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Metropolis algorithm

(Metropoli-Rosenbluth-Rosenbluth-Teller-Teller=MR2T2 algorithm)

I Sequence of configurations using a Markov chain
I Configuration is generated from the previous one
I Transition probability: equilibrium probability
I Detailed balance:

P(x)W (x → x ′) = P(x ′)W (x ′ → x)

I Rewritten:
W (x → x ′)
W (x ′ → x)

=
P(x ′)
P(x)

= e−β∆E

I Only the ration of transition probabilities are fixed
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Metropolis algorithm

(Metropoli-Rosenbluth-Rosenbluth-Teller-Teller=MR2T2 algorithm)

W (x → x ′)
W (x ′ → x)

=
P(x ′)
P(x)

= e−β∆E

I Metropolis:

W (x → x ′) =

{
e−β∆E if∆E > 0
1 otherwise

I Symmetric:

W (x → x ′) =
e−β∆E

1 + e−β∆E
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Metropolis algorithm

Recipes:
I Choose an elementary step x → x ′

I Calculate ∆E
I Calculate W (x → x ′)
I Generate random number r ∈ [0, 1]

I If r < W (x → x ′) then new state is x ′; otherwise it remains x
I Increase time
I Measure what you want
I Restart
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Metropolis algorithm, proposal probability

Transition probability:

W (x → x ′) = g(x → x ′)A(x → x ′)

I g(x → x ′): proposal probability
I Generally uniform
I If different interactions are present then it must be

incorporated
I A(x → x ′): acceptance probability

I Metropolis
I Symmetric
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Metropolis, proof

State flow
Let E > E ′:

I x → x ′

P(x)g(x → x ′)A(x → x ′) = P(x)

I x ′ → x

P(x ′)g(x ′ → x)A(x ′ → x) = P(x ′)e−β∆E

I In equilibrium they are equal:

P(x)

P(x ′)
= eβ∆E

I What we wanted.
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Do we need optimization?

I Correlation lenth ξ
I Characteristic time τchar

I Dynamical exponent z

τchar ∝ ξz

I For 2d Ising model z ' 2.17
I Simulation time:

tCPU ∼ Ld+z

We need more effective algorithms!
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Multri-spin algorithm for 2d Ising model

History...
I Operations:

I Check if neighbor is parallel: XOR
I sum of antiparallel spins: sum of previous XOR

I Result: discrete energy difference can be 0, 1, 2, 3, 4
Metropolis 0 1 2 3 4
∆E/J 8 4 0 4 8
W (x → x ′) exp(−8β) exp(−4β) 1 1 1

I (of course W (x → x ′) in array)
I 3 bit is enough to store result in 2d and 3d
I Use every fourth bit to store a spin.
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Multri-spin algorithm for 2d Ising model

I Historical solution
I Every fourth bit in the integer is a spin
I We get sizeof(int)/4 bits at once
I Special bit order

1

N+1

2

N+2

3

N+3

L+1 L+2 L+3

N+L+1 N+L+2 N+L+3

N+L+32N+1 2N+L+1 2N+2 2N+L+2 2N+3

NxN L=N/28 bit integer
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Multri-spin algorithm for 2d Ising model

I Historical solution
I Every fourth bit in the integer is a spin
I We get sizeof(int)/4 bits at once
I Special bit order
I Nowdays may even be slower as array operations are fast

I Use it for ensemble average
I One member of the array contains the spin of one position
I Multiple simulation instances
I With Metropolis algorithm few random numbers are needed

(at high T )

I Does not really matter only factors can be won, tCPU ∼ Ld+z

still holds
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Cluster algorithm
I Flip more spins together. How?
I The solution – based on an old relationship between the

percolation and the Potts model – is that we consider the spin
configuration as a correlated site percolation problem

I Ising cluster: a percolating cluster of parallel spins
I Ising droplets: a percolating subset of an Ising cluster

pB = 1− exp(−2βJ)
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Swendsen-Wang algorithm

I Take an Ising configuration
I With probability pB = 1− exp(−2βJ) make connection

between parallel spins
I Identify the droplets by Hoshen-Kopelman algorithm
I Flip each droplet with probability: 1/2 (h = 0)
I Repeat it over
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Wolff algorithm

1. Add a random spin to a list of active spins
2. Take a spin from the active list
3. Add each parallel neighboring (not yet visited) spin with

probability pB = 1− exp(−2βJ) to the list of active spins
4. If list of active spins is not empty go to 2.
5. Flip all active spins
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Wolff algorithm proof

I Detailed balance:

Peq(x)W (x → x ′) = Peq(x ′)W (x ′ → x)

I Metropolis:

W (x → x ′) = min
{
1,

Peq(x)

Peq(x ′)

}
I Split W into acceptance A and proposal g probability

A(x → x ′) = min
{
1,

Peq(x)g(x ′ → x)

Peq(x ′)g(x → x ′)

}
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Wolff algorithm proof

I On the boundary: nsame spins parallel and ndiff antiparallel.

A(x → x ′) = min

{
1,

eβJ(ndiff−nsame)

eβJ(nsame−ndiff)

(1− pB)ndiff

(1− pB)nsame

}

= min
{
1,

e−2βJnsame

e−2βJndiff

(1− pB)ndiff

(1− pB)nsame

}
I It gives: pB = 1− exp(−2βJ).
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Comparison magnetization
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Comparison magnetization
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Comparison magnetization
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Comparison magnetization
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Comparison magnetization
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Other ensembles

Microcanonical ensemble
I Daemon with bag with tolerance (both directions)

I Pick a move, and calculate energy change
I If energy change does not fit into bag reject it
I Otherwise add energy change to bag

I In case of conservation the dynamic exponent z is larger!
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Other ensembles

Conserved order parameter: Kawasaki dynamics
I Elementary step:

I Exchange up-down spin pairs (can be anywhere)
simultaneously

I Apply Metropolis to net energy change!
I Diffusive dynamics is more physical: pick neighboring spins

I In case of conservation the dynamic exponent z is larger!
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Calculation of the entropy, free energy, etc.
I Equilibrium statistical physics: From F we can calculate

everything
I In simulations F and S cannot be measured directly
I F = E − TS so one of them is enough (E and T are known)
I Solution:

Calculate the specific heat!

C = kBT 2〈(∆E )2〉

I The energy fluctuations are measurable
I Since

C = T
∂S
∂T

We have

S(T ) = S(T0) +

∫ T

T0

C (T ′)
T ′

dT ′

Page 23



Calculation of the entropy, free energy, etc.

I In many cases derivate of the entropy is needed so S(T0) is
not important in

S(T ) = S(T0) +

∫ T

T0

C (T ′)
T ′

dT ′

I From third law of thermodynamics: S(T = 0) = 0.
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Diffusion

I On normal lattice exactly sovable
I Otherwise e.g. Monte Carlo kinetics. E.g. 1D

I With probability 1/2 → go right
I With probability 1/2 → go left
I Be careful with boundary conditions

I Can easily be biased
I Can be simulated on spurious lattices, e.g. Parcolation clusters
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Diffusion

I Solution for diffusion on finite lattice:
I Count steps in both directions
I The net move is W = n+ − n0
I Use ensemble average
I Plot 〈W 2〉 vs. t
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Optimization
I General problem of finding the ground state
I Phase-space:
I Arbitrary number of dimensions
I Methods:

I Steepest Descent
I Stimulated Annealing
I Genetic algorithm
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Gradient based optimization

I Given f (x), with x = {x1, x2, . . . xn}
I Gradient ∇f (x) ≡ g(x) = {∂1f , ∂2f , . . . ∂nf }
I Second order partial derivatives: square symmetric matrix

called the Hessian matrix:

∇2f (x) ≡ H(x) ≡

∂1∂1f . . . ∂1∂nf
...

. . .
...

∂1∂nf . . . ∂n∂nf


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General Gradient Algorithm

1. Test for convergence
2. Compute a search direction
3. Compute a step length
4. Update x
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Steepest descent algorithm

1. Start from x0
2. Compute g(xk) ≡ ∇f (xk). If ||g(xk)|| ≤ εg then stop,

otherwise, compute normalized search direction
pk = −g(xk)/||g(xk)||

3. Compute αk such that f (xk + αpk) is minimized
4. New point: xk+1 = xk + αpk

5. Test for |f (xk+1 − f (xk))| ≤ εa + εr |f (xk)| and stop if fulfilled
in two successive iterations, otherwise go to 2.
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Conjugate Gradient Method

1. Start from x0
2. Compute g(xk) ≡ ∇f (xk). If ||g(xk)|| ≤ εg then stop,

otherwise Go to 5
3. Compute g(xk) ≡ ∇f (xk). If ||g(xk)|| ≤ εg then stop,

otherwise continue
4. Compute the new conjugate gradient direction

pk = −gk + βkpk−1, where

β =

(
||gk ||
||gk−1||

)2

5. Compute αk such that f (xk + αpk) is minimized
6. New point: xk+1 = xk + αpk

7. Test for |f (xk+1 − f (xk))| ≤ εa + εr |f (xk)| and stop if fulfilled
in two successive iterations, otherwise go to 3.
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Modified Newton’s method

Second order method
1. Start from x0
2. Compute g(xk) ≡ ∇f (xk). If ||g(xk)|| ≤ εg then stop,

otherwise, continue
3. Compute H(xk) ≡ ∇2f (xk) and the search direction

pk = −H−1gk

4. Compute αk such that f (xk + αpk) is minimized
5. New point: xk+1 = xk + αpk

6. Go to 2.
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Metastability

I At first order transitions the correlation length remains finite.
I The mechanism of the first order transition is usually

nucleation, which is related to metastability.
I Examples can be observed at hysteresis or undercooling,

overheating, over-compessing etc.
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Nucleation

I There is a competition between the bulk free energy of the
droplet and its surface energy

I There is a critical nucleus size above which the transition is
very rapid.

I However, such a critical nucleus has to be created by
spontaneous fluctuations – which takes (sometimes
enormously long) time.
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Glassy behavior, frustration
I Model glass: spin-glass:

H = −1
2

∑
〈i ,j〉

JijSiSj

I where Jij are random quenched variables with 0 mean (e.g.
±J with probability half)

Rugged energy landscape.
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Rugged energy landscape

I Typical example NP-complete problems:
I Traveling salesman
I Graph partitioning
I Spin-glass

I No full optimization is possible (do we need it?)
I Very good minimas can be obtained by optimization

I Simulated annealing
I Genetic algorithm

Page 36



Simulated annealing

I Cool down the system slowly
I Warm up and down if needed, if the system quenched into a

local minimum
I One needs a Hamiltonian and an elementary move
I Traveling salesman

I Path length
I Exchange two cities in the path

I Use Metropolis simulated annealing. (T ∼ alcohol)

Demo movie
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Genetic algorithm
I Learn from nature
I Let the fittest to survive

I Fitness function, e.g. energy, length, etc.
I Combine different strategies
I State is represented by a vector (genetic code or genotype)

I Phasespace, city order, neural network parameters, etc.
I Offsprings have two parents with shared genetic code
I Mutations
I Those who are not fit enough die out

I Keep the number of agents fixed
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Genetic algorithm: Reproduction

I Two parents and two children
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Genetic algorithm terminology
I Chromosome: Carrier of the genetic representation
I Gene: Smallest units in the chromosome with individual

meaning
I Parents: Pair of chromosomes, wich produce offsprings
I Population: Set of chromosomes from which the parents are

selected. Its size should be larger than the length of the
chromosome

I Selection principle: The way parents are selected (random,
elitistic)

I Crossover: Recombination of the genes of the parents by
mixing

I Crossover rate: The rate by which crossover takes place
(∼90%)

I Mutatation: Random change of genes
I Mutation rate: The rate by which mutation takes place (∼1%)
I Generation: The pool after one sweep.
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Genetic algorithm terminology
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