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Homework 1

Wol� cluster algorithm Responsible: Gábor Mándi

Write a program that uses the Wol� cluster algorithm for the Ising
model on the three-dimensional cubic lattice!

I Determine the spontaneous magnetization and the
susceptibility as a function of the temperature and system size.

I Apply �nite size scaling to the problem, use L = 4, 8, 16.
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Homework 2

2D di�usion-limited aggregation. Responsible: György Vida

Write a computer simulation of the two-dimensional
di�usion-limited aggregation model on triangular and square
lattices: Introduce your own measure of anisotropy parameter and
determine the di�erence between the two lattices. Measure the
fractal dimension.
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Homework 3

Epidemic model on ER graph Responsible: László Ujfalusi

Generate an Erd®s-Rényi graph with �xed 〈k〉 = 3. Investigate the
following epidemic model on this network:
There are three kinds of nodes: susceptible (S), infected (I),
recovered (R). In every time step an infected node infects its
susceptible neighbours with probability β, infected sites can recover
with probability γ. A recovered site cannot become infected again,
and they do not infect any susceptible site.
In the beginning every site is susceptible, except for 10 which are
infected. Using the system size N = 1000, γ = 0.1 show that the
limit for the infection to grow is β > γ/〈k〉. Use ensemble averages!

Page 4



Homework 4
Dynamical Monte Carlo simulation Responsible: Balázs Nagyfalusi
Simulate a lattice gas with Monte Carlo method. The lattice is
20x10 sites and is periodic in the vertical direction. There are two
type of particles: black and white ones. Black ones are inserted on
the left hand side of the lattice with rate α (choose a site, if it is
empty put there a black particle with probability α.) White
particles are inserted on the right side with the same rate. Particles
which leave either left or right the lattice are discarded.
The particles may move to empty adjacent sites with the
probabilities shown on the �gure. Measure (ensemble average) the
current and the density in function of α and T ∈ [0, 1/2].
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Homework 5

Page-Rank on BA network Responsible: Grörgy Vida
Create a directed Barabási-Albert network with m = 2. Start with a
triangle. When a new node is added it has two outgoing link which
is attached to a node j with probability proportional to kj , where kj
is the degree of the node including both the incoming and outgoing
links. For N = 100 calculate the page rank and plot the
degree-PageRank and age=PageRankcorrelation. (Use ensemble
average, perform the simulation on di�erent realizations of the
graph.)
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Homework 6
Ising spin glass with genetic algorithm Responsible: Levente Rózsa
Consider an N ×N square lattice with periodic boundary conditions
and the Hamiltonian

H = −
∑
<i ,j>

Jijsi sj .

The summation goes over the nearest neighbour pairs. The Jij
coupling coe�cients are randomized at the start of the simulation
by setting them to ±1 with probability 0.5. The si = ±1 variables
represent the Ising spins at the lattice points. Determine the
approximate ground state energy per lattice point in the system by
using a genetic algorithm, with the set of si values on the lattice as
the genetic code.
Use a set of P di�erent realizations, for the next generation choose
P/2 with the lowest energies. Generate P/2 random children with
random gene mixing. Two random genes of individuals get mutated
with probability p = 1/4. Use N = 8, 16 and P = 100, 200, 400.
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Fractals
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Fractal growth
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Snow�akes
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Fractal growth

Laplacian or gradient governed growth

I Scalar �eld (electrostatic �eld, density, through di�usion)

∆u = 0

I Velocity of the interface Γ proportional with the gradient

v|Γ = −C∇u|Γ

I Boundary condition: potential is curvature (κ) dependent

u|Γ = f (∇u, κ)

I Disorder: small �uctuations
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Fractal growth
Laplacian or gradient governed growth

I Scalar �eld (electrostatic �eld, density, through di�usion)
I Velocity of the interface Γ proportional with the gradient
I Boundary condition: potential is curvature (κ) dependent
I Disorder: small �uctuations

Page 12



Fractal growth

Consequences:

I Positive growth feedback: If there is a bump, gradient
increases (peak e�ect), growth gets faster

I Screening: Faster bump will screen the slower one

I Branching: If tip is far a new bump may grow.

I Tip splitting: Tip gets instable and splits
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Fractal

I Self-similarity

I Repeating pattern

I Scaling patterns
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Di�usion Limited Aggregation

I Starting from a seed

I Particles come from in�nity with di�usion

I If incoming particle touches cluster it gets stuck to it

I Samples: 1m and 100m particles
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Di�usion Limited Aggregation: Algorithm
Basic:

I Start with a seed at (0,0)
I Particles start far from the aggregate and di�use till they get

adjacent to existing cluster

Advanced:
I Start with a seed at (0,0)
I Start random walker on a circle just big enough to cover the

cluster
I De�ne a kill ring big enough or use reentry distribution
I Regions of large jumps, on a larger scale lattice

Page 16



Di�usion Limited Aggregation: Algorithm

I Start with a seed at (0,0)

I Start random walker on a circle just big enough to cover the
cluster

I De�ne a kill ring big enough or use reentry distribution

I Regions of large jumps, on a larger scale lattice
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Dimension

I d = 0 point, d = 1 line, d = 2 plane, etc. Containing space.
I Dimension of a �nite object: Cover it
I Hausdor� (fractal) dimension
I Minkowski�Bouligand dimension
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Fractal dimension

I Fractal dimension
I Cover the object with boxes of size ε, the fractal dimension is:

D = dim(S) ≡ lim
ε→0

logN(ε)

log 1/ε

I Di�erences:
I Minkowski�Bouligand: Regular lattice is used
I Hausdor�: Spheres of given size are used.

I In practice
N(ε) ∝ εD
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Fractal dimension: Example

Koch curve
I Start from unit segment
I Hausdor� dimension: cover it with spheres of size l = 3−i

I Number of spheres needed Nl = 4i (take level i !)
I Fractal dimensions:

D =
logNl

log 1/l
=

i log(4)

+i log(3)
= log3(4)
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Fractal dimension: Other methods

I Sandbox method: M ∝ LD

I Correlation functions

C (r) = 〈ρ(r)ρ(0)〉 ∝ r−α

D = d − α
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DLA: Lattice e�ects
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DLA: Lattice e�ects
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Ballistic deposition

I Lattice
I O� lattice
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Surface growth models

I Not the whole object but only its
surface is interesting (e.g. coastline)

I Object starts from a d -dimensional
substrate

I Object grows in the d + 1th dimension.

I Object is described by h(x) (x is a
d -dimensional position vector) height
function which is the maximum surface
position at x.

I Width of the surface

w(L, t) =

√
1

L

∫ L

0

[h(x , t)− h̄(t)]2dx

i

h(x)
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Family-Vicsek scaling

I Change of width in time

I Scaling relation:
w(L, t) ∝ Lαf (t/Lz)
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Theory: The KPZ-equation

I Surface growth ḣ(x, t)

I Function of: position(?), height, gradient, Laplace of height,
noise

ḣ(x, t) = f [x, h(x, t),∇h(x, t),∆h(x, t), . . . , η(x, t)]

I Normally:

ḣ(x, t) = f [h(x, t),∇h(x, t),∆h(x, t), η(x, t)]

I Gaussian noise:

〈η(x, t)η(x′, t ′)〉 = Aδ(t − t ′)δ(x − x ′)

P(η) =
1√
2πσ

exp

(
− η

2

2σ

)
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The Kadar-Parisi-Zhang equation

I Growth is lateral, up to second order

ḣ(x, t) = f [(∇h(x, t))2,∆h(x, t), η(x, t)]
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The Kadar-Parisi-Zhang equation

ḣ(x, t) = ν∆h(x, t) + λ(∇h(x, t))2 + η(x, t)

I Nonlinear

I Stochastic

I Partial di�erential equation
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Discretization in 1D of the KPZ-equation
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Numerical solution of the KPZ-equation

I ξ is a random number with zero mean (can be Gaussian, or
uniform)

I Due to noise Euler scheme is enough:

hi (t + ∆t) =hi (t) + ν
∆t

(∆x)2
[hi+1(t)− 2hi (t) + hi−1(t)] +

+
λ

4
[hi+1(t)− hi−1(t)] + ξi

I Critical exponents and and universality classes α = 1/2,
z = 3/2
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Subjects

I Self-Organized Criticality
I Bak-Tang-Wiesenfeld model
I Forest �re model
I Bak-Sneppen model of evolution

I Tra�c models

I 1d driven systems
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Self-Organized Criticality

I Critical state: in�ection point in the critical isotherm

I Power law functions of correlation length, relaxation time

I Control parameter, generally temperature

I Critical point as an attractor?

I Why? Power law: We see many cases
I 1/f noise (music, ocean, earthquakes, �ames)
I Lack of scales (market, earthquakes)

I Underlying mechanism?
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Bak-Tang-Wiesenfeld model

I Originally a sandpile model
I Better explained as a Lazy Bureaucrat model:

I Bureaucrats are sitting in a large o�ce in a square lattice
arrangement

I Occasionally the boss comes with a dossier and places it on a
random table

I The bureaucrats do nothing until they have less than 4 dossiers
on their table

I Once a bureaucrat has 4 or more dossiers on its table starts to
panic and distributes its dossiers to its 4 neighbors

I The ones sitting at the windows give also 1 dossier to its
neighbors and throw the rest out of the window.
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Bak-Tang-Wiesenfeld model
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Bak-Tang-Wiesenfeld results
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Sandpile experiment
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Dip under the heap
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Dip under the heap
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Forest �re
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Forest �re model

I Burning cell turns into an empty cell

I A tree will burn if at least one neighbor is burning

I A tree ignites with probability f even if no neighbor is burning

I An empty space �lls with a tree with probability p

I Control parameter p/f the average number of trees planted
between two lightning strikes

I Histogram of burned forest size is a power law
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Bak-Sneppen model of evolution

I N species all depends on two other (ring geometry)

I Each species are characterized by a single �tness

I In each turn the species with the lowest �tness dies out and
with it its two neighbors irrespective of their �tness

I These 3 species are replaced by new ones with random �tness

I Inital and update �tness is uniform between [0, 1]
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Bak-Sneppen model of evolution: Results

I Steady state with avalanches

I Avalanches start with a �tness f > fc ' 0.66

I Avalanche size distribution power law

I Distance correlation power law
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Bak-Sneppen model of evolution an application: Granular

shear
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Tra�c models
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Nagel�Schreckenberg model

I Periodic 1d lattice (ring) Autobahn

I Cars occupying a lattice moving with velocities 0, 1, 2, 3, 4, 5

I Remark, if max speed is 126 km/h, then lattice length is 7 m,
a very good guess for a car in a tra�c jam

I It uses parallel update

I Simultaneously each car adjusts its speed according to rules:

1. Acceleration: All cars not at the maximum velocity increase
their velocity by 1

2. Slowing down: Speed is reduced to distance ahead (1 sec
rule)

3. Randomization: With probability p speed is reduced by 1
4. Car motion: Each car moves forward the number of cells

equal to their velocity.
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Emergence of tra�c jams
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Nagel�Schreckenberg model

I Transition from free-�ow to jammed state

I Jammed state is a phase-separated phase

I Without randomization a sharp transition

I Used in NRW to predict tra�c jams
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Three-phase tra�c theory
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Asymmetric simple exclusion process

I p + q = 1

I If p = q then SEP a Markov-process

I Generally γ = δ = 0

I α and β determines the phase diagram
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Asymmetric simple exclusion process
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Three state ASEP

I If q small three blocks (00 . . . 00 + + · · ·+ +−− · · · − −)
I Mixed state above q = 1
I Numerical simulations suggested an other phase transition at

qc < 1
I Actually false, only correlation length is �nite but large
∼ O(1070)

I Correspondence to Zero Range Process
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