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Algorithmically defined models

» Self-Organized Criticality

» Bak-Tang-Wiesenfeld model
» Forest fire model
» Bak-Sneppen model of evolution

» Traffic models

» 1d driven systems
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Self-Organized Criticality

v

Critical state: inflection point in the critical isotherm

v

Power law functions of correlation length, relaxation time

v

Control parameter, generally temperature

v

Critical point as an attractor?

v

Why? Power law: We see many cases

» 1/f noise (music, ocean, earthquakes, flames)
» Lack of scales (market, earthquakes)

v

Underlying mechanism?
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Bak-Tang-Wiesenfeld model

» Originally a sandpile model

» Better explained as a Lazy
Bureaucrat model:

» Bureaucrats are sitting in a
large office in a square lattice
arrangement

» Occasionally the boss comes
with a dossier and places it on
a random table

» The bureaucrats do nothing
until they have less than 4
dossiers on their table

» Once a bureaucrat has 4 or more dossiers on its table starts to
panic and distributes its dossiers to its 4 neighbors

» The ones sitting at the windows give also 1 dossier to its
neighbors and throw the rest out of the window.
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Bak-Tang-Wiesenfeld model

» Originally a sandpile model

» Better explained as a Lazy SPRING-SLIDER BLOCK MODEL
Bureaucrat model:

» Best application: Spring block
model of earthquakes:

» Masses sitting on a frictional
plane ina grid are connected FISED PLATE
with springs to eachother and
to the top plate

» Top plate moves slowly, increasing the stress on the top
springs slowly and randomly

» |f force is large enough masses move which increases the stress
on the neighboring masses
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Bak-Sneppen model of evolution

» N species all depends on two other (ring geometry)
» Each species are characterized by a single fitness

» In each turn the species with the lowest fitness dies out and
with it its two neighbors irrespective of their fitness

These 3 species are replaced by new ones with random fitness
Inital and update fitness is uniform between [0, 1]
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Bak-Sneppen model of evolution: Results

» Steady state with avalanches
» Avalanches start with a fitness f > f. ~ 0.66
» Avalanche size distribution power law

» Distance correlation power law
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Bak-Sneppen model of evolution an application: Granular
shear

» Fitness — Effective friction coefficient

» Speciment with lowest fitness dies out — block is sheared at
weakest position (shear band)

» Neighbors, related species die out and replaced by new species
— structure gets random aroung the shear band.
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Traffic models




Nagel-Schreckenberg model

» Periodic 1d lattice (ring) Autobahn
» discretized in space and time
» Cars occupying a lattice moving with velocities
v=0,1,23,4,5
» Remark, if max speed is 126 km/h, then lattice length is 7 m,
a very good guess for a car in a traffic jam
» It uses parallel update: at each timestep all cars move v sites
forward
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Nagel-Schreckenberg model

Configuration at time £:

F N R
> Algorithm:

1. Acceleration: All cars not at 2 Acce'era_mn (¥mas = 2): _
the maximum velocity !_:Lf .rj ‘ ENES
increase their velocity by 1 =

2. Slowing down: Speed is b) Broking:
reduced to distance ahead (1 o , S
sec rule) = |l | |ala

3. Randomization: With -
PfObabi“ty P Speed is reduced c) Randomization (p=1/3):
by 1 o 2

4. Car motion: Each car moves = e ‘
forward the number of cells
equal to their velocity. d) Driving (= configuration at time ¢+ 1):
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Emergence of traffic jams

Simulation
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Nagel-Schreckenberg model

v

Transition from free-flow to jammed state

v

Jammed state is a phase-separated phase

v

Without randomization a sharp transition

v

Used in NRW to predict traffic jams
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autobahn.NRW

Hochrechnung fiir Bundesautobahnen

Montag. 01.07.2013, 08:05 h
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Three-phase traffic theory

Three traffic phases A Metastable homogeneous
. iynchmni?l:d flow
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Asymmetric simple exclusion process
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»ptg=1
If p = g then SEP a Markov-process

v

v

Generally y =0 =0

v

« and 3 determines the phase diagram
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Asymmetric simple exclusion process
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Three state ASEP

+05%0+ 5 0-3-0; +-=2—+

» If g small three blocks (00...00++ -4+ 4+ ——--+ — — )
» Mixed state above g =1
» Numerical simulations suggested an other phase transition at
ge <1
» Actually false, only correlation length is finite but large
~ 0(1079)
» Correspondence to Zero Range Process
o
S o 3
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Networks

Complex networks
» Mathematics: Graphs

» Vertices, nodes, points
» Edges, links, arcs, lines

» Directed or undirected
Loop
Multigraph
Wighted graphs
Connected

vV vy vy
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Complex networks

Page 20

’ Phenomenon Nodes ‘ Links ‘
Ising Spins Interaction(neighbors)
Cell metabolism Molecules | Chem. reactions
Sci. collaboration | Scientists | Joint papers
WWW Pages URL links
Air traffic Airports | Airline connections
Economy Firms Trading
Language Words Joint appearance




Complex networks, citations
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Random Networks

Generate networks:

» From data:

v

vV vy VvYyy

Phone calls
WWW links
Biology database
Air traffic data
Trading data

» Generate randomly
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vV vy

From regular lattice by random algorithm (e.g. percolation)
Erdés-Reényi graph

Configurations model

Barabasi-Albert model



Erdés-Rényi

» P. Erdés, A. Rényi, On random graphs, Publicationes
Mathematicae Debrecen, Vol. 6 (1959), pp. 290-297 (cit 789)

» Two variants:
1. G(N,M): N nodes, M links
2. G(N,P): N nodes, links with p probability (all considered)
> Algorithm
1. G(N, M):
» Choose i and j randomly i,j € [1,N] and i # j
> If there is no link between i an j establish one
2. G(N, P): (Like percolation)

> Take all {i, } pairs (i # )
> With probability p establish link between i and j
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Erdés-Rényi

» Degree distribution

N-—1 1
P(k):( B )pk(l—p)N 1—k
» For large N and Np =const it is a Poisson distribution

(np)<e

P(k) — o

£=0 r=01 p=02

(@ ® ©
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Erdés-Reényi

» Real life: Read networks

Lk

o
(R s
N
=il
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Configuration model

» Get the nodes ready with , ’ Y
desired degree distribution —°

» Connect them randomly -

» Self loops, and multiple /k
links are created o«

» Problems at the end

RKA LSS

111111222233334445566 | |(14122325123634351145
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Preferential attachment

Barabasi-Albert graph
» Initially a fully connected graph of mg nodes

» All new nodes come with m links (m < mg)
m=1

AR

» Links are attached to existing nodes with probability
proportional to its number of links

> k; is the number links of node /, then

Pa = ki
? ijj
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Barabasi-Albert graph
» Degree distribution

» Independent of m!

i c:_' ._.-.. U 4
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Scalefree network example: Flight routes
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Scalefree network example: Co-authorship
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Algorithm for Barabasi-Albert graph

© N o g bk wh =

Page 31

n = mg number of existing nodes

K =3, kj total number of connections

r random number r € [0, K]

Find imax for which ZJ’Z"S ki <r

If there is no edge then add one between nodes n+ 1 and Jmax
If node n+ 1 has less than m connections go to 3.

Increase n by 1

If n < N go to 2.



Properties of networks

» Degree distribution

pk)
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Properties of networks

» Degree distribution
» Shortest path
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Properties of networks
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Properties of networks

Degree distribution
Shortest path
Centrality
Assortativity

vVvyVyYyywy
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Percolation and attack on random networks

» Attack: remove most connected nodes

» Failure: equivalent to percolation: remove nodes at random
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Percolation and attack on random networks

» Failure: equivalent to percolation: remove nodes at random
» Attack: remove most connected nodes
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Percolation and attack on random networks

» Efficiency:
1 1
E S Bl
(G) N(N — 1) Z tij
i#j
tj; the shortest path between / and ;.
» N = 2000, k = 10*

0.4

e—-® ER failure
o8 ER k-based attack
=—=o BA failure
&—#8 BA k-based attack

0.3

Efficiency

0.1 F

e o

0 0.2 0.4 0.6 08
p = fraction of removed nodes
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Percolation and attack on random networks
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