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1.1 Introduction

For the dynamical properties of dense granular media, wlasting contacts dominate,
steric hindrance and solid friction play a crucial role. Eydes are the withdrawal of material
from a silo, the compaction of powders, imprinting of on@stfon a beach, or the stability of
an ancient vaultin an earthquake. For sufficiently rigideniats elastic or plastic deformation
of the particles can be so small in these processes that trepe safely neglected. What
matters is the rearrangement of rigid particles. Contactdbyics is a simulation method that
was developed to deal with rigid, frictional particles. Tepose of this article is threefold:
It contains a description of the Contact Dynamics simutatitethod, it discusses when this
method is more efficient than Molecular Dynamics, and findllgescribes how the basic
algorithm can be extended to simulate cohesive powdershdfiitst two parts cohesion is
largely considered to be negligible, but this is not truefiioe powders (particle diameters of
aboutlym and smaller), nor for wet sand.

Contact Dynamics (CD) is a discrete element method like Elder Dynamics (MD), i.e.
the equations of motion are integrated for each particlavéder, by considering the particles
as perfectly rigid, contact dynamics suppresses phenoosrszd by particle deformation. It
represents the deformation of the granular medium as a vilnaleidealized way exclusively
by particle rearrangements. Obviously the volume exctusibperfectly rigid particles is
a constraint that is formulated as an inequality: The distdoetween the particle surfaces
(“gap”) must be larger or equal zero. Such constraints alteccanilateral. They are only
active if the gap is zero, and otherwise have no effect. Thezghe number of degrees of
freedom in the system depends on the number of contacts finecisely: active constraints)
and is itself a dynamical variable, which explains the na@eritact Dynamics”. By contrast,
in soft particle MD as well as in event driven MD the number efitees of freedom does not
change in time.

Imposing constraints requires implicit forces (constréamces) which cannot be calcu-
lated from the positions and velocities of the particlesialoThe constraint forces are deter-
mined such as to compensate all forces that would causeraomstiolating accelerations.

The volume exclusion constraint allows only complementaiyes of gapy and con-
straint forceR,,, which is normal to the tangent surface at the contact pdiheir product
must be zerogR,, = 0. This is expressed by the Signorini graph, on the left of Eig. As
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Figure 1.1: Volume exclusion constraint (left): Gapand constraint forc&®,, are complementary to

each other (Signorini graph). Non-sliding constraintfftjg The constraint force (static friction force)
plus the sliding friction force constitute the Coulomb drajn this paper the static and dynamic friction
coefficients are assumed to be equal = pq = p.

long asg > 0 the constraint is not active, henfg, = 0. If g = 0, the constraint force must
prevent interpenetration of the particles. Hence it mustdpeilsive and can take whatever
non-negative value is needed for this purpose.

In addition to volume exclusion we have to deal with a secgpé tf constraint, the non-
sliding constraint of frictional contacts. It is only actimf the tangential relative velociwm
is zero. In this case the static friction force can be nonaaassumes whatever tangential
direction and valu® < |3§t| < usR, are needed to prevent sliding. If a constraint force
outside this Coulomb cone would be needed, sliding cannavbieled, and one obtaink #+
0 and the well defined sliding frictionudﬂznﬁt/ﬁﬁ. The absolute values of the tangential
velocity and the friction force lie on the Coulomb graph fitifpand side of Fig. 1.1).

Although both graphs have infinitely steep parts they canniy@e@mented in the CD
method without any change, in contrast to MD. The CD techmigan handle rigid parti-
cles and static frictional contacts without regularizing graphs, Fig. 1.1. Hence it is able
to overcome some difficulties that arise in soft particle @ealar dynamics (MD) (see Stefan
Luding’s contribution in this book) or in event driven simatibns [11, 17].

Algorithms for contact dynamics were already developed&11980-ies [16, 1]. In the
context of granular media they were made known to a wider ipRysommunity by Jean
and Moreau [13, 18, 12]. Two recent reviews were given by Sgfewand Pdschel [24] and
by Unger and Kertész [26]. The following sections closealiidw the presentation given in
[25, 26].

1.2 Discrete dynamical equations

Collisions of rigid particles give rise to discontinuouda@ties during the time-evolution.
In such non-smooth mechanics the use of second or higher sctdemes for the numerical
integration of the motion is not beneficial and could eventobdlematic. Therefore first order
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schemes are applied, e.g. an implicit Euler integratioruin@D code:
T+ AL = T(t)+ L5 (t+ At) At . (1.1)
my;
7 (t+At) = 7 () + T (t+ At) At (1.2)

The two equations describe the change of velocity and cehteass position during one time
step for theith particle. The vectoF; denotes the sum of the forces acting on the particle and
is calculated in each step such that the constraints rerlbiited.

The time-stepping is similar for the rotational degreesreéflom: The orientation of a
particle is updated with the new angular velocity(t + At), while for the update ofj; we
use the torqué; (t + At) exerted by the contact forces.

1.3 Volumeexclusion in a one-dimensional example

Before we describe the three dimensional implementatiaoofact dynamics, the structure
of the algorithm shall be explained with the simplest pdssédxample, the central collision
of two non-rotating equal spheres, labelee= 1 or 2,with zero restitution coefficient (see
Fig. 1.2). In this one-dimensional example only the volumeéwsion constraint occurs, and
the constraint force has only one componét,

As the particles only interact, if they are in contact, itigortant to keep a list of existing
and incipient contacts, i.e. contacts that may form dutiregtext time step. With each of these
contacts one can associate a relative velo®ity: dg/dt which is zero for closed contacts,
negative for incipient contacts, and positive for parsdieat move away from each other.

For the one-dimensional example it is trivial to connectebatact-related quantitie¥),
andR, to the particle velocities; andwv, and the interaction forceR;, and R, experienced
by the particles:

Ve=wy—1v = (_1,1)-(”1>, (1.3)

V2

(2) - ()= o

Eq. (1.4) is simply the action-reaction principle.

In three dimensions, the relative velocﬁyand the constraint forc& have a normal as
well as tangential components for each contact. We shalbsémv that they are related
to the velocities and angular velocities, respectivelyittieraction forces and torques by a
straigthforward generalization of the linear relation8j&and (1.4).

Newton’s equation of motion relates the particle accel@ngb the sum of the interaction
force R; and a possible external foré&™":

d U1 . 1 Rl FleXt

sy == l(m)+ ()] (L5)
The task is to calculate the interaction fordg@ssuch that the acceleration will not lead to
a violation of the volume exclusion constraint. For examfleoth particles are already in
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Figure1.2: Central collision between two non-rotating equal sphefesimple example for an incipient
contact.

contact, their relative velocity must remain zero, i&.+ F** must be the same for both
particles. This is borne out most easily by transforming M&é equations (1.5) into an
equation of motion “of the contact”, i.e. of the relative eity, by using egs.(1.3) and (1.4):

dv . 1 -1 Flext - 1 dvfree
S [(D)re () A s

In this equationM = m/2 is the reduced mass of the two particles, and

dvfree 1 FeXt 1 ex ex
=10 (e ) = - @7

would be the relative acceleration without any interactibthe particles.
Solving Eq.(1.6) forR in the Euler-scheme (1.1) gives the constraint force forribe
time step,

ymew _ vfree,new

R = M (1.8)

as a linear function of the relative velocity for the new tistep,V*<". Both are unknown and
will be determined simultaneously from the constraint gbods. Here and in the following
the superscript “new” refers to the value at time At, while values ofy, V andR without
this superscript are taken at timeNote that in the one-contact case worked out here

1
Vfrcc,ncw =V+ = (F;Xt _ FICXt) At (19)
m

is known.
In addition to Eq.(1.8) one needs the constraint in orderetemnine the two unknowns,
vrew andRmeV. Three conditions must be fulfilled:

e volume exclusiong™®" = g + V**VAt > 0,
e contact conditiong™®V RV = 0,

e non-cohesiveness (constraint forces purely repulsit#)y > 0.



1.4 The three dimensional single contact case without ¢ohes 5

A R?Iew /
N /
a_ [/
/
/ Vnew
At vfree,new
/

Figure1.3: The constraint forc&"°" and the relative velocity™*" for the new time step are related by
a Signorini graph (bold line) and by the linear equation otiom(1.8) (dashed line). The intersection
of the two graphs determines both values simultaneously.

This means that the set of allowed pdi¥g<", R*¢") is the Signorini graph shown in Fig. 1.3.
Its intersection with the linear relation (1.8) determibeth values simultaneously. Obviously
one gets

Ve = max (- pieener) (1.10)

and

RV = max (07_% [% +’Vfrcc.,ncw:|>

— M g 1 ext ext

This solves the task of calculating the interaction forBesEq.(1.4), for Newton’s equations
of motion, Eq.(1.5).

The next section contains the generalization of this toetldiemensional space as an easy
reference for those who want to write a CD-program. It carkijgped, if one is not interested
in the practical algorithmic questions.

1.4 Thethreedimensional single contact case without
cohesion

We consider a pair of rigid particles already in contact othvé small gap between them.
They are numberetl and2 and are subject to constant external forﬁ?ét, 132@“ acting on
the centers of mass (Fig. 1.4). Their restitution coefficisrassumed to be zero. Volume
exclusion and Coulomb friction may require a constraintést at this contact, where we use
the convention tha® acts on particl€ while its reaction force-R acts on particld. In this
section we will show how® is calculated.

Each particle has six degrees of freedom, three transkdtaord three rotational. Accord-
ingly the equations of motion for particieinvolve two three component vectors, the center
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Figure 1.4: Two rigid particles with an incipient contact.

of mass velocityy;, and the angular velocity with respect to the center of massThe con-
straint forceR enters the equations of motion for the particle degreesegidiom in terms of
interaction forces?; and interaction torqueg;,

R‘lz—jé’ ﬁ2:j_é7 flz—l_;xjé7 fgzl_’ngé, (112)

where the vectorg andl, point from the centers of mass to the expected contact p@iot.
general particle shapes there may be more than one expeagttttpoint.) It is useful to
introduce generalized velocity and force vectors:

U1 }il ﬁfx
"] T 0
v= |2, R= |G, F¥=| o, (1.13)
V2 R F2
Wo Ty 0

whereR contains the interaction forces and torques, whi# contains the external forces
(external torques are not taken into account here).
As in Egs.(1.4) and (1.3) the contact quantitieand

\7:172+52xz;—(61+51xz]) , (1.14)
are linearly related to the corresponding generalizedovect

R = HR (1.15)

V = HV, (1.16)

whereH" is the transpose of the matrEf. These two matrices (defined by Egs. (1.14) and
(1.12)) describe the geometry and allow to transform cdifaantities into particle quantities
and vice versa.

The equations of motion for the two particles read:

mil 0 0 0
dv ext |0 5L 0 0
TEMURAFN, M= | o (1.17)
0 0 0 I,
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M~ is the inverse of the generalizé® x 12 mass matriXM, which contains the masses and
the matrices of the moments of inertia of the particlesiénotes thgd x 3 unit matrix). In
equation (1.17), we neglected a term including the invefs&\/d¢, which takes care of the
change of thd; due to rotation (and therefore is absent for spheres). Homdysdeforming
granular system, this contribution of higher orderdrcan be neglected, though. (We will
make a similar approximation again in the next paragraph.)

In order to determine the constraint fotkand hence the particle interactiB®) Eq.(1.15),
one transforms Eq. (1.17) into an equation for the reIatiabwityV by applyingH" (cf.
Eq.(1.6)) (note that the tert@H /dt) V describing the geometrical change is neglected here,
which is typically a good approximation) :

dV o dV'ee

gzm—lgpr . (1.18)
dVfree .

= =H ™M 'F™ and M '=HM 'H. (1.19)

dﬁf’ee/dt has the meaning of the acceleration without any interadietveen the particles,
andM denotes the reduced mass matrix of the contact, which repldhe reduced mass in
the special case considered in the previous section. Iteahdwn thabl~! actsin a simple
way for contactingspheresand can be characterized by two parametersandm, (normal
and tangential mass respectively):

R o 1 1 -
M_IR - _:Rnﬁ + _:Rt ) (120)
n myg
1 1 1 1 1 02 2
M my me my my L I

Here the moments of inertidy( and I5) are numbers and denotes the normal unit vector
(perpendicular to the tangent plane), which points frontiglarl towards particl@. Eq. (1.20)
shows that normal and tangential components are not cotgaisgheres, which is not true in
general.

As in Eq.(1.8) we solve Eq.(1.18) for the contact force anthiob

— —
. ynew _ vfree,new

phew __

RV =M AL , (1.22)
where according to Eq.(1.19)

ﬁfrcc,ncw _ \_7) + HTMleextAt (123)

has the meaning of the new velocity if there was no interactow the volume exclusion
and non-sliding constraints are used to deterrif¥, which completes the calculation of the
constraint forces (1.22). This is a bit more complicatedhtimethe one-dimensional case and
is done in three steps in the algorithm.

1. Firstwe check whether the gapemains positive after the time stéy, if the interaction
between the particles is not taken into account, i.e. whethe

g+ Vireenew At 5 (1.24)
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The normal component of the relative velocity is given'\gjjFere” = 7T . Vfreenew
The normal vectori is parallel to the shortest connection between the surfatédse
two particlest If condition (1.24) is fulfilled the incipient contact did holose during
the time step so that the contact force is z&tte™ = 0, andVnew = Vireenew |f the
left hand side of Eq. (1.24) is zero or negative, the algarittontinues with the second
step.

2. In this step the algorithm makes an attempt to establishrasifiding contact, i.e. we
require on one hand that the gap closes:

g+ VAL =0, (1.25)

on the other hand that no slip occurs:

wew—. (1.26)
Therefore the new velocity i¥"" = —(g/At)7i. This determines the contact force
Eq.(1.22):

jénew _ ——M ( 9 - 7+ vfree new) ) (127)

However, this contact force can only be accepted if it liethimi the Coulomb cone
|Re| < uR,. If this does not hold, we have to give up the assumption ofrasiinling
contact. Then the contact will be a sliding one &§" is recalculated in the third step.

3. For a sliding contact the condition (1.25) remains vabiat, Eq. (1.26) does not. Then

\720‘” must be determined together wfﬁjmw from the following condition: The tangen-
tial part of

- 1 -~ g - -
new __ = Aonew free,new
RV = _AtM (_Atn Vi 4+ vV ) (1.28)
must be equal to sliding friction, i.e.

N Vnew
Rpew — _pRuew ZE (1.29)
|’Vnew|

There are only three unknowns, the normal componeﬁi“ﬁT’ and the tangential com-
ponents ofv"°%. The three equations (1.28) (one for each component) ditertimese
unknowns.

These three points form@ntact lawthat in general provides the contact force in every
time step. It can be applied for colliding particles, butdisr pre-existing contacts. In this
sense no distinction has to be made. Note that this contaatdaresponds to a completely

1This is unique for convex particles. In special cases, ergpélygons in two dimensions, a planar contact may
form which is modeled by two or more point contacts. Then drmukl not only consider the shortest connection,
but at the same time all other contact-candidates.
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inelastic collision, i.e. to zero value of the normal regtdn coefficient. To accomplish such
a collision, two time steps are needed by this scheme: Inrdtdifne step the normal relative
velocity is only reduced but it is not set to zero, in orderdbthe gap close and then in the
following time step the relative normal velocity vanishesnpletely.

Due to practical reasons a slight change is recommendee inahtact law [12], that is
the application ofP°®* = max(g, 0) instead ofg in Egs. (1.27) and (1.28). This, in principle,
makes no difference becaugeshould be non-negative. However, due to inaccurate calcula
tions some small overlaps can be created between neiglghaaiticles. These overlaps would
be immediately eliminated by the first version of the inétasbntact law by applying larger
repulsive force in order to satisfy Eq. (1.25). This selfrecting mechanism, nonetheless,
has the non-negligible drawback that it pumps kinetic epertp the system, when thrusting
the overlapping particles away from each other. With thdiegfion of g°°s one avoids this.
Moreover an already existing overlap is not eliminatedyatd further growth is inhibited.
This can be used to monitor the numerical inaccuracies of si@ilation.

For spherical particles the inelastic contact law simgifizecause the reduced mass ma-
trix M is diagonal for spheres. The three steps are then:

|f 'Vfrcant + gpos > O

then {ﬁ“e"v =0 (no contact)
new __ _i ﬂos free
w s Ta Ay T -
else 1t t (sticking contact)
ﬁ?ew _ __mtvfree
At
if [ Fepen > priew
R?ew

then { RMeW— jRnew

(sliding contact)

(1.30)

Note, that for a sliding contact the recalculatiorff is not necessary in this special case.

Simulations may involve also certain confining objects.(eamtainer, fixed wall, moving
piston, rotating drum). Therefore the algorithm has to ble &b handle not only sphere-
sphere contacts, but also sphere-plane and sphere-aytioigiiacts. One can easily verify that
if planes and cylinders with infinite moments of inertia ased (> = ~o), the same simple
contact law can be applied as the one derived here for spheres

1.5 Iterativedetermination of constraint forcesin a
multi-contact system

So far we have only discussed how to treat a single incipieakisting contact in the frame-
work of Contact Dynamics. However, the most interestingiaptions of CD involve dense
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Ri1T R; R

i+1

Figure 1.5: A one dimensional array of spheres in contact.

granular media where many particles interact simultangauishin a contact network that
may span a substantial part of the whole system.

A simple one-dimensional example is given in Fig. 1.5. Leassume, that none of the
contacts has freshly formed in the last time step, so thajagikg; and all relative velocities
V, are zero, but that the whole array will be accelerated orgsidisrupted by some external
forces acting only on some far away particles of the chairctviare not depicted in Fig. 1.5.
Eq.(1.11) can be used for the calculation of the constrairtef at thei-th contact, but the
role of the external forces is now played by the constraintds of the neighboring contacts.
ReplacingF5** by —RI¢Y and FP** by R} in Eq.(1.11) one obtains

1
Ri = 5 (R + RiY) (1.31)

where we used that the reduced masilis= m /2 in this simple case and that the right hand
side of EQ.(1.31) is> 0. This is a discretized Laplace equation which couples aiktaint
forces in the contact network.

This example shows that using constraint forces has a secionsequence: A contact
force depends also on adjacent contact forces that presadhgarticles together. Thus for
a compressed cluster of rigid particles the contact foreemat be computed locally. This
is a natural consequence of perfect rigidity: As the vejooitsound is infinite, a collision
can immediately affect forces even very far away. Whereahkénsimple one-dimensional
example of Eq.(1.31) the exact calculation of globally d¢stesit constraint forces is feasible,
it becomes exceedingly cumbersom for large, complex tdnegensional contact networks.
There may even be more than one solution satisfying all caings [21, 27]. Different algo-
rithms have been used to determine globally consistenti@nsforces (e.g. [21, 24]), but in
general one uses an iterative scheme (calledténative solvej. It is applied in every time
step before the implicit Euler integration can proceed daep &irther with the newly provided
forces.

This method works as follows. At each iteration step we up@sery contact indepen-
dently in the sense that for one existing or incipient coredoew” contact force is calculated
based on the contact law for the one-contact case, presutmnghe current forces of the
neighboring contacts were already the correct ones. Thdtiresforce is stored for the given
contact and a new contact is chosen for the next update. tmtiaall the contact forces
are updated one by one sequentially. Of course, one updatsoptact (i.e. one iteration
step) does not yet provide a global solution. Such iterasteps have to be repeated many
times letting the forces relax according to their neighlbodhtowards a globally consistent



1.5 lterative determination of constraint forces in a muibintact system 11

state. After satisfactory convergence is reached thetiberéoop can be stopped. With con-
vergence we mean that further update of the contact forees gnly negligible changes, thus
the constraint conditions are practically fulfilled for thbole system. The applied number
of iterationsN; within one time step depends on the accuracy of the conveegefiterion
[2, 26]. HigherN; provide more accurate forces but require more computdtedfoat.

As an example let us return to the one-dimensional caselB4d) If one associates
a virtual time stepAt* = At/N; with each of theN; iteration steps performed within a
single real time step\¢ of the simulation, the forces relax towards a consistenitgni of the
equations (1.31) according to

Rt + AF) = Ri(t*)  Np
At T 2A¢t

(Ripr () — 2R; (¢°) + Ri_1 (£°)) . (1.32)

The change ofR; per iteration step is equal to the difference between theled right hand
side of the consistency equation (1.31). The virtual timelion (1.32) is simply a dis-
cretized one-dimensional diffusion equation [25] withfuléion constant

T2

D x N
X IAta

(1.33)

wherer is the particle radius.

Also in three dimensions, the force consistency with thestraimts spreads diffusively
during the iteration. For a system of linear sizeconvergence requireBAt > L2 ~
(N1/d4r)2, whereN is the number of particles in the system, which is assumeda todn-
nected throughout, andlis the space dimension. This implies

Ny > N?/4, (1.34)

The number of iterations needed to reach convergence obtistraint forces for a single time
step grows with the number of particles in the system.

When applying the inelastic contact law in three dimensiamng replacingﬁiCXt by the
contact forces from neighboring particles, one should naydt that they exert also torques
T and T They have to be included in the generalized veE®t in Eq.(1.13), where the
two torques originally were set to zero.

Regarding the order of the update sequence within the ligad$ting and incipient) con-
tacts, it is preferably random and different for each swéephis way one avoids any bias in
the information spreading. If the update order was from tojlné bottom, information would
pass faster through the contact network downwards than naswdt has to be mentioned
that therandom sweepescribed here differs from the well knowandom sequential update
While in the latter the choice of a contact is independenhefprevious choices (the same
contact could be selected twice), ttadom sweepgelects each contact exactly once within
one iteration step. We note that in contrast to this seqalgmtbcess, a simple parallel update
would be unstable.
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1.6 Computational effort: Comparison between CD and
MD

In this section we estimate the computing tiffig.,, needed for the simulation of a den¥e
particle system irl dimensions for a certain real tin1g.,,. This gives a certain guidance, for
what problems it is advantageous to use Contact Dynamitsaid®f Molecular Dynamics.

In the derivation of the inelastic contact law (1.30) changéthe matrixH were ne-
glected. This is only justified if the relative displacemefiidjacent particles during one time
step is small compared to the particle size and to the radigswature of the surfaces in
contact. This means that the time step in contact dynamiet beua fraction of-/v, where
v IS a typical relative velocity and a typical radius of curvature. Each time step requires
N; ~ N?/4 force iterations, each of which takes ordéromputations. Hence the computa-
tional effort for a Contact Dynamics simulation is

TCD) o NI+, 0/r. (1.35)

comp

In molecular dynamics with elastic interactions modeledabljnear spring of stiffnesg’
each collision must be time resolved, so that a much shamnter $tep than in CD is needed.
It must be a fraction of the duration of a collisiogr;m/ K, wherem is the particel mass. The
computational effort per time step, however, scales ontl tie particle numbel. Hence

TND) ~ NTrear/K/m. (1.36)

Putting this together we expect

T(CDFZ 9 mu?
comp /d
D) N4y T (1.37)

comp

Systems where this is smaller than 1 can in principle be sitedlwith CD more efficiently
than with MD, see Fig. 1.6.

}’gﬁ is the ratio between a typical kinetic energy per particle tae elastic energy cost to
deform a particle substantially, i.e. on the scale of itsusdin most physical situations this
factor should be small, because in general the kinetic gralwgs not suffice to deform col-

lision partners substantially. In particular it is smalt fpuasistatic systems of rigid particles.

of MD, provided the particle number is not too large.

The factorN?/¢ « Nj is the price for simulating perfectly rigid particles. Farde
systems with finite rigidity of the particles, MD costs lessnputing time than CD. However,
if one is willing to use CD with incomplete force relaxatiore. with fixed N; < N?/¢, the
CD-algorithm leads to pseudo-elastic behaviour, analsdgosoft particle MD-simulations
[25]. This involves sound propagation with finite speed aad be described by a damped

wave equation. The”ﬂc(gfg ~ Tc(éﬂ?)).
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N

Figure 1.6 Domains where CD, respectively MD simulations are more iefiicare separated by a
power lawN+/¢,

1.7 Roalling and torsion friction

So far we have characterized the relative motion of two glagiby the relative velocity7
only. However, their relative orientation can also chaiifgghe relative angular velocity

Q= — & (1.38)
is non-zero. A rigid rotation or translation of two arbitygrarticles in contact requiréjé: 0
and(} = 0. The first condition means that the particles stay in corfdgt= 0) and that
there is no slip at the contadf?l( = 0). The second condition means that there is no torsion
(€2, = 0) nor rolling motion (Zt = 0) at the contact.

Torsion and rolling friction are torquéE counteractingrelative angular velocity. They
are explained microscopically by forces of different sigtireg on opposite sides of a contact
region as illustrated in Fig. 1.7. Strictly speaking theg aot possible for perfectly rigid
particles with a single point contact. However, real p&t@re not perfectly rigid. Therefore
one wants to allow torsion and rolling friction also in theadized limit considered in Contact
Dynamics. Fig. 1.7 shows that the contact torque acts wigosite sign on the angular
velocitiesd; of the particles. Therefore one has to replace Eq.(1.12) by

—

flz—leﬁ—T, fnggxﬁ—i—‘f. (139)

Figure 1.7: An example of forces (vertical vectors) causing rollingfion.
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A common heuristic contact law for these rotational deguddseedom is analogous to
Coulomb’s friction law, with the relative tangential veltycreplaced by the normal respec-
tively tangential components 1 and friction force replaced by the corresponding compo-
nents of the contact torqlﬁ(Fig. 1.8). Such an ansatz is capable of stabilizing a stestap
of spheres on a flat plane [29]. Its implementation in Conaetamics is a straight forward
generalization of the implementation of Coulomb fricticesdribed above (leading tc6ax 6
reduced mass matrixe).

ATl /R ATl /R

K Hn

\|Qt| 19|

Figure 1.8: Graphs describing rolling friction (left) and torsion fiiien (right) in contact dynamics.

Recently a rolling friction law was derived based on linescoelasticity of the particle
material [5, 20]. In contrast to Fig. 1.8 rolling friction n&shes for), — 0 in that case. As
microscopic justification for the heuristic ansatz, Fi@, bne can imagine surface roughness,
sinter necks or plastic deformation as origin of rollingcfion instead of viscoelasticity. In
general one has to expect that the different types of fricice coupled. For sliding and
torsion friction this has been worked out [28, 9, 8]: Igngrihe coupling as we do in this
paper overestimates friction.

The additional parameters introduced by these contactdagvthe coefficients of rolling
friction, u;, and of torsion friction,,. Unlike their companion:, they relatetorquesto a
force by

|‘j:t| S ,ut:an |‘In| S /LnfRn ) (140)

therefore bearing the dimension of a length. In the litewatf applied physics dealing with
rolling friction, this is sometimes obfuscated by considgra wheel of radiu® being pushed
by a force acting perpendicular to the contact normal, = |f|/R. Consequently, approx-
imate values for the dimensionless coefficient R are provided and turn out to be small
compared tq: (confirming that a wheel is indeed a very good idea comparadstedge).

It is very tempting to presume the length scale contained, ito be proportional to the
particle radius- and hence to regafd = u:/r as a mere material parameter. Assuming fur-
thermore that with two particles of different radii, the geetry enters only via the difference
of the particles’ curvatures, the corresponding lengttesoacomes the reduced radius, i.e.

e =10 (1.42)
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with
o 2 (1.42)

T1 —|—T2

Another classical approach [10] to rolling friction empdosate independent (i.e. non-
viscous) hysteretic losses (expressed as a fraatiofthe elastic energy putin). In this case

|§'|max ~ aaR, (1.43)

but the contact diameter (stemming from the particles’ deformation) itself dependsR,,
and (nonlinearly) om*, namely according to the Hertz-law

a o \/1* Ry (1.44)

for discs (or a cylinder on a plane) and
a o (r*®R,)3 (1.45)

for spheres.

An essentially fixed: could also be jusitified, though, in the case of surfaces whic
hibit a micro roughness with an amplitude of order r*, providing ana ~ /&r*. Else,
incorporating (1.43) as a contact law renders the equatibogntact dynamics nonlinear.

1.8 Attractive contact forces

Up to now we did not take any kind of attractive interactiobween the particles into account.
For sufficiently coarse dry granular materials adhesivedsiare indeed so weak compared to
other forces that this is a good approximation. However fet granular media and for fine
powders adhesion is important. Here we explain how one aduadg it in Contact Dynamics
simulations.

Ry, Ry
(a) (b)

—Fc —Fcl

|
dc

Figure 1.9: Extensions of Signorini’s graph to include adhesion: Madimttractive forceF- at zero
distance only (a) and within finite rangk: (b).

While the force/distance-relationship differ for adhesiorces of different origin (van der
Waals forces, fluid menisci, . ..), a common characterigtangjty is F~, the maximal tensile
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force the contact can bear. The simplest extension of Sigireograph is therefore a part of
length Fo on the negative force axis as shown in Fig. 1.9(a). Such aramge attraction is
in accordance with the general concept of contact dynamidsat first sight, seems perfectly
reasonable.

However, this would lead to an unphysical behaviour in th@tlof vanishing time step
At. Because of the rigidity of the particles a finite momentiimcan be transmitted instan-
taneously, if the connected cluster of particles, to whioh ¢ontact belongs, collides with
some other particle or cluster. This corresponds to a fargeAt which becomes arbitrarily
large if At — 0. All cohesive contacts with a geometry such that this fots as a tensile
load would open for the slightest shock, if only the time steghosen small enough. In other
words, the principally technical paramet&t picks up a physical meaning which is highly
undesired in numerical simulations.

The missing second ingredienthi%;, the energy needed to separate the two particles. This
binding energy is zero in Fig. 1.9(a). The simplest contast tontaining nothing else but a
cohesion force and a cohesion energy is a constant fgscep to a distancéc = Ec¢/Fc
as depicted in figure 1.9(b). A contact can only open, if aemdl pulling force exceeds the
thresholdF and performs worlfZ larger thanE so that the particles separate with a kinetic
energyt — E¢.

The opening of a contact needs usually several time stepshich the pulling force
exceeds¢. In our implementation a contact which started to open, loatas wide asic
yet, is not pulled back by the cohesive force, if the tensiledl becomes smaller thadn
again. Such a weakened but not yet broken contact can ontydrythened again (closing of
the gap), if the particles are pushed together. This sireplifie algorithm and is the reason,
why in the graph all pairs of valueR,,, g) within the rectangle withh < ¢ < d¢ and
—Fe <R, <0 are permitted.

Another question arising with the presence of adhesios igfituence on the friction laws.
While various surface effects can be brought into play, tlestrbasic approach is that along
the lines of the DMT-model[7] where the attractive force tanconsidered as an additional
external “pushing”, i.e. the normal for@g, in the friction laws has to be replaced &y, + F-.

1.9 Conclusion

We tried to give a didactic introduction into the simulatiorethod of Contact Dynamics,
pointing also out its strenghts and limitations. The aldonis presented in this article have
been applied to investigate the physics of dense granuldiantiy more and more scientists
over the last decade, but still Molecular Dynamics is muctievknown and often regarded
as easier. This does not mean that Contact Dynamics is legsrfub, on the contrary. The
two techniques have complementary strengths.

We described how to extend the basic algorithm in order taksita the effects of rolling
and torsion friction and of cohesion. Animated examplesheke simulations [14] can be
found on the CD included in this book. We restricted ourseteehe case, where all particles
have zero restitution coefficient. As dense granular medigigee an enormous amount of col-
lective dissipation mechanisms due to rearrangementgrdited rotations etc. a grain hitting
such a packing will hardly bounce back: The effective ratitih coefficient is close to zero,
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which justifies our assumption. How nonzero restitutionfidcients could be implemented is
described in [19]. Most simulations were done with roundipkes in two dimensions, but a
few simulation results for polygonal particles can be foergl in [15]). We are not aware of
any Contact Dynamics simulation of polyhedra in three digi@ms, although this is certainly
feasible, but many cases of incipient contact configurat{oarner-face, edge-face, edge-edge
etc.) have to be distinguished. Three dimensional simaratof cohesive spheres were done
in order to investigate the influence of rolling and torsioictfon on the compactibility of
porous powders [3].

A nice quantitative validation of the basic Contact Dynasraégorithm can be found in
[6], where the experimental shear bands of a packing of lghratls (a quasi two-dimensional
system) could be reproduced in great detail starting thalsition with exactly the same initial
configuration. Another stimulating comparison betweent&cnDynamics simulations and
experiments is presented in [4]. There the uniaxial compact porous powders was studied.
The key result is a power-law relationship between compgdiress and obtained porosity.

Another active research area, where Contact Dynamics lesdecessfully applied, are
the statistical properties of contact forces in a granudakpg under load and their relation
to jamming. For example it was shown in [23], that the anizoitr load bearing network of
strong force lines is stabilized by the weak forces, whichtigbute nearly isotropically to
the stress. This work was extended in [22] where the rolerdfile contact forces between
cohesive grains (without rolling friction) was investigdt Finally a topic which is currently
intensively studied is the non-uniqueness of realizatafrferce equilibrium in a dense fric-
tional packing of rigid particles. Contact Dynamics is iigauited to adress this question
[27].
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