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Algorithmically defined models

I Self-Organized Criticality
I Bak-Tang-Wiesenfeld model
I Forest fire model
I Bak-Sneppen model of evolution

I Traffic models
I 1d driven systems
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Self-Organized Criticality

I Critical state: inflection point in the critical isotherm
I Power law functions of correlation length, relaxation time
I Control parameter, generally temperature
I Critical point as an attractor?
I Why? Power law: We see many cases

I 1/f noise (music, ocean, earthquakes, flames)
I Lack of scales (market, earthquakes)

I Underlying mechanism?
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Bak-Tang-Wiesenfeld model

I Originally a sandpile model
I Better explained as a Lazy

Bureaucrat model:
I Bureaucrats are sitting in a

large office in a square lattice
arrangement

I Occasionally the boss comes
with a dossier and places it on
a random table

I The bureaucrats do nothing
until they have less than 4
dossiers on their table

I Once a bureaucrat has 4 or more dossiers on its table starts to
panic and distributes its dossiers to its 4 neighbors

I The ones sitting at the windows give also 1 dossier to its
neighbors and throw the rest out of the window.
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Bak-Tang-Wiesenfeld model

I Originally a sandpile model
I Better explained as a Lazy

Bureaucrat model:
I Best application: Spring block

model of earthquakes:
I Masses sitting on a frictional

plane in a grid are connected
with springs to eachother and
to the top plate

I Top plate moves slowly, increasing the stress on the top
springs slowly and randomly

I If force is large enough masses move which increases the stress
on the neighboring masses
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Bak-Sneppen model of evolution
I N species all depends on two other (ring geometry)
I Each species are characterized by a single fitness
I In each turn the species with the lowest fitness dies out and

with it its two neighbors irrespective of their fitness
I These 3 species are replaced by new ones with random fitness
I Inital and update fitness is uniform between [0, 1]
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Bak-Sneppen model of evolution: Results

I Steady state with avalanches
I Avalanches start with a fitness f > fc ' 0.66
I Avalanche size distribution power law
I Distance correlation power law
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Bak-Sneppen model of evolution an application: Granular
shear

I Fitness → Effective friction coefficient
I Speciment with lowest fitness dies out → block is sheared at

weakest position (shear band)
I Neighbors, related species die out and replaced by new species
→ structure gets random aroung the shear band.
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Traffic models
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Nagel–Schreckenberg model

I Periodic 1d lattice (ring) Autobahn
I discretized in space and time
I Cars occupying a lattice moving with velocities

v = 0, 1, 2, 3, 4, 5
I Remark, if max speed is 126 km/h, then lattice length is 7 m,

a very good guess for a car in a traffic jam
I It uses parallel update: at each timestep all cars move v sites

forward
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Nagel–Schreckenberg model

I Algorithm:
1. Acceleration: All cars not at

the maximum velocity
increase their velocity by 1

2. Slowing down: Speed is
reduced to distance ahead (1
sec rule)

3. Randomization: With
probability p speed is reduced
by 1

4. Car motion: Each car moves
forward the number of cells
equal to their velocity.
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Emergence of traffic jams
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Nagel–Schreckenberg model

I Transition from free-flow to jammed state
I Jammed state is a phase-separated phase
I Without randomization a sharp transition

I Used in NRW to predict traffic jams
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Three-phase traffic theory
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Asymmetric simple exclusion process

I p + q = 1
I If p = q then SEP a Markov-process
I Generally γ = δ = 0
I α and β determines the phase diagram
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Asymmetric simple exclusion process
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Three state ASEP

I If q small three blocks (00 . . . 00++ · · ·++−− · · · − −)
I Mixed state above q = 1
I Numerical simulations suggested an other phase transition at

qc < 1
I Actually false, only correlation length is finite but large
∼ O(1070)

I Correspondence to Zero Range Process
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Networks

Complex networks
I Mathematics: Graphs
I Vertices, nodes, points
I Edges, links, arcs, lines

I Directed or undirected
I Loop
I Multigraph
I Wighted graphs
I Connected
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Complex networks

Phenomenon Nodes Links
Ising Spins Interaction(neighbors)
Cell metabolism Molecules Chem. reactions
Sci. collaboration Scientists Joint papers
WWW Pages URL links
Air traffic Airports Airline connections
Economy Firms Trading
Language Words Joint appearance
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Complex networks, citations
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Random Networks

Generate networks:
I From data:

I Phone calls
I WWW links
I Biology database
I Air traffic data
I Trading data

I Generate randomly
I From regular lattice by random algorithm (e.g. percolation)
I Erdős-Rényi graph
I Configurations model
I Barabási-Albert model
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Erdős-Rényi

I P. Erdős, A. Rényi, On random graphs, Publicationes
Mathematicae Debrecen, Vol. 6 (1959), pp. 290-297 (cit 789)

I Two variants:
1. G (N,M): N nodes, M links
2. G (N,P): N nodes, links with p probability (all considered)

I Algorithm
1. G (N,M):

I Choose i and j randomly i , j ∈ [1,N] and i 6= j
I If there is no link between i an j establish one

2. G (N,P): (Like percolation)
I Take all {i , j} pairs (i 6= j)
I With probability p establish link between i and j
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Erdős-Rényi
I Degree distribution

P(k) =
(
N − 1
k

)
pk(1− p)N−1−k

I For large N and Np =const it is a Poisson distribution

P(k)→ (np)ke−np

k!
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Erdős-Rényi

I Real life: Read networks

Most networks are different!
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Configuration model

I Get the nodes ready with
desired degree distribution

I Connect them randomly
I Self loops, and multiple

links are created
I Problems at the end
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Preferential attachment

Barabási-Albert graph
I Initially a fully connected graph of m0 nodes
I All new nodes come with m links (m ≤ m0)

I Links are attached to existing nodes with probability
proportional to its number of links

I ki is the number links of node i , then

pa =
ki∑
j kj
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Barabási-Albert graph

I Degree distribution
p(k) ∼ k−3

I Independent of m!

m = 1
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Scalefree network example: Flight routes
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Scalefree network example: Co-authorship
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Algorithm for Barabási-Albert graph

1. n = m0 number of existing nodes
2. K =

∑
j kj total number of connections

3. r random number r ∈ [0,K ]

4. Find imax for which
∑imax

j=0 kj < r
5. If there is no edge then add one between nodes n + 1 and imax

6. If node n + 1 has less than m connections go to 3.
7. Increase n by 1
8. If n < N go to 2.
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Properties of networks

I Degree distribution
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Properties of networks

I Degree distribution
I Shortest path
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Properties of networks

I Degree distribution
I Shortest path
I Centrality

I Degree centrality
I Closeness centrality
I Betweenness centrality
I Eigenvector centrality

(Page rank)
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Properties of networks
I Degree distribution
I Shortest path
I Centrality
I Assortativity
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Percolation and attack on random networks

I Failure: equivalent to percolation: remove nodes at random
I Attack: remove most connected nodes
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Percolation and attack on random networks
I Failure: equivalent to percolation: remove nodes at random
I Attack: remove most connected nodes
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Percolation and attack on random networks
I Efficiency:

E (G ) =
1

N(N − 1)

∑
i 6=j

1
tij

tij the shortest path between i and j .
I N = 2000, k = 104
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Percolation and attack on random networks
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