
Simulations in Statistical Physics
Course for MSc physics students

Janos Török

Department of Theoretical Physics

October 21, 2014

Page 1

Percolation model

Bond [site] percolation
I Let us have a lattice (network)
I Each bond [site] is occupied with probability p
I (unoccupied with probability 1− p)
I A cluster is a set of sites connected by occupied bonds

[A cluster is a set of occupied sites]

Page 2

Hoshen-Kopelman Algorithm

I Numerical task: find clusters
I Identify clusters
I Visit all sites
I Mark them with numbers

Page 3

Hoshen-Kopelman Algorithm

I Site percolation
I Helical boundary conditions
I Go through site in typewriter style
I Check left and above

Page 4

Hoshen-Kopelman Algorithm, Helical BC

Page 5

Hoshen-Kopelman Algorithm

Page 6

Hoshen-Kopelman Algorithm

Page 7

Hoshen-Kopelman Algorithm

I Go through lattice as typewriter
I Check neighbors
I Resolve conflicts by linking clusters together
I Original trick: use link[] array for cluster size measure

I link[] positive: number of sites in the cluster
I link[] negative: cluster is linked to on other cluster
I Not necessary faster than a seperate arrey for size

Page 8

Percolation on networks (graphs)

I Network is defined by nodes and links
I Two arrays:

I node[] list of nodes
I link[i][] list of links of node i
I link[i][j] is a link between i and j

I Cluster: nodes connected with links

I Links can be directed link[i][j] is a link from i → j

Page 9

Stack (Verem – Hole/Pitfall)

I Last in forst out (LIFO)
I Code:

I Error handling?
I Size of the stack?

Page 10

Percolation on networks (graphs)

Page 11

Percolation on networks (graphs)
I Connected components
I Theory: pc for random graph: number of links L is half of the

number of nodes N: L = N/2
I Robustness:

Page 12

Algorithm percolation on networks (graphs)

1. Go through each node
2. Put node in the stack
3. Get a node from the stack
4. Go through each unmarked link of the node
5. Put other end of links in the stack if it is not marked
6. Mark nodes
7. If the stack not empty Go to 3.
8. If the stack empty Go to 1.

Page 13

Algorithm percolation on networks (graphs)

Page 14

Algorithm percolation on networks (graphs)

Page 15

Result

Page 16

Determine pc

I From order parameter:

I Increase and decrease p by p/2 to converge to pc

I Use the monotonity of the percolation
I Same random number sequence can be generated!

Page 17

Monotonity
Not always true!

Page 18

Ising-model

I Spins
I Interact with extrenal field hi
I Interact with neighbors with coeff. Jij

I The Hamiltonian:

H(σ) = −
∑
〈i j〉

Jijσiσj − µ
∑

i

hiσi

I Order parameter magnetization

M =
∑

i

σi

Page 19

2D Ising-model

I 2 dimensions
I Homogeneous interaction: Jij = J
I No external field (for the time being) h = 0

Page 20

Importance sampling

I Given a Hamiltonian H(q,p)

I We ask for the time average of a dynamics quantity at
temperature T

Ā =

∫
A(q,p)Peq(q,p,T)dqdp

I In the canonical ensemble

Peq(q,p,T) =
1
Z

e−βH(q,p)

I If A depends only on the energy (often the case):

Ā =

∫
A(E)ω(E)Peq(E ,T)dE

Importance sampling is needed!

Page 21

Importance sampling

I ω(E)Peq(E ,T) has a very sharp peak (for large N)
I System spends most of its time in equilibrium
I Importance sampling:

Generate configurations with the equilibrium probability
I if configurations are chosen accordingly, the for K

measurements:

Ā ' 1
K

K∑
i=1

Ai

How togenerate equilibrium configurations?

Page 22

Metropolis algorithm

(Metropoli-Rosenbluth-Rosenbluth-Teller-Teller=MR2T2 algorithm)

I Sequence of configurations using a Markov chain
I Configuration is generated from the previous one
I Transition probability: equilibrium probability
I Detailed balance:

P(x)P(x → x ′) = P(x ′)P(x ′ → x)

I Rewritten:
P(x → x ′)
P(x ′ → x)

=
P(x ′)
P(x)

= e−β∆E

I Only the ration of transition probabilities are fixed

Page 23

Metropolis algorithm

(Metropoli-Rosenbluth-Rosenbluth-Teller-Teller=MR2T2 algorithm)

P(x → x ′)
P(x ′ → x)

=
P(x ′)
P(x)

= e−β∆E

I Metropolis:

P(x → x ′) =

{
e−β∆E if∆E > 0
1 otherwise

I Symmetric:

P(x → x ′) =
e−β∆E

1 + e−β∆E

Page 24

Characteristic time
I Equilibrium: system is stationary.
I We can measure after relaxation time
I New measurement after correlation time

φEE (t) =
〈E (t ′)E (t ′ + t)〉 − 〈E 〉2

〈E 2〉 − 〈E 〉2
, τ =

∫ ∞
0

φEE (t)dt

I Sample with intervals ∆t > τ

Page 25

Metropolis algorithm

Recipes:
I Choose an elementary step x → x ′

I Calculate ∆E
I Calculate P(x → x ′)
I Generate random number r ∈ [0, 1]

I If r < P(x → x ′) then new state is x ′; otherwise it remains x
I Increase time
I Measure what you want
I Restart

:-)

Page 26

Metropolis algorithm, proposal probability

Transition probability:

P(x → x ′) = g(x → x ′)A(x → x ′)

I g(x → x ′): proposal probability
I Generally uniform
I If different interactions are present then it must be

incorporated
I A(x → x ′): acceptance probability

I Metropolis
I Symmetric

Page 27

Metropolis, proof

State flow
Let E > E ′:

I x → x ′

P(x)g(x → x ′)A(x → x ′) = P(x)

I x ′ → x

P(x ′)g(x ′ → x)A(x ′ → x) = P(x ′)e−β∆E

I In equilibrium they are equal:

P(x)

P(x ′)
= eβ∆E

I What we wanted.

Page 28

Finite size effects
Magnetization 2d lattice Ising model

I Determine critical temperature
I Determine critical exponents
I System size dependence???

Page 29

Finite size scaling

I Correlation length
ξ ∝ |T − Tc |−ν

I Cannot be infinite!
I There will be a critical point for the finite system
I If L is finite ξ cannot be larger than L

L ∝ |T (L)− Tc |−ν

I The position and the width of the transition

|T (L)− Tc | ∝ L−1/ν

I 3 parameters to fit ν, T (L), and a constant

Page 30

Finite size scaling

I Binder Cumulant method (find something which does not
scale with L)

I Find something which scales with ν
I The standard deviation of the order parameter:

σ(L) ∝ L−1/ν

I Two steps, both with two parameter fits:

σ(L) ∝ L−1/ν

|T (L)− Tc | ∝ L−1/ν

Page 31

Three parameter fit: Ising model

I Theory: ν = 1, Tc ' 2.27

Page 32

Finite size scaling: Ising model

I Theory: ν = 1, Tc ' 2.27

Page 33

Fitting

Linear regression

y = α + βx

β̂ =

∑
(xi − x̄)(yi − ȳ)∑

(xi − x̄)2 =
xy − x̄ ȳ

x2 − x̄2

α̂ = ȳ − β̂x̄

ρ =
xy√
x̄ ȳ

(1)

Page 34

Fitting

Houbble original fit:

Page 35

Fitting

Houbble change in time:

Page 36

Fitting

Houbble change in time:

Page 37

