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Algorithmically defined models



Fractal growth

Elctrochem. deposition

Mineralization

Surface crystallization

Disordered viscous fingering

Bacterial

colony

growth



Basic equations:
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Laplacian or gradient governed groth:

If there is a bump, the gradient 

increases (c.f. electrostatic peak effect) 

the bump grows… instability

+ screening:

If 2 bumps grow, the faster will screen 

the slower and stop its growth



Simple model: Diffusion limited aggregation (DLA)

Start with a seed particle forming the initial aggregate.

* Another particle comes from infinity via a random walk until 

it sticks to the aggregate.

Goto *
100 million particles

Coarsened

Self-similar structure

1 million particles
http://apricot.polyu.edu.hk/dla/dla.html



Illustration of statistical self-similarity



In order to simulate (relatively) large samples tricks are needed

- Birth ring sorrounding the aggregate

- No need to let the particles walk far away: killing ring

- If far from the aggregate: large steps possible

For very large (>107) particles more tricks (fitted step size, 

dynamic storage)

Why are so terribly large aggregates needed?Self similar fractals, 

scaling  asymptotic behavior. How to measure fractal dimension?



Dimensions

- Topological dimension:

Point: dt=0, moving point: dt=1, moving line, dt=2…

- Embedding dimension:

Number of independent directions

- Hausdorff (fractal) dimension

Area A is mesured by covering the 

object with squares of size l2. # of 

such boxes: Nl .
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For a fractal this definition does not lead to a good result (0 or )
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appropriate D fractal dimension 

such that 
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(Def of fractal:

dt < D < de )



How to measure D for a random fractal?

There is always a lower and an 

upper cutoff (e.g., particle size, 

radius of gyration).

1. Box counting: Use the definition of D. Cover the object with 

a mesh of mesh size l, count the boxes where there is 

occupation. Plot log-log the dependence of Nl vs l.
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2. Sand box method

L

DLM ~

3. Correlation functions

α

ρρ
α

α

dD

rMrrdrC

rrrC

rd )(~~')'(

~)0()()(



Lattice effects

Laplacian aggregates have two categories:

Tip splitting

Stable tips

Stabilized by anisotropy



DLA on a lattice is anisotropic but splitting tips are observed! 

Randomness suppresses the stabilizing effect.

No much difference between lattice and 

off lattice DLA (a)

What if we suppress randomness?

„Noise reduction”: The growth happens 

only after the m-th particle arrives at the 

growth site. Ordinary DLA: m=1

m = 2 m = 20



106 particles

on-lattice

off-lattice

10 clusters of 105 particles



Dielectric breakdown model

We start from a grounded center in 2d (or 3d) sorrounded by a 

far circle (sphere) held on potential = 1. We solve the Laplace 

eq. The neighboring sites to the grounded aggregate are growth

sites. The growth probability is  
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is a conintuous parameter, 

which has severe influence 

on the shape of the 

aggregates.

= 1 corresponds to the DLA 

case. In fact the patterns are 

very similar and the fractal 

dimension too.



C. Amitrano: PRA 39 

6618 (1989)

DLA

DBM

Dielectric breakdown model
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What is then the 

role of 

randomness?



The Eden model

If = 0 the growth probability becomes independent of the 

Laplacian field (no need to solve the eq.). 

Eden model: Starting from a seed (initial aggregate) the 

perimeter sites are considered as growth sites. One of them is 

picked at random and added to the aggregate. There are new 

born growth sites.

No fractal

Interesting surface



Ballistic deposition

http://www.msgodfrey.co.uk/images/DLD-100000.png
http://www.msgodfrey.co.uk/images/DLD-150000pts_c1_3D.png


These models lead to objects where D = dembedding

Interesting: The structure of the surface.

„Surface growth models” 

It is more convenient to study them in the „substrate geometry”.

The growth starts from a plane d-dimensional substrate and 

proceeds in the remaining, d+1-st dimension (thus it is called d+1 

dimensional growth).

We assume that the surface can be described by a single valued

function h(x). This could be identified, e.g., with the maximum

distance of the surface above positionx of the substrate. In these

terms the ballistic deposition model reads as:

  

h(x,t +1) = max(h(x,t) +1,h(x + nn,t))



These models lead to non-fractal clusters with constant 

density. The surface shows interesting scaling behavior.

In the substrate geometry we define a univalued function h(x), 

which is the position of the surface above the d-dimensional 

coordinate x of the substrate. This is not uniquely defined, but 

the this does not matter as we are interested in scaling. 

We define the surface width w:

For short times we have:

For long times w is independent of t

z



The exponents can – in principle – be determined by „data 

collapse”

These power laws are summarized in a single scaling form:

w = L f(t/Lz)

z

z=

Vicsek and Family, 1985



The Eden model algorithm (square lattice, substrate 

geometry)

There are 3 kinds of sites: Empty (far from the aggregate), 

already occupied and growth sites (empty ones with at least 

on occupied neighbor). In the array IS we store the 

information about the status of the sites. Empty: -1, 

occupied: 0, growth site: 1. We also store the coordinates of 

the growth sites in a separate array IGR, which has IP 

useful elements, where IP = # growth sites.    

empty  (-1)

occupied (0)

growth (1)

First an element, say the I-th, of IGR is picked at random, the IP-

th element is renamed to the I-th and IP is set to IP -1. IS at the 

selected coordinate is occupied, the empty neighbors become 

growth sites and the corresponding coordinates are put at the and 

of the IGR list. IP is updated accordingly. 



As time goes on a characteristic size of surface fluctuations 

ξ | (t) is buit up over a the substrate region of size ξ||(t), with 

ξ | ~ ξ||
α. In reality, for limited samples sizes, the situation is 

more complicated. Scaling is valid only asymptotically, i.e., 

for L and t  ∞ and the „short time” („long time”) behavior 

is meant as t << tX (t >> tX ) For short time/size there are 

(serious) corrections to scaling. An important source is  the 

structure of the surface. 

_

_



The long wavelength fluctations show the scaling, while on 

short scales the local structure (high steps, overhangs, holes) 

becomes also important. This part of the fluctations contribute to 

the intrinsic width, where the name shows that locally this 

quantity would appear as the width of the surface. If we assume 

that these latter fluctuations are independent of the scaling long 

wavelength fluctuations, we arrive at the relationship:

w2 = wi
2 + ws

2 (*)

where w is the total, wi is the intrinsic width and ws is the part, 

which obeys scaling. As we can measure w the existence of the 

intrinsic width leads to corrections in scaling. There are several 

ways to handle this problem:

-Take into account (*), when evaluating scaling. Since wi is 

expected to become time and size independent soon, we have 

w2(2t) - w2(t) ~t2β for the short time behavior.



- Another possibility is to reduce the intrinsic width. This can 

be done in with the trick of noise reduction as introduced for 

DLA. Note that there should be a compromise between the 

gain in scaling and the loss in computing time.

- Analize models, which are in the same universality class 

(i.e., have the same exponents) as the Eden model but have 

already very small intrinsic width. Such a model is the so 

called restricted solid-on-solid model (RSOS). In this lattice 

model, the surface is indeed a single valued function h(x), 

where growth happens at randomly selected sites such that 

the restriction that |Δh| ≤ 1, where Δh is the height difference 

between neighboring sites. 

Using these techniques a large universality class could be 

identified (ballistic deposition, Eden, RSOS) where the 

exponents fulfill the scaling law: α + z = 2. 

The theory of this so called self-affine growth is due to 

Kardar Parisi and Zhang (KPZ-equation).



Continuum theory of surface growth: an example of 

stochastic differential equations

We have seen that the scaling behavior of surface growth 

can be described by a single valued function h(x,t). Is 

there an equation of motion for this function?

Due to the fluctuations, this has to be a stochastic 

differential equation.

Differential equation y’=f (x,y) has the solution y(x), i.e., a 

function. A stochastic d.e. y’=f (x,y,η) has the solution P(y(x)), 

where η is the noise. We are often interested only in moments 

of y, like <y2>. The simplest s.d.e. is the Langevin eq. of the 

Brownian motion (no external force):  , 

where v is the velocity of the Brownian particle, γis the 

damping and η the „fluctuating force”. 

  

˙ v (t) = -gv(t) +h(t)



We need to specify η. Usually it is assumed to be zero mean, 

white, Gaussian noise:

Under these assumptions the above linear sde can be solved.

   

h(t)h(t') = Ad(t - t')

P(h) =
1

2pD
exp -h2 /2A( )

What about surface growth? Since there is a space variable, 

we look for a stichastic partial differential equation:

The simplest such equation is the Edwards-Wilkinson eq.:

, where F is the flux 

(which can be transformed out using h h-Ft). This linear eq. 

can be solved if η is Gaussian white, spacially uncorrelated 

noise.



The first term is a smoothening one („surface tension”).

The exponents of the EW eq. do not describe the Eden 

(ballistic deposition etc) models.



In Eden model there is lateral growth:

For small grad h this leads to 

an additional term in the eq., 

which, after transforming out 

F has the form:

This is the Kardar Parisi Zhang (KPZ) equation, a nonlinear, 

stochastic, partial differential equation – usually solvable 

only numerically.



Space discretization (1+1 dimensions):



Treating the  noise term (uncorrelated, white):



Time discretization of the noise:

For solution of the sde we use the Euler scheme (due to 

stochasticity we do not need that much of precision but be 

aware of the numerical stability limit:



Handling the last time is difficult (time consuming). If we are 

interested only in the second moment <(Δh)2> then the 

Gaussian distribution involved can be substituted by a 

uniform distribution with zero mean and the same variance:

where ξ is uniformly distributed on (0,1), thus can be directly 

taken from a RNG.



Comparison of results (1+1 dimensions)

Exponent α β z

Eden, ballist. 0.5 0.33 1.6

EW 1/2 1/4 2

KPZ 1/2 1/3 3/2

„KPZ” universality class: Far from equilibrium universality

Further algorithmically defined models possible, as empirical

circumstances require (MBE). The strategy is similar: Find

the appropriate sde and identify the universality class. The 

universality classes depend on the dimension and the

conserved quantities (mass, current).


