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Boundary conditions

I Real boundary conditions
I Closed (nothing)
I Walls (with temperature)
I Substrate (often too expensive)

I Computer based boundary conditions
I Periodic boundary conditions
I Absorbing
I Re�ecting
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Periodic boundary conditions
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Periodic boundary conditions → contacts
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Periodic boundary conditions

Distance
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Periodic boundary conditions deformed box
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Periodic boundary conditions deformed box

Distance

I deformation in xy , xz , yz

directions
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Periodic boundary conditions Lees-Edwards boundary

conditions → shear
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Molecular dynamics

MD: Molecular dynamics

DEM: Discrete element method
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Molecular dynamics

Simulate nature

I Solve Newton's equation of motion

mi r̈i = fi = f
ext
i +

∑
j

f
int
ij , i , j = 1, 2 . . .N
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Application of molecular dynamics

I Molecular systems (classic potentials, temperature)
I Biophysics
I Structural biology
I Glasses
I Amorphous materials
I Liquids

I Granular materials (hard core, dissipative)
I Stones, seeds, pills
I Railbed

I Pedestrians

I Astrological systems (conservative, large scale)
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Program

I Have an algorithm to calculate forces

I Get list of interacting particles

I Determine accelerations and velocities; step particles

I (Set temperature)
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Forces
Internal forces

I Pair potential:

f
int
ij = −f intji = −∇V (rij)

I Many body potentials (molecular bonds)

f
int
ijk = F(ri , rj , rk)

I e.g. 3-body Stillinger-Weber potential:

I Friction forces (next slide...)
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Friction forces

I Moving:

I Stationary:
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Friction forces

I Position is not enough to set friction forces

I No movement → no friction forces

I Solution:

We need history:
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Contact history

I Position is not enough to set friction forces
I Normal force:

Fn = knδnij −me�γn∆vn

I Tangential force:

Ft = kt∆st + me�γt∆vt

∆st = nt

∫ t

tc

{
∆vt(t ′) + [ωi (t

′)ri − ωj(t
′)rj ]

}
dt ′

I Limit ∆st to satisfy |Ft | ≤ µFn

I k sti�ness, γ damping (critical)
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Program

I Have an algorithm to calculate forces

I Get list of interacting particles

I Determine accelerations and velocities; step particles

I (Set temperature)
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Find pairs

Now we know how to calculate forces. How to get pairs?

I All pairs: ∼ N2 calculations. Only if there is no other way!

I Short range interactions: box method

I Long range interactions: k-space
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Bucketing algorithm
Finite interaction length L

I Grid with size L

I Grid of array with particle indexes in box

I Maximum number of neighbors or dynamic array

I If there is vmax then L′ = L + vmax∆t, then reset array every

∆t timesteps
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k-space solution

I Long reange interactions (e.g. Coulomb) cannot be cut o�

I Often more periodic images are needed

I k-space (Fourier-transformation in 3d!)
I Solution of linear problems by Green's-function
I Coulomb problem: in Fouier space → multiplication!

I Ewald summation:
I Handle short range in real and long range in k-space
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Program

I Have an algorithm to calculate forces

I Get list of interacting particles

I Determine accelerations and velocities; step particles

I (Set temperature)
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Euler method

I Velocity:
∆v

∆t
= F/m

∆v = F/m∆t

I Displacement

∆x = v∆t

Too bad!
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Runge-Kutta method

I Fourth order method

I Very precise but
I Four times force calculation
I No energy conservation (non-sympletic)
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Leapforg method

I Calculate v(t + 1
2

∆t) = v(t − 1
2

∆t) + a(t)∆t

I Calculate x(t + ∆t) = x(t) + v(t + 1
2

∆t)∆t
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Verlet method

I Calculate v(t + 1
2

∆t) = v(t) + 1
2
a(t)∆t

I Calculate x(t + ∆t) = x(t) + v(t + 1
2

∆t)∆t

I Derive a(t + ∆t) from the forces
I Calculate v(t + ∆t) = v(t + 1

2
∆t) + 1

2
a(t + ∆t)∆t
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Sympletic integrator

I Energy (slightly modi�ed) is conserved

I Time reversibility
I Verlet
I Leapfrog

I Most molecular dynamics methods use Verlet!
I Forces are calculated once per turn
I Microcanonical (NVE) modelling can be only done with these
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Multiple time scale integration

I Di�erent force range
I Short range change fast
I Long range change slowly

I Recalculate long range forces only in every nth times-step
I Forces are calculated once per turn

I Typical examples:
I Intramolecular forces: strong, high frequency
I Intermolecular forces (e.g. Lennard-Jones, Coulomb) slow

Page 27



Error

Method Error Cumulative error

Euler: ∆t3 ∆t

Runge-Kutta: ∆t5 ∆t4

Verlet: ∆t4 ∆t2

Leapfrog: ∆t4 ∆t2
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