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Directed percolation
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Directed percolation

» More complicated than percolation

> 3 exponents (correlation lengths in two directions) v, v/, and
(order parameter)

p(Ap, t, L) ~ b=B/ (/YL Ap, t /b7, L/ b),

with z =) /vy.

log pi
» /v as on figure
- ! pP>p,
> zin a large sample
» Critical scaling of finite P<p,
clusters Pﬁ”’lh log t
1
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Directed percolation

» Density versus time

Length £ & width w
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» Length/width versus size

» Clusters are fractal



Numerical renormalization group

> At the critical point the system is self similar (scale-free)

> It does not matter on which scale we are looking at it.
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Numerical renormalization group
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0 for0<p<p,,

lim R(p)=4 ¢

for p=p..

» As the system gets larger it converges into a fixed point
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Numerical renormalization group, percolation

probability that the cell is spanned:

p'=R(p) =2p°(1 - p)> +4p* (1 — p) + p*

In the critical point p’ = p.

v

Three solutions pg =0, p1 = 1, and p, = 0.6180
Theoretical value p. = 0.5927
Larger blocks (only numerically possible) give better estimates

vV vVv.vyYy
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Neural networks
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Neural networks

Hidden
Input

v

Machine learnin
Output achine learning

v

Pattern recognition

v

Handwriting

v

Speech recognition

v

Input pattern

v

Output pattern

v

Adaptive wights

v

Approximating non-linear
functions
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Neural networks

v

Input vector /

Output vector O(/)

Transition matrix Wj; € [—1,1]
Data training:

» Superwised learning
» Fitness function, energy:

v

v

v

E=T(I)- 0().

where T(/) is the target vector for input /
» Minimize E for available set of {/,/(0)} pairs

Test goodnes:

v

» Use only part of {/,/(0)} pairs for learning, the rest is for
testing.
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Neural networks

» Learning methods:
» Linear regression
» Genetic algorithm
» Simulated annealing
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Networks

Complex networks
» Mathematics: Graphs

» Vertices, nodes, points
» Edges, links, arcs, lines

» Directed or undirected
Loop
Multigraph
Wighted graphs
Connected

vV vy vy
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Complex networks
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Phenomenon Nodes ‘ Links

Ising Spins Interaction(neighbors)
Cell metabolism Molecules | Chem. reactions

Sci. collaboration | Scientists | Joint papers

WwWw Pages URL links

Air traffic Airports Airline connections
Economy Firms Trading

Language Words Joint appearance




Complex networks, citations
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Random Networks

Generate networks:

» From data:

v

vV vy VvYyy

Phone calls
WWW links
Biology database
Air traffic data
Trading data

> Generate randomly
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>

vV vy

From regular lattice by random algorithm (e.g. percolation)
Erd6s-Rényi graph

Configurations model

Barabasi-Albert model



Erdés-Rényi

» P. Erdés, A. Rényi, On random graphs, Publicationes
Mathematicae Debrecen, Vol. 6 (1959), pp. 290-297 (cit 789)

» Two variants:
1. G(N,M): N nodes, M links
2. G(N,P): N nodes, links with p probability (all considered)
> Algorithm
1. G(N, M):
» Choose i and j randomly i,j € [1,N] and i # j
> If there is no link between i an j establish one
2. G(N, P): (Like percolation)

> Take all {i,j} pairs (i #j)
> With probability p establish link between i and j
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Erdés-Rényi

» Degree distribution

N-—-1 1
P(k):( B >pk(1_p)/\/ 1—k
» For large N and Np =const it is a Poisson distribution

(np)ke

P(k) — i

£=0 r=01 p=02

(@ ® ©
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Erdés-Rényi

» Real life: Read networks
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Most networks are different!
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Configuration model

» Get the nodes ready with , ’ Y
desired degree distribution —

» Connect them randomly -

» Self loops, and multiple /k
links are created o«

» Problems at the end

RAKA LSS

111111222233334445566 | |(14122325123634351145
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Preferential attachment

Barabasi-Albert graph
» Initially a fully connected graph of mg nodes

» All new nodes come with m links (m < mg)
m=1

AR

» Links are attached to existing nodes with probability
proportional to its number of links

> k; is the number links of node /, then

pa = ki
i ijj
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Barabéasi-Albert graph
» Degree distribution

» Independent of m!

® ‘_2..
.._..'-.
HeTe Wy
Tee :
a‘.‘d.l" @
e e
=
..."

m=1



Scalefree network example: Flight routes
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Scalefree network example

. Co-authorship
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Algorithm for Barabasi-Albert graph

© N o R whd

Page 24

n = mg number of existing nodes

K =3_; kj total number of connections

r random number r € [0, K]

Find imax for which ZJ”:S ki <r

If there is no edge then add one between nodes n + 1 and imax
If node n+ 1 has less than m connections go to 3.

Increase n by 1

If n < N go to 2.



Percolation and attack on random networks

» Failure: equivalent to percolation: remove nodes at random
» Attack: remove most connected nodes
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Percolation and attack on random networks

» Efficiency:
1 1
E(C) = yw—1) 2 3

i#i
tij the shortest path between i and j.
» N = 2000, k =10

0.4

e—-® ER failure
o8 ER k-based attack
=—=o BA failure
&—#8 BA k-based attack

0.3

Efficiency

0.1

A o

o] 0.2 0.4 0.6 o8
p = fraction of removed nodes
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Percolation and attack on random networks
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