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Simulations in Statistical Physics
Course for MSc physics students

Janos Torok

Department of Theoretical Physics

September 9, 2014



Information

» Coordinates:
» Torok Janos
» Email: torok@phy.bme.hu, torok720gmail.com
» Consultation:
> F 1l building, first floor 6 (after the first stairs to the right, at
the end of the corridor), Department of Theoretical Physics
> (Department door is open if light to the right is green push
the door HARD!)
» Upon demand (Email)

» Webpage: http://www.phy.bme.hu/~torok
» Homework: http://newton.phy.bme.hu/moodle
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Required knowledge

» Knowledge of basic statistical physics
» C, or C++ language (only basic things)
» English
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Examination requirements

» Signature

Mid November: home work

A problem to be solved by simulation

Code written in C or C4++, which compiles easily

Documented working code (no extra libaries except for gs1)

Using fancy visualization techniques does not impove the mark

which is given for the algorithm, the efficiency of the code and

the solution of the problem

» A pdf documentation of the results and explanation (3-5
pages)

» Language: English, Hungarian

vV vy VY VvYy

» Exam: mark

» 3/5: From the code and documentations
» 2/5: Lecture material

> Both must be at least 2 to have a final note larger than 1

» Presentation random part of the code
» Language: English, Hungarian, German, French
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Literature

» D.W. Heermann: Computer simulation methods in theoretical
physics, Springer, 1995
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D. Landau and K. Binder: A guide to Monte Carlo simulations
in statistical physics (Cambridge UP, 2000)

D. Rapaport: The art of molecular dynamics programming
(Cambridge UP, 2004)

J. Kertész and |. Kondor (eds): Advances in computer
simulation (Springer, 1998)

W.G. Hoover: Molecular Dynamics (Springer, 1986)
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Overview of statistical physics

Aim
» Microscopic explanation of thermo dynamics
» Calculate macroscopic properties from microscopic principles

» Explain phenomena (phase transitions, pattern formation, etc.)

Major parts
» Equilibrium

» Non-equilibrium
» Perturbation of an equilibrium system
» Far-from equilibrium system
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Definitions in statistical physics
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Isolated system: No interactions with the world
Closed system: Only energy transfer with the world

Reservoir: Part of an isolated or closed system which is much
larger than the rest and any change in the rest leaves this part
unaffected

Microstate: a point in the phase space, snapshot of the system
with all required quantities (e.g. position, speed, etc.)

Macrostate: thermodynamic or hydrodynamic state.
Equilibrium: Not flow of energy in the system
Detailed balance: in thermodynamic equilibrium

miPjj = m;Pji

m;: probability of state /, Pj;: transition probability i — j



Averages
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» Time average:

_ 1 77
A= lim — [ A(q(t), p(t))dt
—00 0

» Ensemble average:

A = gy | Ala PIPa.p)dads

E.g. P(q,p) = exp(—betaH).
» Equivalence: Ergodicity, Thermodynamic limit N — oo
» Problems:

» Order of limits (glasses)
» Non-equilibrium: T — oo
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Fluctuation-dissipation theorem

» Dynamical system Hp(x) subject to thermal fluctuations

v

Observable x(t) fluctuates around (x)o.

v

(w)

Power spectrum of fluctuations of x: Sy(w) = X(w)X*
Linear perturbation of the Hamiltonian: H(x) = Ho(x) + fx

>
» Susceptibility (linear response):
(x( x)o + / f(r)x(t —7)dr
» The Fluctuation-dissipation theorem relates the above as
5@) = 22 img(w)

v

Can be used to define temperature
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Phase transitions

Equilibrium order parameter | Non-equilibrium | order parameter
liquid-gas density traffic jam flux
ferromagnetic | magnetization flocking average speed
jamming be —
glass replicas

» Order of phase transition: which derivative of Gibbs free

energy becomes discontinuous

» Better classification:
» First order: discontinuous transition (latent heat)

» Second order: continuous transition, order parameter is

continuous but susceptibility is divergent
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Phase transitions

II
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» Order of phase transition: which derivative of Gibbs free
energy becomes discontinuous
» Better classification:

» First order: discontinuous transition (latent heat)
» Second order: continuous transition, order parameter is
continuous but susceptibility is divergent
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Correlation function

> e.g. Magnetic systems

» Close to the critical point:
G(r) = r @2 exp(—r /),

where
Eox | T =T

is the correlation length. The correlation length, i.e., the
characteristic size of the regions, where the fluctuations are
correlated diverges at the critical point.

» v and 7 are critical exponents.
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Correlation function

» Near to the critical point G is a generalized homogeneous
function of its variables:

G(r,t, h) o b=V G(r/b, b t, " h),

where t = (T — T;)/Tcand t = 0, h — 0.
» The susceptibility

xzﬁv/cmwﬁzmc—@»%

» Magnetization (OP), susceptibility, specific heat

oM oF oF
o ME=aw Tt
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Scaling relations

» C(h=0) x |t|7@

» M(h=10) x (—t)—p, t<0
x(h=0) o [t]™

M(t = 0) o< h'/0

> 8 exponents: «, 3,7,0,7,V, Yt, Yh

v

v

v

Scaling relations (d dimension):

> ye=1/v, ypn=d - B/v
> a+20+v=2

> o=1+7/8
» dvr=2—«
- v =7/ -1)

» Two independent exponents left — universality classes
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