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Metropolis algorithm

(Metropoli-Rosenbluth-Rosenbluth-Teller-Teller=MR2T? algorithm)

» Sequence of configurations using a Markov chain
» Configuration is generated from the previous one
» Transition probability: equilibrium probability
Detailed balance:

v

P(x)W(x — x') = P(X')W(x" — x)

> Rewritten:
W(x —x")  P(x') o—BAE
W(x —x)  P(x)

» Only the ration of transition probabilities are fixed
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Metropolis algorithm

(Metropoli-Rosenbluth-Rosenbluth-Teller-Teller=MR2T? algorithm)

W(x —x)  P(xX) o—BAE

W(x" — x)  P(x)

» Metropolis:

—PAEHEAE >0
W(x — x') = ¢ ' )
1 otherwise
» Symmetric:
/ o—BAE
Wix = x) =1 pne
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Metropolis algorithm

Recipes:
» Choose an elementary step x — x’
» Calculate AE
» Calculate W(x — x')
» Generate random number r € [0, 1]
» If r < W(x — x’) then new state is x’; otherwise it remains x
> Increase time
» Measure what you want
> Restart
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Metropolis algorithm, proposal probability

Transition probability:

W(x = x') = g(x = x")A(x — x)

» g(x — x’): proposal probability
» Generally uniform
» If different interactions are present then it must be
incorporated

» A(x — x'): acceptance probability
» Metropolis
» Symmetric
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Metropolis, proof

State flow
Let E > E":

> x — x

P(x)g(x — x)A(x — x') = P(x)

» x' — x
P(x")g(x' — x)A(x' — x) = P(X’)efﬁAE
> In equilibrium they are equal:

P(x) _ PAE

P(x")

» What we wanted.
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Do we need optimization?

v

Correlation lenth &

v

Characteristic time Tepar

v

Dynamical exponent z

Tchar X 52

v

For 2d Ising model z ~ 2.17

Simulation time:

v

topy ~ Ld+z

We need more effective algorithms!
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Multri-spin algorithm for 2d Ising model

History...
» Operations:

» Check if neighbor is parallel: XOR
» sum of antiparallel spins: sum of previous XOR

» Result: discrete energy difference can be 0, 1, 2, 3, 4
Metropolis | 0 1 2 |3 |4
AE/J 8 4 0|4 |8
W(x — x") | exp(—808) | exp(—438) |1 |1 |1

v

(of course W(x — x’) in array)

v

3 bit is enough to store result in 2d and 3d

v

Use every fourth bit to store a spin.
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Multri-spin algorithm for 2d Ising model

» Historical solution

» Every fourth bit in the integer is a spin
» We get sizeof (int)/4 bits at once

>
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Special bit order

NxN 8 bit integer L=N/2
1 L+1 2 L+2 3 L+3
N+1 N+L+1 N+2  N+L+2 N+3 N+L+3
2N+1  2N+L+1 | 2N+2  2N+L+2 2N+3 N+L+3




Multri-spin algorithm for 2d Ising model

» Historical solution
» Every fourth bit in the integer is a spin
We get sizeof (int) /4 bits at once
Special bit order
Nowdays may even be slower as array operations are fast

v vYyy

» Use it for ensemble average
» One member of the array contains the spin of one position
» Multiple simulation instances
» With Metropolis algorithm few random numbers are needed

(at high T)
» Does not really matter only factors can be won, tcpy ~ L9172
still holds
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Cluster algorithm

» Flip more spins together. How?

» The solution — based on an old relationship between the
percolation and the Potts model — is that we consider the spin
configuration as a correlated site percolation problem

» |sing cluster: a percolating cluster of parallel spins

» Ising droplets: a percolating subset of an Ising cluster
pe — 1 exp(~25J)

Ising cluster
TN

ol lo]o]o}h o| |orolo
e H—S
olo 0|0
0|0 EOQ -
0 fo) b !0
olo T o0

Ising configuration Ising ,droplets”
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Swendsen-Wang algorithm

v

Take an Ising configuration

v

With probability pg = 1 — exp(—23J) make connection
between parallel spins

v

Identify the droplets by Hoshen-Kopelman algorithm
Flip each droplet with probability: 1/2 (h = 0)
Repeat it over

v

v
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Wolff algorithm

1. Add a random spin to a list of active spins
2. Take a spin from the active list

3. Add each parallel neighboring (not yet visited) spin with
probability pg = 1 — exp(—2/3J) to the list of active spins

4. If list of active spins is not empty go to 2.
5. Flip all active spins
—_ QO ow
> 28233
g Q g_;m 0]
2 Qo
= o -—- +++-| F533°2
L2t mmmi b Tg32:
OQ |~ mm=m—— LT 3o %0
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Wolff algorithm proof

» Detailed balance:
P(x)W(x — x') = Peq(X’)W(x' — X)
» Metropolis:

W(x — x') = min {1, ;)::((j:l))}

» Split W into acceptance A and proposal g probability

Pe(x)g(x" — x) }
" Ped(x)g(x — x')

Alx = x') = min{l

Page 14



Wolff algorithm proof

= v oo oo
% =0 ==z
g 22520
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< o o » 35

» On the boundary: ngame spins parallel and ng; antiparallel.

e/BJ(ndifF_nsame) (1 _ pB)ndifF

N
Ax = x') =min ¢ 1, efJ(nsame—ndir) (1 — ppg)nsame

e_2ﬁJnsame (1 _ pB)ndifF
=min< 1, 5
e BIng;fe (1 — pB)nsame
> It gives: pg =1 — exp(—25J).
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Comparison magnetization
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Comparison magnetization
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Comparison magnetization
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Comparison magnetization

3 3 +  Metropolis
205107 — e
3 < Swendsen-Wang
I3 & Wolff
It
154 -
H
3
.
z ;
= 4
10 P
.
T
i
.k
’ +
- E
3 t
3
.
(}—]10100v'vvv1-vooh¢-‘li‘ ""‘"In-uu—..».u..uunu....x.,-.....un
0 2

4 ] 8

T

Page 19



Comparison magnetization
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Other ensembles

Microcanonical ensemble
» Daemon with bag with tolerance (both directions)

» Pick a move, and calculate energy change
» |If energy change does not fit into bag reject it
» Otherwise add energy change to bag

» In case of conservation the dynamic exponent z is larger!
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Other ensembles

Conserved order parameter: Kawasaki dynamics
» Elementary step:

» Exchange up-down spin pairs (can be anywhere)
simultaneously

» Apply Metropolis to net energy change!

» Diffusive dynamics is more physical: pick neighboring spins

» In case of conservation the dynamic exponent z is larger!
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Calculation of the entropy, free energy, etc.

» Equilibrium statistical physics: From F we can calculate
everything

v

In simulations F and S cannot be measured directly

v

F = E — TS so one of them is enough (E and T are known)

v

Solution:
Calculate the specific heat!

C = kg T?((AE)?)

» The energy fluctuations are measurable
> Since 95
C=T—=
oT
We have

T C( T/)

S(T):S(To)+/T =T’
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Calculation of the entropy, free energy, etc.

> In many cases derivate of the entropy is needed so S(Tp) is
not important in

T !
S(T) = S(To) + /T C(TT gt

» From third law of thermodynamics: S(T = 0) = 0.
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Diffusion

» On normal lattice exactly sovable
» Otherwise e.g. Monte Carlo kinetics. E.g. 1D
» With probability 1/2 — go right
» With probability 1/2 — go left
» Be careful with boundary conditions
110 T T I T T T T T

"N10.dat" —
100 F »N15 dat"
.aal

'S
(=1
L e
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t

» Can easily be biased

» Can be simulated on spurious lattices, e.g. Parcolation clusters
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Diffusion

» Solution for diffusion on finite lattice:
» Count steps in both directions
» The net move is W = ni — ng
» Use ensemble average
» Plot (W?) vs. t
L e —— —
<W2S20[ NSl 2
80 [ "N30.dat"
70 b, N3.dat”
Ninf.dat" —e—
60
50 y
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t
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Optimization

General problem of finding the ground state
Phase-space:

Arbitrary number of dimensions
Methods:

vvyVvVyy

» Steepest Descent
» Stimulated Annealing
» Genetic algorithm
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Gradient based optimization

» Given f(x), with x = {xq,x2,...Xxn}

» Gradient Vf(x) = g(x) = {01f,0xf,...0nf}

» Second order partial derivatives: square symmetric matrix
called the Hessian matrix:

OOf ... O010,f

V2f(x) = H(x) = : ) :

010nf ... 0nOnf
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General Gradient Algorithm

Test for convergence

Compute a search direction

1.
2.
3. Compute a step length
4. Update x

oo 2
===
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Steepest descent algorithm

1. Start from xg

Compute g(xx) = VI (xk). If ||g(xk)|| < &g then stop,
otherwise, compute normalized search direction

P = —&(x«)/1lg(xk)l|

3. Compute ay such that f(xx + apg) is minimized

4. New point: Xg41 = Xk + apk
5. Test for |f(xxr1 — F(Xk))| < &2+ er|f(xk)| and stop if fulfilled
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in two successive iterations, otherwise go to 2.



Conjugate Gradient Method

1. Start from xg

2. Compute g(xx) = VF(xk). If ||g(x«)|| < g then stop,
otherwise Go to 5

3. Compute g(xx) = VF(xk). If ||g(x«)|| < g then stop,
otherwise continue

4. Compute the new conjugate gradient direction
Pk = —8k + BkPk—1, Where

/3:( e )2
Tec ]

5. Compute ay such that f(xx + apg) is minimized

6. New point: xx41 = Xk + apk
7. Test for |f(xxr1 — F(Xk))| < ea+ er|f(xk)| and stop if fulfilled
in two successive iterations, otherwise go to 3.
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Modified Newton's method

Second order method
1. Start from xg

2. Compute g(xx) = VF(xk). If ||g(xk)|| < &g then stop,
otherwise, continue

3. Compute H(x,) = V2f(xx) and the search direction
P = —H gk

4. Compute ay such that f(xx + apg) is minimized

5. New point: xx+1 = Xk + apg

6. Go to 2.
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Metastability

» At first order transitions the correlation length remains finite.

» The mechanism of the first order transition is usually
nucleation, which is related to metastability.

» Examples can be observed at hysteresis or undercooling,
overheating, over-compessing etc.
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Nucleation

» There is a competition between the bulk free energy of the
droplet and its surface energy

» There is a critical nucleus size above which the transition is
very rapid.
» However, such a critical nucleus has to be created by

spontaneous fluctuations — which takes (sometimes
enormously long) time.

1

V)

bubble nuelsation

Y
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Glassy behavior, frustration
» Model glass: spin-glass:
1
H=—3 Z J;SiS;
(i)
» where Jjj are random quenched variables with 0 mean (e.g.
+J with probability half)

Spin Glass

o
Rugged energy landscape. WL\ ,
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Rugged energy landscape

» Typical example NP-complete problems:
» Traveling salesman
» Graph partitioning
» Spin-glass
» No full optimization is possible (do we need it?)
» Very good minimas can be obtained by optimization

» Simulated annealing
» Genetic algorithm
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Simulated annealing

v

Cool down the system slowly

» Warm up and down if needed, if the system quenched into a
local minimum

v

One needs a Hamiltonian and an elementary move

v

Traveling salesman

» Path length
» Exchange two cities in the path

» Use Metropolis simulated annealing. (T ~ alcohol)

Demo movie
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Genetic algorithm

» Learn from nature

> Let the fittest to survive
» Fitness function, e.g. energy, length, etc.

» Combine different strategies

» State is represented by a vector (genetic code or genotype)
» Phasespace, city order, neural network parameters, etc.

» Offsprings have two parents with shared genetic code

» Mutations

» Those who are not fit enough die out

» Keep the number of agents fixed
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Genetic algorithm: Reproduction

» Two parents and two children

Parents: Parents:
CrOssOoVer point CIOSS0VEr points

Children: Children:

parents: NN NI I N O O BN B
I Y O
BN " @ Probebiiy of 0.5, children have

Children: I 50% genes from first parent and 50% of

genes from second parent even with
randomly chosen crossover points,
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Genetic algorithm terminology

» Chromosome: Carrier of the genetic representation
» Gene: Smallest units in the chromosome with individual

meaning

» Parents: Pair of chromosomes, wich produce offsprings
» Population: Set of chromosomes from which the parents are

selected. lIts size should be larger than the length of the
chromosome

Selection principle: The way parents are selected (random,
elitistic)

Crossover: Recombination of the genes of the parents by
mixing

Crossover rate: The rate by which crossover takes place
(~90%)

Mutatation: Random change of genes

Mutation rate: The rate by which mutation takes place (~1%)
Generation: The pool after one sweep.



Genetic algorithm terminology
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