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Homework 1

Wolff cluster algorithm Responsible: Gabor Mandi
Write a program that uses the Wolff cluster algorithm for the Ising
model on the three-dimensional cubic lattice!

» Determine the spontaneous magnetization and the
susceptibility as a function of the temperature and system size.

» Apply finite size scaling to the problem, use small systems.

Page 2



Homework 2

3D diffusion-limited aggregation. Responsible: Gyérgy Vida

Write a computer simulation of the two-dimensional
diffusion-limited aggregation model on triangular and square
lattices: Introduce your own measure of anisotropy parameter and
determine the difference between the two lattices. Measure the
fractal dimension.
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Homework 3

Epidemic model on BA graph Responsible: Laszlé Ujfalusi

Generate an Erdés-Rényi graph with fixed (k). Investigate the
following epidemic model on this network:

There are three kinds of nodes: susceptible (S), infected (1),
recovered (R). In every time step an infected node infects its
susceptible neighbours with probability 3, infected sites can recover
with probability v. A recovered site cannot become infected again,
and they do not infect any susceptible site.

In the beginning every site is susceptible, except for 10 which are
infected. Using the system size N = 1000, v = 0.1 show that the
limit for the infection to grow is 8 > (k)/~. Use ensemble averages!
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Homework 4

Dynamical Monte Carlo simulation Responsible: Balazs Nagyfalusi
Simulate a lattice gas with Monte Carlo method. The lattice is
20x10 sites and is periodic in the vertical direction. There are two
type of particles: black and white ones. Black ones are inserted on
the left hand side of the lattice with rate o (choose a site, if it is
empty put there a black particle with probability «.) White
particles are inserted on the right side with the same rate. Particles
which leave either left or right the lattice are discarded.

The particles may move to empty adjacent sites with the
probabilities shown on the figure. Measure (ensemble average) the
current and the density in function of a and T € [0,1/2].
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Homework 5

Page-Rank on BA network Responsible: Grérgy Vida

Create a directed Barabasi-Albert network with m = 2. Start with a
triangle. When a new node is added it has two outgoing links which
are attached to nodes with probability proportional to the degree of
the node including both the incoming and outgoing links. For

N = 100 calculate the page rank and plot the degree page rank
correlation, and age page rank correlation. (Use ensemble average.)
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Homework 6

Ising spin glass with genetic algorithm Responsible: Levente Rézsa
Consider an N x N square lattice with periodic boundary conditions

and the Hamiltonian

H=- Z J,:,'S,'SJ'.

<ij>

The summation goes over the nearest neighbour pairs. The Jj;
coupling coefficients are randomized at the start of the simulation
by setting them to 41 with probability 0.5. The s; = 41 variables
represent the Ising spins at the lattice points. Determine the
approximate ground state energy per lattice point in the system by
using a genetic algorithm, with the set of s; values on the lattice as
the genetic code.
Use a set of 100 different realizations, choose 50 with probability
inversely proportional to H. Generate 50 children using random
pairs and random gene mixing. Allow for mutations with
p = N~2/2 probability. Perform the simulation for N = 8 and

Pagel\?: 10.



Glassy behavior, frustration
» Model glass: spin-glass:
1
H=—3 Z J;SiS;
(i)
» where Jjj are random quenched variables with 0 mean (e.g.
+J with probability half)

Spin Glass

o
Rugged energy landscape. WL\ ,

Page 8



Spin Glasses:memory effects
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Figure 2.1: Sketch of the TRM measurement procedure.
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Spin Glasses:scaling relations
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Genetic algorithm

» Learn from nature

> Let the fittest to survive
» Fitness function, e.g. energy, length, etc.

» Combine different strategies

» State is represented by a vector (genetic code or genotype)
» Phasespace, city order, neural network parameters, etc.

» Offsprings have two parents with shared genetic code

» Mutations

» Those who are not fit enough die out

» Keep the number of agents fixed

Page 11



Genetic algorithm: Reproduction

» Two parents and two children

Parents: Parents:
CrOssOoVer point CIOSS0VEr points

Children: Children:

parents: NN NI I N O O BN B
I Y O
BN " @ Probebiiy of 0.5, children have

Children: I 50% genes from first parent and 50% of

genes from second parent even with
randomly chosen crossover points,
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Genetic algorithm terminology

» Chromosome: Carrier of the genetic representation
» Gene: Smallest units in the chromosome with individual

meaning

» Parents: Pair of chromosomes, wich produce offsprings
» Population: Set of chromosomes from which the parents are

selected. lIts size should be larger than the length of the
chromosome

Selection principle: The way parents are selected (random,
elitistic)

Crossover: Recombination of the genes of the parents by
mixing

Crossover rate: The rate by which crossover takes place
(~90%)

Mutatation: Random change of genes

Mutation rate: The rate by which mutation takes place (~1%)
Generation: The pool after one sweep.



Genetic algorithm

1. Create randomly N agents with chromosomes

2. Calculate the fitness of the agents
3. With probability proportional to the fitness keep some part of

the agents (generally half of it)

4. Generate children using two random parents and crossover

5. With probability p,,, mutate a gene in each child
6. Goto 2
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Directed percolation
L J
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Directed percolation

» More complicated than percolation

> 3 exponents (correlation lengths in two directions) v, v/ and
(order parameter)

p(Ap, t, L) ~ b=B/ p(BYV Ap, t/ b7, L/ b),

with z =) /vy

log pi
» /v as on figure
- ! pP>p,
> zin a large sample
» Critical scaling of finite P<p,
clusters \\ﬁ/vlh log t
1
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Directed percolation
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Real space numerical renormalization group

» At the critical point the system is self similar (scale-free)

» |t does not matter on which scale we are looking at it.
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Real space numerical renormalization group
» As the system gets larger it converges into a fixed point

0 for0<p<p,,
lim R(p)=<( ¢ for p=p,.,
1 for p,<p<l
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Numerical renormalization group, percolation

probability that the cell is spanned:

p' = R(p) =2p°(1 - p)*> +4p°(1 — p) + p*

In the critical point p’ = p.

Three solutions pg =0, p1 = 1, and p, = 0.6180

Theoretical value p. = 0.5927

Larger blocks (only numerically possible) give better estimates

v

vV vVv.vyYy
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Neural networks
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Neural networks

Hidden
Input . .
>
Output Machine learning
> Pattern recognition
» Handwriting
» Speech recognition
» Input pattern
» Qutput pattern
» Adaptive wights

» Approximating non-linear
functions
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Neural networks

» Input vector /

» Output vector O(/)

» Transition matrix Wj; € [-1,1]
» Learning using a cost function

» Test goodness
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Neural networks: Learning

> Supervised learning
» Data training:

» Superwised learning
» Fitness function, energy:

E=T(I)—-0(),

where T (/) is the target vector for input /
» Minimize E for available set of {/,/(0O)} pairs
» Test goodness:

» Use only part of {/,/(O)} pairs for learning, the rest is for
testing.

» Used for: pattern recognition, classification, etc.
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Neural networks: Learning

v

Unsupervised learning
» Cost function may depend on task

» Cost function is deviation from mean data
C = E[(x — f(x))?]

» Test goodness:
» Some self consistent limit on the cost function

» Used for: estimation, filtering, etc.
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Neural networks: Learning

» Reinforcement learning
» Cost function is a long time performance on an agent making
decisions based on the neural network.

» Test goodness:
» Compare with other agents which can be algorithmical or
based on neural networks

» Used for: control problems, Al, complex optimization
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Neural networks

» Learning algorithms:

> Linear regression
» Genetic algorithm
» Simulated annealing

Page 27



Networks

Complex networks
» Mathematics: Graphs

» Vertices, nodes, points
» Edges, links, arcs, lines

» Directed or undirected
Loop
Multigraph
Wighted graphs
Connected

vV vy vy
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Complex networks
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’ Phenomenon Nodes ‘ Links ‘
Ising Spins Interaction(neighbors)
Cell metabolism Molecules | Chem. reactions
Sci. collaboration | Scientists | Joint papers
WWW Pages URL links
Air traffic Airports | Airline connections
Economy Firms Trading
Language Words Joint appearance




Complex networks, citations
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Random Networks

Generate networks:

» From data:

v

vV vy VvYyy

Phone calls
WWW links
Biology database
Air traffic data
Trading data

» Generate randomly
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vV vy

From regular lattice by random algorithm (e.g. percolation)
Erdés-Reényi graph

Configurations model

Barabasi-Albert model



Erdés-Rényi

» P. Erdés, A. Rényi, On random graphs, Publicationes
Mathematicae Debrecen, Vol. 6 (1959), pp. 290-297 (cit 789)

» Two variants:
1. G(N,M): N nodes, M links
2. G(N,P): N nodes, links with p probability (all considered)
> Algorithm
1. G(N, M):
» Choose i and j randomly i,j € [1,N] and i # j
> If there is no link between i an j establish one
2. G(N, P): (Like percolation)

> Take all {i, } pairs (i # )
> With probability p establish link between i and j
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Erdés-Rényi

» Degree distribution

N-—1 1
P(k):( B )pk(l—p)N 1—k
» For large N and Np =const it is a Poisson distribution

(np)<e

P(k) — o

£=0 r=01 p=02

(@ ® ©
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Erdés-Reényi

» Real life: Read networks

Lk

o
(R s
N
=il
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Configuration model

» Get the nodes ready with , ’ Y
desired degree distribution —°

» Connect them randomly -

» Self loops, and multiple /k
links are created o«

» Problems at the end

RKA LSS

111111222233334445566 | |(14122325123634351145
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Preferential attachment

Barabasi-Albert graph
» Initially a fully connected graph of mg nodes

» All new nodes come with m links (m < mg)
m=1

AR

» Links are attached to existing nodes with probability
proportional to its number of links

> k; is the number links of node /, then

Pa = ki
? ijj
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Barabasi-Albert graph
» Degree distribution

» Independent of m!

i c:_' ._.-.. U 4
R J
e :.. ..‘ )
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Scalefree network example: Flight routes
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Scalefree network example: Co-authorship
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Algorithm for Barabasi-Albert graph

© N o g bk wh =
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n = mg number of existing nodes

K =3, kj total number of connections

r random number r € [0, K]

Find imax for which ZJ’Z"S ki <r

If there is no edge then add one between nodes n+ 1 and Jmax
If node n+ 1 has less than m connections go to 3.

Increase n by 1

If n < N go to 2.



Percolation and attack on random networks

» Failure: equivalent to percolation: remove nodes at random
» Attack: remove most connected nodes
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Percolation and attack on random networks

» Efficiency:
1 1
E S Bl
(G) N(N — 1) Z tij
i#j
tj; the shortest path between / and ;.
» N = 2000, k = 10*

0.4

e—-® ER failure
o8 ER k-based attack
=—=o BA failure
&—#8 BA k-based attack

0.3

Efficiency

0.1 F

e o

0 0.2 0.4 0.6 08
p = fraction of removed nodes
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Percolation and attack on random networks
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