
Simulations in Statistical Physics
Course for MSc physics students

Janos Török

Department of Theoretical Physics

November 26, 2013

Page 1



Spreading on networks

I Di�usion

I Random walk

I Disease USA UK
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Random Walk on Random Networks

I Master egyenlet:

∂n(i)

∂t
=

1

2
[n(i − 1)− 2n(i) + n(i + 1)]

∂n(x)

∂t
= D∆n(x)

I Dicrete:
∂ni
∂t

=
∑
j

Dijnj

I What is Dij?
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Random Walk on Random Networks
I Discrete Laplace operator Dij

I 1d:



−2 1 0
1 −2 1

1 −2 . . .
. . .

. . . 1
1 −2 1

0 1 −2



I 2d:



−4 1 0 · · · 1 0

1 −4 1
. . .

0 1 −4 . . . 1

1
. . .

. . . 1
. . . 1 −4 1

0 1 1 −4


I General: adjacency matrix: Dij = Aij − kjδij
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Random Walk on Random Networks
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Random Walk on Random Networks

I Rate equation nk probability of �nding the walker an a site
with k edges:

∂nk
∂t

= −rnk + k
∑
k ′

P(k ′|k)
r

k ′
nk ′

I Uncorrelated random network:

P(k ′|k) =
k ′

〈k〉
Pk ′

I New equation:

∂nk
∂t

= −rnk + r
k

〈k〉
∑
k ′

P(k ′)nk ′

I Solution:

nk =
k

〈k〉N
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Page rank

I Do what surfers do

I Random walk on pages, but sometimes (probability q) a new
(random) restart

I Self-consistent, equation:

PR(i) =
q

N
− (1− q)

∑
j

Aij
PR(j)

kout,j

I Solution: iteration
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Page rank example
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Disease spreding, SIR model

I S: susceptible

I I: Infected

I R: Recovered
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SIR model, connected graph
Governing equations:

Ṡ = −βIS
İ = βIS − νI
Ṙ = νI
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Algorithm for the SIR model

1. List of initially infected nodes is I

2. Get a random (infected) node u from the list I

3. For all neighbors w of u do 4.

4. If w is susceptible change it to infected with probability β, and
enqueue it into list I

5. With probability ν change state of u to recovered otherwise
put it back to I

6. If I is not empty go back to 2.
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Bit coding algorithm for the SIR model

I Ensemble average: each bit is a di�erent instance

I Choose a link l which is between nodes ni and nj

I r is a random number with bits 1 of probability β (choose
β = 2−n or similar)

I Passing disease: p = [s(ni )|s(nj)]&r

I Change states: s(ni )| = p and s(nj)| = p

I A slightly di�erent implementation than previous
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Other agent based models

I Agents are nodes

I Interactions through links

I Any network:
I Lattices
I Random networkss
I Scale-free
I Fully connected graphs

I Examples:
I Opinion models
I Game models
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Opinion models

I Agents have opinion xi
I binary ±1 (yes/no)
I discrete (parties)
I continuous (views)
I vector (di�erent aspects)

I Interaction with other agents
I pairwise
I global (with mean)
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Ising-model at T = 0

I Result depends on the lattice type (surface tension)

I Phase transition

I For larger systems probability to reach order goes to zero in
d > 2 (surface gets more important)

I Fully connected goes to order (no surface)
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Voter model
I Agents take opinion of random neighbor

1 1
| |

1 � 1 � 0 → 1 � 0 � 0
| |
1 1

I d = 1, 2 �nal state is consensus
I d > 2 �nal state is not consensus, but a �nite system reaches

consensus after a time τ(N) ∼ N
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Variants

I Majority rule (with two neighbors (3 nodes) towards majority)

I Presence of zealots, i. e. agents that do not change their
opinion

I Presence of contrarians

I Three opinion states with interactions only between
neighboring states

I Noise (with some probability p agents change their state)

I Biased opinion in case of a tie
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Bounded con�dence model: De�uant model

I Agents have opinion xi
I if |xi (t)− xj(t)| < ε then

I xi (t + 1) = xi (t)− µ[xi (t)− xj (t)]
I xj (t + 1) = xj (t) + µ[xi (t)− xj (t)]

I µ compromise parameter µ = 1/2 complete compromise

I ε tolerance parameter

I Methods:
I Monte-Carlo simulation
I Master equation:

∂P(x , t)

∂t
=

∫
|x1−x2|<ε

dx1dx2P(x1, t)P(x2, t)×

×
[
δ

(
x − x1 + x2

2

)
− δ(x − x1)

]
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De�uant model: Opinion groups (fully connected graph)
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De�uant model: Bifurcation diagram

∆ = 2/ε, µ = 1/2
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Global: Hegselmann-Krause model

I Choose node i

I Test for all neighbors, which have opinion within the tolerance
level

I Average their opinion

I Adapt to it

I Similar behavior
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Hegselmann-Krause model
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Game models:

I Rock-paper-scissors

I Prisoner's dilemma

I Chicken, hawk-dove game
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Game models:

I Rock-paper-scissors

I Prisoner's dilemma

I Chicken, hawk-dove game
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Rock-paper-scissors

I No winning strategy on (truly) random opponent

I E.g bacterian and antibiotics in mice

I Grass-rabbit-fox

I Popular in games
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Prisoner's Dilemma

I Each player with a preferred strategy that collectively results in
an inferior outcome

I Dominating strategy regardless of the opponent's action

I Nash equilibrium, from which no individual player bene�ts
from deviating

Cooperate Defect

Cooperate 4, 4 1, 5
Defect 5, 1 2, 2
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Prisoner's Dilemma

I One game → defect

I Fixed number of games → defect

I Large pool of players (movie):
I If other codes are known, it can be derived
I If pool is diverse the best strategy is tit for tat (start with

cooperation)
I In general:

I Nice (do not defect before opponent does)
I Retaliating (punish!)
I Forgiving (Yes!)
I Non-envious (do not want to gain more than your neighbor)
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Chicken game, Hawk-Dove game
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Chicken game, Hawk-Dove game

I No preferred strategy

I The best strategy is to anti-coordinate with your opponent

Cooperate Defect

Cooperate 0, 0 -1, 2
Defect 2, -1 -5, -5

I Example: Cold war

I Solution: anti-correlated pure strategy

I Probabilistic (play Hawk with p′)
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Chicken game, Hawk-Dove game di�erence to Prisoner's
dilemma

Cooperate Defect

Cooperate Reward S, T
Defect T, S Punish

I Prisoner's dilemma:
Temptation(T)>Reward(R)>Punish(P)>Sucker(S)

I Chicken game:
Temptation(T)>Reward(R)>Sucker(S)>Punish(P)
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