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The systematic errors due to the practical implementation of the Contact Dynamics method for
simulation of dense granular media are examined. It is shown that, using the usual iterative solver
to simulate a chain of rigid particles, effective elasticity and sound propagation with a finite velocity
occur. The characteristics of these phenomena are investigated analytically and numerically in order
to assess the limits of applicability of this simulation method and to compare it with soft particle
molecular dynamics.
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I. INTRODUCTION

In computational physics one can distinguish two dif-
ferent validation tasks, which have to be solved in order
to make simulations a useful research tool. First one
must prove the validity of a simulation model by com-
paring its results to laboratory experiments, and second,
equally important, one must assess the systematic er-
rors due to the practical implementation in order to tell,
how precisely the simulation results reflect the theoret-
ical properties of the simulation model. In this paper
we address the second type of validation problem for the
simulation technique of contact dynamics, which was de-
veloped about 10 years ago [1–3] with the aim to investi-
gate granular media [4] in the limit of high rigidity of the
particles at a high packing density. This method has been
successfully applied and reproduces experiments (see e.g.
[5]). However, its systematic errors and the computa-
tional effort to keep them tolerably small have not been
investigated in detail before.

This is in marked contrast to other discrete elements
methods for granular media (cf. e.g. [6]), in particular
the soft particle molecular dynamics simulation model,
which has been widely used since more than 20 years [7].
During this time possible pitfalls such as the detachment
effect [8] and the brake failure effect [9] could be discov-
ered, analyzed and hence avoided.

Contact dynamics simulations have been applied to
study a large variety of questions in dense granular sys-
tems, where excluded volume interactions and static fric-
tion, so called unilateral constraints, are believed to be
essential [10–14], but it should be mentioned that such
constraints arise also in other areas like virtual reality, en-
gineering, especially in robotics, and operations research,
where the numerical treatments are similar [15, 16].

In a system of perfectly rigid particles the sound veloc-
ity would be infinite. This is in principle borne out by the
contact dynamics simulation model. However, its practi-
cal implementation will normally give rise to sound-waves
in the granular material, as we are going to show in the

following, even if each single collision is modeled as being
perfectly inelastic. Our aim is to elucidate this artifact
after introducing briefly the principles of this method.

II. THE CONTACT DYNAMICS METHOD

First, let us point out the basic difference between
molecular dynamics (MD) on one side and contact dy-
namics (CD) on the other. Both have in common the
integration of Newton’s equation of motion where the oc-
curring forces are due to external fields (gravity) or are –
more important – contact forces, i.e. caused by contacts
between particles or their contacts with confining walls.

The spirit of MD is to calculate the contact forces
according to their cause, i.e. the (usually microscopic)
deformation of the contact region and the involved ve-
locities. Since the full treatment of every particle as a
deformable body would render the simulation of a large
number of particles exceedingly time consuming, a lot of
models exist, how to replace the deformation by the local
overlap [17], the latter being a virtual quantity obtained
from the undeformed shapes.

The principles of CD are different: Here the contact
forces are calculated by virtue of their effect, which is
to fulfill certain constraints. Typically, such a constraint
is the volume exclusion of the particles or the absence of
sliding due to static friction. As can be seen immediately,
this problem cannot be solved locally: In a cluster of par-
ticles where many contacts are simultaneously present,
the force at one contact depends on adjacent contacts
and so on. In that case the aim is to find a global force-
network, which is consistent with the constraints at all
contacts. The method to carry out this calculation is of-
ten called the solver in this context, which is commonly
an iterative scheme, as the one we describe in the follow-
ing section. In order to make our points very clear, we
perform an analytical investigation for a one dimensional
example but can prove the existence of the discovered ef-
fect in two dimensions as well.
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A. The dynamical equations

As CD is designed to obey excluded volume constraints
exactly, particle collisions lead to discontinuous velocity
changes (“shocks”), i.e. to nonsmooth mechanics [18].
Therefore, higher order terms than employed in the Euler
integration scheme are of no use. For the ith particle’s
positions xi, this reads

xi(t + ∆t) = xi(t) + vi(t + ∆t)∆t , (1)

and correspondingly for its velocity vi we have

vi(t + ∆t) = vi(t) +
Fi(t + ∆t)

m
∆t , (2)

where Fi is the total force acting on the particle, m its
mass and ∆t is the time step.

A remark about the Euler scheme (2) being implicit is
in order: Whereas in conventional MD the choice of eval-
uating the force for the previous or for the new configu-
ration (i.e. at t or t+∆t respectively) is merely a matter
of stability of the integration scheme (cf. e.g. [19]), the
constraints in CD can only be imposed on the new con-
figuration. In this sense, the integration scheme of CD is
inevitably of implicit type. (Taking into account the con-
figurational change during a time step consistently (fully
implicit integration [3]) leads to difficulties which are
analogous to implicite schemes in MD, when the forces
have to be evaluated for the yet unknown new configura-
tion. In one dimension, though, these difficulties do not
arise.)

1. One contact

We now turn to the force on the i’th particle, Fi, occur-
ring in Eq. (2): In order to determine it one has to know
the contact forces between the grains. In CD they are
calculated from the condition that the constraints must
not be violated. In one dimension and if one disregards
rotations, this is simply the excluded volume contraint.
To give a specific example, let us consider two parti-
cles with equal masses m subjected to constant external
forces (Fig. 1). A contact force R (which is the reaction
force due to the constraint) is active only, if interpenetra-
tion needs to be prevented. Otherwise, i.e. if the gap g
would remain non-negative (no overlap) anyway, it takes
on its minimal value, R = 0 (this is expressed in the CD
literature as Signorini’s condition). Without the repul-
sion R between the particles the gap at the end of a time
step would be given by

g′ = gt + (v2,t − v1,t)∆t − F ext
1 + F ext

2

m
∆t2 (3)

according to (1) and (2). However, the excluded vol-
ume constraint requires that gt+∆t = max{g′, 0}. In or-
der that this results from (1) and (2), the contact force

F
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2
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FIG. 1: A pair of particles

Rt+∆t = max{R′, 0} must be taken into account, where

R′ = − mg′

2∆t2
(4)

=
m

2∆t

(−gt

∆t
+ v1,t − v2,t

)

+
F ext

1 + F ext
2

2
(5)

Note that this scheme corresponds to a completely inelas-
tic collision (i.e. with the so-called restitution coefficient
being zero), which is accomplished in two time steps: At
first the gap closes, in the next step also the relative ve-
locity vanishes. (Finite restitution coefficients can also
be incorporated into this algorithm [20].)

The above determination of the contact force has a
drawback, though: If gt < 0 occurs due to a previous
inaccuracy, then the elimination of this overlap is accom-
panied by a surplus of kinetic energy. Therefore, mostly
the quasi-inelastic shock formula [3]

R′ =
m

2∆t

(−gpos
t

∆t
+ v1,t − v2,t

)

+
F ext

1 + F ext
2

2
(6)

is used instead of (5), where gpos
t = max{0, gt}. That

means, negative gaps are treated differently from Eq. (5)
in such a way that an already existing overlap is not elim-
inated but only its further growth is inhibited. Hence the
inelastic shock law (6) is in a way even “more inelastic”
than the original law (5), because it avoids overlap cor-
recting impulses which could destroy stable equilibrium
states.

2. Many contacts

We now address the question how to solve the problem
of the constraint forces if we consider not only one, but
many contacts at the same time. Fig. 2 shows such a
system, where Ri denotes the contact force between the
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FIG. 2: A multi-contact situation in an 1D array. External
forces act only on particles far away from those shown. Each
particle is subjected only to the contact forces of the adjacent
ones.
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particles i and i + 1, and for the sake of simplicity we
have no external force acting on them. Furthermore, we
will concentrate on the situation where the neighboring
pairs are permanently in contact (i.e. gpos

i,t = 0) which
corresponds to compressed dense packings.

For the ith contact in this setup, Ri−1 and Ri+1 play
the role of the external forces in Eq. (6), though they
are not constant, their values are not known for the next
time step:

Ri,t+∆t =
m

2∆t
(vi,t − vi+1,t) +

Ri−1,t+∆t + Ri+1,t+∆t

2
.

(7)
Obviously the contact force is coupled to the neighboring
contacts and through those to further contacts. In a sim-
ilar way in higher dimensions, large numbers of contacts
are coupled within clusters defined by the contact net-
work. Hence, the determination of the proper reaction
forces becomes a global problem.

A standard way in CD is to solve this problem itera-
tively: In one iteration step we calculate the forces ac-
cording to the constraint conditions pretending that the
corresponding neighboring contacts already exhibit the
right forces. In that way the process traverses the list
of contacts many times until satisfactory convergence is
reached (for the question of the convergence cf. the works
[21, 22]).

For our one-dimensional chain of particles, this means
that Eq. (7) simply gets the meaning of an assignment
of the right hand side to the left hand side, and one it-
eration step consists of applying this assignment sequen-
tially once to each contact. The order of this sequence is
preferably random (with the pattern changing for every
sweep), in order not to create any bias in the information
spreading[24]. With each sweep a globally consistent so-
lution is approached, until finally a chosen convergence
criterion is fulfilled.

In the next section we shall show, what kind of conse-
quences the local update scheme presented here has on
large time and length scales.

III. THE LARGE SCALE DESCRIPTION

In order to analyze the coarse grained behavior of the
microscopic equations derived in the last section we can
also regard them as the discretized form of a continuum
description, making a treatment in terms of partial dif-
ferential equations (PDE) possible. In order to obtain
the corresponding PDEs, we consider the particle index
i as space variable x and replace the differences of con-
secutive quantities by derivatives, the error term for the
first and second order derivatives being of first and sec-
ond order, respectively. E.g. vt+∆t − vt → ∆t ∂tv and
Ri+1 + Ri−1 − 2Ri → d2∂2

xR, where d is the particle
diameter.

A. The relaxation of the contact forces

While the continuum versions of the updates (1) and
(2) can be obtained straight forwardly, the force change
(7) lacks a time variable, for during the force-iteration,
being just a calculation, no physical time passes. Hence,
to be able to describe this force-development as well, let
us introduce a fictitious time t∗ with time interval ∆t∗

for one iteration-step. With this, the continuum version
of Eq. (7) reads:

∂t∗R = D∂2
xR − β∂xv (8)

with D = q
d2

∆t∗
(9)

β = q
md

∆t∆t∗
(10)

and q =
1

2
(11)

This analytic form clearly reveals the nature of the itera-
tion loop: The reaction forces relax towards the solution
in a diffusive way. (Note that the ∂xv term is constant
in t∗, it only depends on x.)

The introduction of the constant q reflects a subtlety
regarding the sequential character of the update dis-
cussed in the appendix. In fact, since the PDE (8) de-
scribes the change of the whole field R(x) at once, given
its actual value at time t∗, it corresponds to a parallel
update (in the sense that the right hand side of Eq. (7)
always employs the values Ri from the beginning of the
iteration sweep, not the freshly updated ones). In ap-
pendix A we shall show, though, that a random sweep
update instead of a parallel one only renormalizes the
value of q to about 0.8 while leaving the form of the
PDE untouched.

B. Sound waves

To connect the velocity update, whose continuum ver-
sion follows immediately from Eq. (2) as

∂tv = − d

m
∂xR , (12)

to the force update, we must relate the “iteration time”
t∗ to the physical time t. Although, depending on the
convergence criterion, there can be in principle a varying
number of iterations during one physical time step ∆t,
we assume for simplicity this number NI being fixed.
(Actually, in practice this crude “criterion” is sometimes
applied.)

Hence, with ∆t = NI∆t∗, we can express everything
in terms of the physical time:

∂tR = D∂2
xR − β∂xv , (13)

and D = qNI
d2

∆t
(14)

β = qNI
md

∆t2
(15)
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With the equations (12) and (13) we obtained two cou-
pled PDEs. We can combine them to arrive at a wave
equation with an additional damping term:

∂2
t R = c2∂2

xR + ∂t

(

D∂2
xR
)

(16)

The sound velocity appearing is of finite value:

c =
√

qNI
d

∆t
(17)

This equation indicates that the CD simulation of
the particle chain, as presented in the previous sec-
tion, can lead to sound propagation like in an elastic
medium, which however contradicts the conception of
perfect rigidity. The constraint conditions applied at the
contacts should in principle prohibit overlaps, i.e. pro-
hibit elastic deformation of the grains. It can be seen
that this deviation from the perfect rigidity enters at the
force relaxation: A finite number of iterations means a
finite range for the information spreading and thus yields
systematic errors in the calculated reaction forces. As a
consequence, the finite NI involves soft particles and a
finite sound velocity c ∼

√
NI . Note that in the limit of

an infinite NI , the exact value of the forces is reached,
which corresponds to the case c → ∞, as it should be for
rigid particles.

1. Dispersion

Performing a Fourier transformation on Eq. (16), one
obtains the properties of the different wave modes. The
oscillation frequency ω of the wave number k is

ω (k) = k

√

c2 − D2k2

4
. (18)

That means, ω (k) becomes zero at a critical wave number

kc =
2c

D
∼ 1√

NI

, (19)

and waves with k larger than kc (short wave lengths) are
over-damped. The damping time τ(k) for the oscillating
modes is given by:

τ(k) =
2

Dk2
(20)

We derived the dispersion relation (18) in the contin-
uum limit which is a good approximation for small wave
numbers, but not near to the border of the Brillouin zone
(kBr = 2π/d), where the effect of the spatial discreteness
can be strong. However, increasing the number of the it-
erations sufficiently, kc becomes small compared to kBr.
Actually, for NI ≥ 10 the formula (18) works well not
only for small wave numbers but for all the oscillating
modes, as could be verified numerically.

2. Numerical confirmation

In order to confirm the results of this section, we per-
formed the following numerical experiment: The start-
ing configuration of the simulation consists of an array
of 50 discs and an immobile wall, the geometry can be
seen in Fig. 3. Initially the gap between the wall and
the leftmost particle is one disc diameter (d), the gap
between the particles is zero and the array has zero ve-
locity. Starting from t = 0 a constant external force
(F ext) is acting on the rightmost particle which acceler-
ates the array towards the wall (only horizontal motion
takes place). As simulation parameters we chose NI = 40
and F ext = 0.05 dm∆t−2.

The collision with the wall induces a relative motion of
the grains and generates sound waves in the array. After
a transient period the grains remain permanently in con-
tact (the whole array is pressed against the wall by F ext).
Since the different wave modes have different relaxation
time, after a while only the largest wave length mode
survives. This wave length is four times the system size
because the wall represents a fixed boundary while the
right side is free. Since the wave length is given, the oscil-
lating frequency and the damping time can be calculated
from Eq. (18) and Eq. (20), respectively. For compari-
son with the simulation we measured the motion of the
rightmost particle. The expected motion is a damped
oscillation

x(t) = x0 + A exp (−t/τ) sin (ωt + φ) , (21)

where the offset x0, the amplitude A and the phase shift
φ have to be fitted (in contrast to ω and τ) for a compar-
ison. In Fig. 4 the measured data (dots) and the fitted
curve can be seen. It shows that the simulation is in good
agreement with our continuum description.

C. Global Elasticity

It is instructive to compare our test-system to its sim-
plest MD counterpart where the contact forces depend
linearly on the local kinematic variables, i.e. the so called
linear spring/dashpot model

Ri = −κ (xi+1 − xi − d) − γ (vi+1 − vi) (22)

with the spring stiffness κ and the damping coefficient γ.
Employing again the updates (1) and (2) for the positions
and velocities, respectively, the continuum limit yields

������

ext
F

d

FIG. 3: The initial configuration of the numerical experiment
for testing the properties of the sound waves.
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FIG. 4: Damped oscillation in a Contact Dynamics simula-
tion. The dots indicate the measured data: the position of the
rightmost particle versus time (for details see the text). The
line is an exponentially damped sinus function, where the fre-
quency and the damping time is provided by our continuum
model.

the same type of PDE as Eq. (13) with its coefficients
being inherited from Eq. (22):

∂tR =
γd2

m
∂2

xR − κd∂xv (23)

This allows us to relate the physical MD model parame-
ters to the “technical” CD parameters:

κ = qm
NI

∆t2
(24)

and

γ = qm
NI

∆t
(25)

This equivalence shows that on large scales the CD chain
should behave identical to its MD counterpart, e.g. it
will exhibit a global shrinkage proportional to an ex-
ternal compressive load. Note that a real congruence
can be expected only for the collective behavior but not
on the level of the contacts. In the CD method, as ex-
plained above, the contact forces are not related to the
overlaps, which must merely be regarded as due to the
incompleteness of the force-calculation and in fact are
stochastic quantities because of our random update pro-
cedure. Only on scales larger than the grain size, where
the fluctuations of these local “deformations” are aver-
aged out, the behavior can be smooth like in an elastic
medium, as is shown in Fig. 4.

In sections III B and III C, our calculation was based
on the assumption of a constant number of iterations
for every time step, and due to this premise the analyti-
cal treatment became simple and directly comparable to
the corresponding simulation. We should keep in mind,
though, that the application of a convergence criterion
involves a fluctuating NI (i.e. it can vary from time step

F

FIG. 5: The setup of a numerical experiment in two dimen-
sions. A dense packing of 1000 discs is prepared in a container
via compressing the system by means of the mobile upper
wall.

to time step), and therefore steps with a different “stiff-
ness” are mixed during the integration of motion. Conse-
quently, the behavior of the CD method is more complex
in detail, but qualitatively the results for the constant NI

remain relevant also here. (E.g. the mechanism resulting
in soft particles or the way how shock-waves can arise
with finite velocity.)

IV. 2D SIMULATION

After the analysis of the regular 1D system, the im-
portant question arises whether the behavior is similar
in higher dimensions and less regular systems. Hence,
we performed CD simulations with two-dimensional ran-
dom packings of discs and observed the same “elastic”
waves (even transversal modes were found).

The simulation presented here consists of 1000 discs
with radii distributed uniformly between rmin and rmax =
2rmin, the mass of each disc being proportional to its
area. Fig. 5 shows the geometry: The base and the
two side-walls are fixed while the upper piston is mo-
bile. Starting from a loose state, we compressed the sys-
tem and waited until the packing reached an equilibrium
state (the compression force F applied on the piston was
kept constant). The simulation was carried out without
gravity and with a Coulomb friction coefficient of 0.05
for all the disc-disc and disc-wall contacts (cf. [23]).

After the packing was relaxed completely, we generated
sound waves by increasing the compression force abruptly
to F + ∆F . After a transient period only one stand-
ing wave mode survives (both the wavenumber vector
and the collective motion are vertical), where the piston,
representing a free boundary, oscillates with a relatively
large amplitude. We measured the vertical position of
the piston versus time and found that the data can be
fitted by an exponentially damped sine function (Fig. 6).
Here, in contrast to the 1D case, also ω and τ are fit
parameters, since, due to the different geometry, the val-
ues (18) and (20) cannot be adopted, but, because of the
random structure of the system, a more complex treat-
ment is required for a quantitative description. However,
we checked the most important relation, namely that the
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FIG. 6: Oscillations in a 2D simulation are similar to the 1D
case. Here the sound waves are generated in a random dense
packing of discs. The dots are the measured position of the
upper wall versus time (see Fig. 5), while the curve is a fitted
exponentially damped sinus function.

scaling properties of ω and τ remain valid also for the 2D
random system, that is ω ∼

√
NI and τ ∼ N−1

I , which
means that the artificial visco-elasticity of the particles
depends on the number of the iterations in the same man-
ner as we showed for the 1D chain.

V. DISCUSSION

The artificial elasticity found in CD simulations was
analyzed. We showed that the systematic errors of the
force calculation can lead to a collective elastic behavior,
even though single contacts are assumed perfectly rigid
and perfectly inelastic. For the 1D chain of particles, we
could, starting from the “microscopic” laws, reproduce
the numerical results analytically, including the depen-
dence of the effective stiffness and viscous dissipation of
the contacts on the computational parameters (NI , ∆t).

Besides elucidating the origin of the elastic behaviour,
the coarse grained description reveals important charac-
teristics of the CD method, which were less obvious on
the discrete level. We saw that using the iterative solver,
the proper contact forces are approached in a diffusion
like manner which is a crucial information concerning the
computational time. The conception of perfectly rigid
particles requires that the calculated forces are consis-
tent even for contacts far from each other. Therefore,
the “diffusion length”

√
D∆t must be larger than the

linear system size L, which defines a lower boundary for
the number of iterations of the order (L/d)2. The same
condition is obtained if we want to avoid other conse-
quences of the effective softness. E.g. if we want the
sound to travel a larger distance than L during one time
step (i.e. c > L/∆t) or if we would like all possible wave
modes to be overdamped (i.e. with λc > L no oscilla-
tions). All these cases are equivalent, one is forced to
apply a relatively large number of iterations: NI ∼ L2.
Going further on this line, the scaling with respect to the

number of particles n can be determined: One step of
the iteration consists of as many force-updates as there
are contacts, which is proportional to n. Therefore, the
computational effort of one time step scales with the par-
ticle number like nNI , which is ∼ n2 in 2D or ∼ n5/3 in
3D. Therefore a large CD-simulation is computationally
more costly than MD, where the computational effort
scales like n. This is the price for simulating rigid parti-
cles without getting elasticity artifacts, which cannot be
done with MD.

To avoid this super-linear scaling when dealing with
large systems, we can also accept the finite stiffness by
keeping NI constant independently of n. Then, besides
gaining a running time of order n, of course, elastic de-
formations and sound waves can arise with an increasing
number of the particles, and consequently they have to be
monitored. We want to mention the idea, though, that
in certain situations advantage can be taken of the arti-
fact. E.g. when being applied deliberately, Coulombian
friction can be combined with global elasticity easily; this
way considerable computational time could be saved and
even better performance than MD could be achieved.
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APPENDIX A: q FOR THE RANDOM SWEEP

UPDATE

To find the proper value of the constant q appearing in
sec. III, two more things have to be taken into account:
Firstly the sequential type of the force update, and sec-
ondly that the order is random. The latter results in a
stochastic force relaxation, i.e. the change of Ri in one it-
eration sweep is a stochastic variable. In order to obtain
a similar equation as (8) we shall determine the average
value 〈∆Ri〉, where the average for site i is meant to be
taken over all possible update sequences.

Before going any further, let us introduce a few nota-
tions:

• For N being the total number of contacts, the map-
ping u : {1, . . . , N} → {1, . . . , N} denotes the order
of the update sequence; i.e. if the contact labeled i
is updated before j, then ui < uj.

• Throughout this appendix, the notation Ri means
the value from the beginning of the iteration sweep,
the value at the end is Ri + ∆Ri.

• We define δRi as the change according to a parallel
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update (cf. Eq. (7)), i.e.

δRi =
m

2∆t
(vi − vi+1)

+
Ri−1 + Ri+1 − 2Ri

2
, (A1)

as opposed to the total change ∆Ri.

Given that, it can easily be seen how ∆Ri depends on
the update order. If e.g. the site i is updated earlier than
its neighbors (i.e. ui−1 > ui < ui+1), then ∆Ri = δRi,
but in the case ui−1 > ui > ui+1 < ui+2, we get
∆Ri = δRi + δRi+1/2 (because for contact i, Eq. (7)
employs the already updated force at contact i+1). Sim-
ilarly (but with less probability) even very far contacts
can contribute to ∆Ri, which can be summarized in the
following way:

〈∆Ri〉 = δRi +
∑

r

1

2r
(prδRi−r + prδRi+r) (A2)

Here, pr is the probability that ∆Ri contains informa-
tion from the update of a contact at distance r, that is
pr = P (ui > ui+1 > . . . > ui+r). (This definition holds
true for contributions from contacts with labels higher
than i, but due to left-right symmetry the same value is
inevitably obtained for the corresponding lower ones.)

The value of pr can be obtained from the following
combinatorial consideration: Given an index i and a dis-
tance r, we can classify the set of all update orders into

groups such that the sequences in one group differ only in
the permutations of the elements uj, i ≤ j ≤ i + r. Such
a group contains (r+1)! sequences, but only one of them
satisfies the condition ui > ui+1 > ui+2 > . . . > ui+r.
Since all update sequences are equally probable, the value
of pr is equal to 1/(r + 1)!.

The factor (2r(r + 1)!)−1, relating the contacts i and
i+ r, decays faster than exponentially; already for r = 8,
it drops below 10−6. Therefore, the sum in Eq. (A2)
reaches only the immediate vicinity of contact i, such
that, for our large wavelength considerations, the approx-
imation δRi+r ≈ δRi can be applied. This allows us to
calculate the average change of the contact force:

〈∆Ri〉 = δRi

(

1 + 2

∞
∑

r=1

1

2r(r + 1)!

)

= δRi

(

4
√

e − 5
)

. (A3)

Thus, it is shown that the random sweep results in a
larger change of Ri than the parallel update. Eq. (A3)
provides also the sought value of the parameter q as

q =
4
√

e − 5

2
≈ 0.797 , (A4)

which completes the continuum description given in
sec. III.
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