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Homework 1

Wolff cluster algorithm Responsible: Gábor Mándi

Write a program that uses the Wolff cluster algorithm for the Ising
model on the three-dimensional cubic lattice!

I Determine the spontaneous magnetization and the
susceptibility as a function of the temperature and system size.

I Apply finite size scaling to the problem, use small systems.
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Homework 2

3D diffusion-limited aggregation. Responsible: György Vida

Write a computer simulation of the two-dimensional
diffusion-limited aggregation model on triangular and square
lattices: Introduce your own measure of anisotropy parameter and
determine the difference between the two lattices. Measure the
fractal dimension.
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Homework 3

Epidemic model on BA graph Responsible: László Ujfalusi

Generate an Erdős-Rényi graph with fixed 〈k〉. Investigate the
following epidemic model on this network:
There are three kinds of nodes: susceptible (S), infected (I),
recovered (R). In every time step an infected node infects its
susceptible neighbours with probability β, infected sites can recover
with probability γ. A recovered site cannot become infected again,
and they do not infect any susceptible site.
In the beginning every site is susceptible, except for 10 which are
infected. Using the system size N = 1000, γ = 0.1 show that the
limit for the infection to grow is β > 〈k〉/γ. Use ensemble averages!
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Homework 4
Dynamical Monte Carlo simulation Responsible: Balázs Nagyfalusi
Simulate a lattice gas with Monte Carlo method. The lattice is
20x10 sites and is periodic in the vertical direction. There are two
type of particles: black and white ones. Black ones are inserted on
the left hand side of the lattice with rate α (choose a site, if it is
empty put there a black particle with probability α.) White
particles are inserted on the right side with the same rate. Particles
which leave either left or right the lattice are discarded.
The particles may move to empty adjacent sites with the
probabilities shown on the figure. Measure (ensemble average) the
current and the density in function of α and T ∈ [0, 1/2].
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Homework 5

Page-Rank on BA network Responsible: Grörgy Vida
Create a directed Barabási-Albert network with m = 2. Start with a
triangle. When a new node is added it has two outgoing links which
are attached to nodes with probability proportional to the degree of
the node including both the incoming and outgoing links. For
N = 100 calculate the page rank and plot the degree page rank
correlation, and age page rank correlation. (Use ensemble average.)
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Homework 6
Ising spin glass with genetic algorithm Responsible: Levente Rózsa
Consider an N ×N square lattice with periodic boundary conditions
and the Hamiltonian

H = −
∑
<i ,j>

Jijsi sj .

The summation goes over the nearest neighbour pairs. The Jij
coupling coefficients are randomized at the start of the simulation
by setting them to ±1 with probability 0.5. The si = ±1 variables
represent the Ising spins at the lattice points. Determine the
approximate ground state energy per lattice point in the system by
using a genetic algorithm, with the set of si values on the lattice as
the genetic code.
Use a set of 100 different realizations, choose 50 with probability
inversely proportional to H. Generate 50 children using random
pairs and random gene mixing. Allow for mutations with
p = N−2/2 probability. Perform the simulation for N = 8 and
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Glassy behavior, frustration
I Model glass: spin-glass:

H = −1
2

∑
〈i ,j〉

JijSiSj

I where Jij are random quenched variables with 0 mean (e.g.
±J with probability half)

Rugged energy landscape.
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Spin Glasses:memory effects

Page 9



Spin Glasses:scaling relations
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Genetic algorithm
I Learn from nature
I Let the fittest to survive

I Fitness function, e.g. energy, length, etc.
I Combine different strategies
I State is represented by a vector (genetic code or genotype)

I Phasespace, city order, neural network parameters, etc.
I Offsprings have two parents with shared genetic code
I Mutations
I Those who are not fit enough die out

I Keep the number of agents fixed
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Genetic algorithm: Reproduction

I Two parents and two children
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Genetic algorithm terminology
I Chromosome: Carrier of the genetic representation
I Gene: Smallest units in the chromosome with individual

meaning
I Parents: Pair of chromosomes, wich produce offsprings
I Population: Set of chromosomes from which the parents are

selected. Its size should be larger than the length of the
chromosome

I Selection principle: The way parents are selected (random,
elitistic)

I Crossover: Recombination of the genes of the parents by
mixing

I Crossover rate: The rate by which crossover takes place
(∼90%)

I Mutatation: Random change of genes
I Mutation rate: The rate by which mutation takes place (∼1%)
I Generation: The pool after one sweep.
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Genetic algorithm

1. Create randomly N agents with chromosomes
2. Calculate the fitness of the agents
3. With probability proportional to the fitness keep some part of

the agents (generally half of it)
4. Generate children using two random parents and crossover
5. With probability pm mutate a gene in each child
6. Go to 2
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Directed percolation
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Directed percolation

I More complicated than percolation
I 3 exponents (correlation lengths in two directions) ν⊥, ν|| and

(order parameter) β

ρ(∆p, t, L) ∼ b−β/ν⊥ρ(b1/ν⊥∆p, t/bz , L/b),

with z = ν||/ν⊥.

I β/ν|| as on figure
I z in a large sample
I Critical scaling of finite

clusters
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Directed percolation

I Density versus time

I Length/width versus size
I Clusters are fractal
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Real space numerical renormalization group

I At the critical point the system is self similar (scale-free)
I It does not matter on which scale we are looking at it.
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Real space numerical renormalization group

I As the system gets larger it converges into a fixed point
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Numerical renormalization group, percolation

I probability that the cell is spanned:

p′ = R(p) = 2p2(1− p)2 + 4p3(1− p) + p4

I In the critical point p′ = p.
I Three solutions p0 = 0, p1 = 1, and p∗ = 0.6180
I Theoretical value pc = 0.5927
I Larger blocks (only numerically possible) give better estimates
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Neural networks
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Neural networks

I Input pattern
I Output pattern
I Adaptive wights
I Approximating non-linear

functions

I Machine learning
I Pattern recognition
I Handwriting
I Speech recognition
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Neural networks

I Input vector I
I Output vector O(I )

I Transition matrix Wij ∈ [−1, 1]

I Learning using a cost function
I Test goodness
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Neural networks: Learning

I Supervised learning
I Data training:

I Superwised learning
I Fitness function, energy:

E = T (I )− O(I ),

where T (I ) is the target vector for input I
I Minimize E for available set of {I , I (O)} pairs

I Test goodness:
I Use only part of {I , I (O)} pairs for learning, the rest is for

testing.

I Used for: pattern recognition, classification, etc.
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Neural networks: Learning

I Unsupervised learning
I Cost function may depend on task
I Cost function is deviation from mean data

C = E [(x − f (x))2]

I Test goodness:
I Some self consistent limit on the cost function

I Used for: estimation, filtering, etc.
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Neural networks: Learning

I Reinforcement learning
I Cost function is a long time performance on an agent making

decisions based on the neural network.
I Test goodness:

I Compare with other agents which can be algorithmical or
based on neural networks

I Used for: control problems, AI, complex optimization
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Neural networks

I Learning algorithms:
I Linear regression
I Genetic algorithm
I Simulated annealing
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Networks

Complex networks
I Mathematics: Graphs
I Vertices, nodes, points
I Edges, links, arcs, lines

I Directed or undirected
I Loop
I Multigraph
I Wighted graphs
I Connected
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Complex networks

Phenomenon Nodes Links
Ising Spins Interaction(neighbors)
Cell metabolism Molecules Chem. reactions
Sci. collaboration Scientists Joint papers
WWW Pages URL links
Air traffic Airports Airline connections
Economy Firms Trading
Language Words Joint appearance
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Complex networks, citations
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Random Networks

Generate networks:
I From data:

I Phone calls
I WWW links
I Biology database
I Air traffic data
I Trading data

I Generate randomly
I From regular lattice by random algorithm (e.g. percolation)
I Erdős-Rényi graph
I Configurations model
I Barabási-Albert model
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Erdős-Rényi

I P. Erdős, A. Rényi, On random graphs, Publicationes
Mathematicae Debrecen, Vol. 6 (1959), pp. 290-297 (cit 789)

I Two variants:
1. G (N,M): N nodes, M links
2. G (N,P): N nodes, links with p probability (all considered)

I Algorithm
1. G (N,M):

I Choose i and j randomly i , j ∈ [1,N] and i 6= j
I If there is no link between i an j establish one

2. G (N,P): (Like percolation)
I Take all {i , j} pairs (i 6= j)
I With probability p establish link between i and j
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Erdős-Rényi
I Degree distribution

P(k) =

(
N − 1

k

)
pk(1− p)N−1−k

I For large N and Np =const it is a Poisson distribution

P(k)→ (np)ke−np

k!
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Erdős-Rényi

I Real life: Read networks

Most networks are different!
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Configuration model

I Get the nodes ready with
desired degree distribution

I Connect them randomly
I Self loops, and multiple

links are created
I Problems at the end
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Preferential attachment

Barabási-Albert graph
I Initially a fully connected graph of m0 nodes
I All new nodes come with m links (m ≤ m0)

I Links are attached to existing nodes with probability
proportional to its number of links

I ki is the number links of node i , then

pa =
ki∑
j kj
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Barabási-Albert graph

I Degree distribution
p(k) ∼ k−3

I Independent of m!

m = 1
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Scalefree network example: Flight routes
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Scalefree network example: Co-authorship
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Algorithm for Barabási-Albert graph

1. n = m0 number of existing nodes
2. K =

∑
j kj total number of connections

3. r random number r ∈ [0,K ]

4. Find imax for which
∑imax

j=0 kj < r
5. If there is no edge then add one between nodes n + 1 and imax

6. If node n + 1 has less than m connections go to 3.
7. Increase n by 1
8. If n < N go to 2.
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Percolation and attack on random networks
I Failure: equivalent to percolation: remove nodes at random
I Attack: remove most connected nodes
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Percolation and attack on random networks
I Efficiency:

E (G ) =
1

N(N − 1)

∑
i 6=j

1
tij

tij the shortest path between i and j .
I N = 2000, k = 104
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Percolation and attack on random networks
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