume excess Ẽ2. Note that Ẽ2 depends not only on
σ1 but also on the velocity v, therefore on the ini-
tial volume excess Ẽ0. The final porosities obtained
in the simulation belong to consolidation stresses that
are systematically larger than the stress exerted by the
piston. A crucial test of this idea will be a simula-
tion, which successively compactifies the same sys-
tem further and further by slowly incrementing the
stress at the piston, rather than confronting always the

uncompacted initial configuration with a stress, which
run after run is increased far beyond the consolidation
stress.

The theory allows to compare the energy dissipated
in shock compaction of a cohesive powder with the
one in quasi-static compaction, both from volume ex-
cess Ẽ0 to Ẽ2. The energy dissipated in shock com-
paction is

E
(shock)
diss = σ1Vmin(Ẽ0 − Ẽ2) , (16)

whereas in the quasi-static case it is

E
(qs)
diss = Vmin

∫ Ẽ0

Ẽ2

σy(Ẽ)dẼ , (17)

which is the area left of the curved line in Fig. 11 be-
tween Ẽ0 and Ẽ2. Due to its curvature the line σy(Ẽ)
cuts the shaded rectangles into a larger upper and a
smaller lower part. It follows immediately that the
lower part of the right rectangle does not suffice to
fill the upper part of the left rectangle: As expected,
shock compaction costs more energy than quasi-static
compaction.

8 RELATION BETWEEN QUASI-STATIC AND
SHOCK COMPACTION

As pointed out in the previous section, the stress σ1

which must be applied at the piston in order to com-
pactify the powder by a desired amount depends both
on the initial and the final volume excess, Ẽ0 > Ẽ2,
due to inertia effects. It is systematically smaller than
the stress σ2 = σy(Ẽ2) at which Ẽ2 would be reached
quasi-statically.

In our simulations we determined the function σ1 =
σpiston(Ẽ0, Ẽ2) by measuring Ẽ2 for given σ1 and Ẽ0,
and we found that

1

σpiston(Ẽ0, Ẽ2)
∼

r2

Fc
Ẽ

1/β
2 f(Ẽ0) (18)

in the limit of large σpiston. In this section we shall
derive the exponent β and the function f(Ẽ0) from
the quasi-static compaction law

1

σi

=
1

σy(Ẽi)
∼

r2

Fc

Ẽ
1/α
i , i = 0,1,2, (19)

using the theory developed in the previous two sec-
tions. The result will be that

β = α(1 + α) , f(Ẽ0) = Ẽ
1/(1+α)
0 . (20)

The equal area condition for the two shaded rectan-
gles in Fig. 11 implies that

σ1(Ẽ0 − Ẽ2) = σ0(Ẽ0 − Ẽ1) + σ2(Ẽ1 − Ẽ2) . (21)
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Figure 12. A fractal initial configuration subjected to a stress
above the stability limit remains nearly unchanged for some
time, before it starts to collapse. Width of lines connecting parti-
cle centers indicates strength of the contact force between them.

σ0 and the terms in brackets remain finite for diverg-
ing σ1, so that asymptotically the first term on the
right hand side can be neglected:

1

σ1
(Ẽ1 − Ẽ2) ≈

1

σ2
(Ẽ0 − Ẽ2) . (22)

Inserting Eq. (19) leads to

Ẽ
1/α
1 (Ẽ1 − Ẽ2) ≈ Ẽ

1/α
2 (Ẽ0 − Ẽ2) . (23)

As the bracket on the right hand side remains finite
while the one on the left hand side goes to zero, Ẽ1

must be much larger than Ẽ2. Hence one must identify
in leading order

Ẽ
1/α +1
1 ≈ Ẽ

1/α
2 Ẽ0 . (24)

Inserting this into 1/σ1, Eq. (19), gives

1

σpiston(Ẽ0, Ẽ2)
=

r2

Fc
Ẽ

1

α
−

1

1+α

2 Ẽ
1

1+α

0 (25)

which by comparison with Eq. (18) completes the
proof of Eq. (20).
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Figure 13. Comparison of the relation between volume excess
and inverse dimensionless stress at the piston for a fractal initial
configuration and a ballistic deposit. Dashed line has slope 3/4.

Figure 14. The collapse of the fractal structure under a given
stress at the piston leads to a final, essentially homogeneous
porosity. Further compaction of the final configuration follows
the same laws as derived in Secs. 5 – 8.

9 COMPACTION OF A FRACTAL
The simulation results Fig. 6 and Fig. 9 were ob-
tained for ballistic deposits as initial configuration
(see Fig. 4). However, the electron microscope im-
age of carbonyl-iron-powder, Fig. 1, looks differently.
It has pores of vastly different sizes. This motivated
us to investigate the compaction of a fractal initial
configuration. Surprisingly this configuration remains
stable to much higher stresses than a ballistic de-
posit of approximately equal solid fraction. The rea-
son might be the higher coordination number (4 for
the (infinite) fractal, but only slightly larger than 2 for
the ballistic deposit). However, if the stress is raised
above a certain value, the fractal collapses and as-
sumes a similar final configuration as in the case of
ballistic deposits (see Fig. 12 and Fig. 14). Then the
relation between the volume excess and the stress at
the piston is the same for initial configurations that
are fractal or ballistic deposits. In the case of the frac-
tal initial condition there is no smooth crossover, but
an abrupt transition between an apparently stable con-
stant porosity to the power law decrease, as shown in
Fig. 13.

The fractal has a very inhomogeneous mass distri-
bution so that the simple theory for the compaction
dynamics developed in Secs. 5 – 8 needs to be mod-
ified. Furthermore, even if the stress is large enough
to let the fractal collapse, the initial configuration re-
mains nearly unchanged for some time. These simula-
tion results for fractal initial configurations point out
an intriguing direction which deserves to be investi-
gated in more detail.

10 CONCLUSIONS AND OUTLOOK
The main results reviewed in this paper are:
• The constitutive law relating the uniaxial consoli-
dation stress σy to the compactible volume V − Vmin
is

σy (V − Vmin)
1/α

∼
Fc

r2
V

1/α
min (26)

with a dimensionless proportionality factor. The fac-
tor Fc/r

2 implies that nano-powders are much harder
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to compactify than micro-powders.
• Experiments with rigid, round particles (carbonyl-
iron powders) give an exponent 1/α ≈ 2.
• A sample of compactible volume V0 − Vmin sus-
tains a uniaxial stress, as long as it is far below the
corresponding consolidation stress. If one increases
the stress slowly, one gets a smooth crossover to a
power law decrease of the volume which for quasi-
static compaction is given by Eq. (26).
• This constitutive law determines also what constant
stress σpiston must be applied to compactify a sample
of solid fraction ν0 to a higher value ν2 (shock com-
paction). Due to inertia effects the stress depends on
the initial and the final volume, V0 and V2. According
to Eqs. (25) and (26) it is given by

σpiston (V2 − Vmin)
1/β

∼ σy,0 (V0 − Vmin)
1/β (27)

where β = α(1 + α), and σy,0 is the consolidation
stress for the initial solid fraction ν0.
• In two-dimensional simulations of shock com-
paction we found the exponent β ≈ 3/4. This corre-
sponds to 1/α ≈ 2 for two-dimensional quasi-static
compaction, which happens to be the same as in the
three-dimensional experiments.

The theory developed here can be extended in sev-
eral directions, for example:
• The effect of a finite piston mass could be calcu-
lated. When the deceleration front reaches the pis-
ton, the powder is at rest, but to stop the piston at the
same moment as well, would require an infinite force.
Such a force cannot be sustained by the powder, so
that another compaction front starts propagating into
the powder until the momentum of the piston is used
up. This time, however, the piston and hence the com-
paction front propagate more and more slowly, so that
we expect a localized density inhomogeneity near the
piston. In our simulations this effect was too weak to
be seen right away, so that a more careful study is
called for to check this prediction.
• It seems that one can describe the smooth crossover
from a constant volume at stresses below the consoli-
dation stress to a power law above by a scaling func-
tion. This should be investigated in more detail.
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Schüttgüter. Ph. D. thesis: Technical Universiy Braun-
schweig.

Nowak, M. 1994. Spannungs-/Dehnungsverhalten von Kalkstein
in der Zweiaxialbox. Ph. D. thesis: Technical Universiy
Braunschweig.

Radjai, F. & Roux, S. 2004. Contact dynamics study of 2d gran-
ular media: Critical states and relevant internal variables. In
The Physics of Granular Media: Weinheim: 165. Wiley-
VCH.

Roscoe, K. H. 1970. Influence of strains in soil mechanics.
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