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We give a theoretical analysis of recent experiments on localized shear flow, where in a modified Couette cell
shear bands were created in the bulk away from the confining walls. We discuss how the shape of the shear bands
is related to the cell geometry. First a geometric argument is presented for narrow shear bands which connects
the function of their surface position with the shape in the bulk. Assuming a simple dissipation mechanism we
show that the principle of minimum dissipation of energy provides a good description of the shape function.
Furthermore, we discuss the behavior of shear bands which are detached from the free surface and are entirely
covered in the bulk.

1 INTRODUCTION
If large enough shear stress is applied on jammed
granular material, it fails to sustain the load and starts
flowing. One of the most intriguing instabilities in
granular media is manifested by departure from fluid-
like deformation, distributed throughout the sample,
to a localized deformation that occurs along a rather
narrow interface between two essentially unstrained
parts. This phenomenon, the so-called shear-banding,
has been the subject of many experimental and the-
oretical studies (Mueth et al. 2000; Lesniewska &
Mroz 2001; Tejchman & Gudehus 2001; Herrmann
2001; Kolymbas & Herle 2003; Hartley & Behringer
2003; Tejchman 2004) and still continues to raise in-
tereresting questions.

Many different kind of testers are applied in shear
experiments (Schwedes 2003), but here we focus on a
modified Couette cell (Fenistein & van Hecke 2003;
Fenistein et al. 2004) in which localized shear flow in
the bulk away from the confining walls can be stud-
ied. The experimental setup consists of a cylindrical
container filled with sand up to a certain height The
bottom is split into an outer ring rotating with the
container wall, and a stationary disk of radius Rs in
the center. Thus the outer and inner part of the mate-
rial are rotated relative to each other, which creates a
shear band with cylindrical symmetry: It starts at the
perimeter of the stationary bottom disk and extends
through the bulk up to the free surface.

On the surface the width of the shear band W and
the distance Rc of its center position from the sym-
metry axis was measured. It was found that Rc gets
smaller as the filling height H is increased and that the
shear band exhibits a nontrivial curved shape. What
determines the shape of the shear band is the subject
of our theoretical analysis. The results presented here
are based on the work of (Unger et al. 2004).

A remarkable property of the surface position Rc

is that it depends only on the two length parameters
H and Rs but neither on the particle properties (size,
shape, friction, hardness), nor on the shear rate. This
is contrary to the width of the band, which is affected
by the size and shape of the grains while it is insen-
sitive to changes of the slip radius Rs. This suggests
that the shape of the shear band can be studied sep-
arately from its width. In the followings the width is
neglected and it is assumed that the shear band rep-
resents an infinitely thin layer between two blocks of
material within which no flow occurs (narrow band
approximation).

2 SURFACE - BULK RELATION
The shape of the shear band is described by its ra-
dius r(h) as the function of the height h in the bulk
(0 ≤ h ≤ H). One might expect that the profile r(h) is
the same as the curve of the surface positions Rc(H)
obtained for varying filling heights. However, experi-
mental data shows that the behavior of the two curves
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Figure 1. Symbols are experimental data (Fenistein et al. 2004)
showing the shear band radius r measured in the bulk at height
h for three different filling heights. The solid line is the exper-
imentally found fit curve for the surface positions. The dashed
lines are calculated bulk profiles based on the solid curve.

is fundamentally different (see Fig. 1). The radius on
the free surface can be well fitted by the following
function (Fenistein et al. 2004):

Rc(Rs,H) = Rs(1− (H/Rs)
5/2) , (1)

while the bulk profiles has opposite curvatures. Fur-
thermore, the bulk radius at a given height h is
strongly dependent on the filling height H .

We show that in the narrow band approximation
the bulk profile is uniquely determined by the surface
position Rc(Rs,H). Let us take a system with total
height H and find the position of the shear band r at
height h < H . The subsystem above h can be regarded
as a smaller system with height (H − h) and with slip
radius r at the bottom. Pressure and boundary condi-
tions are the same, and the difference in the width is
neglected. Of course, the surface radius of the shear
band of the subsystem is the same as for the whole
system, thus we conclude that

Rc(Rs,H) = Rc(r,H − h) . (2)

Once the function Rc(Rs,H) is known, this condition
allows us to calculate the shape r(h) of the shear band
throughout the whole system. Taking the function of
Rc given in Eq. 1 the following explicit form of the
bulk profile is obtained:

h = H − r

[

1−
Rs

r
(1− (H/Rs)

5/2)

]2/5

. (3)

The resulting curves for some filling heights are plot-
ted and compared to experimental data in Fig. 1.

3 VARIATIONAL PRINCIPLE
The fact, that geometry and boundary conditions de-
termine the regions of large shear, is not new. The
charm of the experiment discussed here is, however,
that nontrivial, and very precisely measured scaling
laws were found in this special Couette cell. These

scaling laws provide a test for the theoretical descrip-
tion of shear banding.

Very sophisticated continuum models exist to cal-
culate stress and strain rates, and hence also the lo-
cation of shear bands, with finite element methods
(Feise 2000; Tejchman & Gudehus 2001; Kolym-
bas & Herle 2003; Tejchman 2004). These contin-
uum models are currently discussed controversially,
because the relative importance of some of the phe-
nomenological parameters is not clear. The above ex-
periment may serve as a guide.

We show that the well known principle of least dis-
sipation (de Groot & Mazur 1969) explains the exper-
imentally observed features. According to this princi-
ple the material develops such a steady state flow that
it matches the outer constraints while providing the
minimum rate of energy dissipation.

The principle of least dissipation is applied in the
following way: One has to determine the energy dis-
sipation rate as a functional of the velocity field. For
complex equations of motion and stress-strain rela-
tionship this may not always be an easy task, but
if it can be achieved, the correct velocity field (and
hence the location of shear bands) can be obtained by
minimizing this functional. This procedure should be
equivalent to solving the continuum equations.

We illustrate this procedure in the narrow band ap-
proximation, where the velocity field corresponds to a
rigid rotation in the outer part of the Couette cell and
is zero inside a radius r(h), which marks the position
of the shear band. We determine the energy dissipa-
tion rate for arbitrary velocity fields of this kind. Then
we vary the velocity field to find the solution of min-
imal energy dissipation. In the narrow band approxi-
mation this amounts to varying r(h) with the condi-
tion r(0) = Rs while the other boundary at H is free.
We compare the position of the shear band calculated
in this way with the experiment and find that it fits
the experimental results excellently without any free
parameter.

The dissipation rate per unit area is provided by the
shear stress σtn in the shear band times the sliding
velocity r(h)ω between the two sides. Integrating this
over the variational test surface representing the shear
band we get the expression to be minimized:

∫ H

0

r2

√

1 + (dr/dh)2 σtndh = min. (4)

This quantity represents (up to an omitted constant
factor) not only the dissipation rate but also the me-
chanical torque exerted between the stationary and
the rotating part of the system. Therefore the least
dissipation for this specific geometry is equivalent to
the minimal torque which gives further justification of
this approach: it is plausible that the yielding surface
is established where the resistance against the outer
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Figure 2. Results obtained from the variational principle. Sym-
bols show bulk profiles, from top to bottom H/Rs = 0.15, 0.25,
0.35, 0.45, 0.55 respectively. The two lines denote the surface
positions as the function of the total height. The dashed line is
provided by our model, the solid line is the experimental fit func-
tion.

constraint is the smallest, i.e. where the material is
the weakest.

4 SLIDING MODEL
In order to proceed one needs the expression of the
shear stress in Eq. (4) and for that we will use a very
simple sliding model. The shear stress in the yield-
ing surface is taken similar to the Coulomb friction
between two solid bodies: It acts against the sliding
direction, its magnitude is proportional to the normal
pressure pressing the two sides against each other,
but it is independent of the sliding velocity. We as-
sume hydrostatic pressure i.e. pressure proportional
to the depth. The Janssen effect (Janssen 1895) where
the container wall could carry part of the weight of
the material is neglected here. This is justified if H
is smaller than the container width. In our dynami-
cal situation, however, we expect that the applicability
of the hydrostatic pressure can be extended even for
larger filling heights. The shear band (due to many
collisions and slip events) acts as a source of vibra-
tion. If there was a vertical Janssen-type shear stress
at the container wall it would cause a slight creep of
the grain-wall contacts under the perturbation effect
of the shear band. This inhibits the grains at the wall to
keep their original anchoring position and finally they
transmit their load to the next particle below rather
than to the side wall. Therefore the whole weight is
expected to be transmitted to the bottom.

This sliding model leads to the following varia-
tional problem:

∫ H

0

r2

√

1 + (dr/dh)2 (H − h)dh = min. . (5)

The solutions which minimize the integral have a
simple size-scaling property. If one enlarges the sys-
tem by a factor λ, i.e. instead of R(1)

s and H (1) one
takes R(2)

s = λR(1)
s and H (2) = λH (1) then the profile

of the shear band looks the same: the solution will be

H 
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Figure 3. Schematic drawings of open and closed shear bands.

r(2)(h) = λr(1)(h/λ). This is in agreement with the ex-
perimental data on Rc which show the same scaling.

5 NUMERICAL SOLUTION OF THE MODEL
We performed the minimization numerically based on
genetic optimization: The function r(h) is discretized
and is varied randomly but only the changes are ad-
mitted that lower the value of Eq. (5), i.e. reduce the
dissipation. During the optimization the noise level is
continuously decreased and the final state r(h) is re-
garded as one local minimum of the variational prob-
lem.

Results shown in Fig. 2 reproduce nicely the qual-
itative behavior found in the experiment: the concave
shear bands appear in the bulk and build up a convex
confining shape of the surface positions as the filling
height is varied.

The curved profiles provided by the principle of
minimum dissipation can be interpreted as equilib-
rium between two effects. Making the shape slim-
mer at the top reduces the sliding velocity and there-
fore the energy dissipation per unit area. On the other
hand, if the radius is reduced too much at the top it
increases the whole surface of the shear band, which
counterbalances the first effect.

The quantitative agreement with the experimental
fit function (Eq. (1)) is also surprisingly good given
the crude assumptions we made and the fact that our
model contains no free fit parameters.

6 CLOSED SHAPES
For large filling heights the class of “open” solutions
discussed so far is replaced by a new type of solu-
tions (Fig. 3). The shear band, instead of running up
to the free surface, closes forming a cupola-like shape,
where the material covered by the “closed” band is at
rest while the material around and above is rotating.

Several “open” and “closed” profiles can be seen
in Fig. 4.b obtained for various values of H . Fig. 4.a
shows the upper radius of the shear bands which is
characteristic of the “open” solutions but becomes
zero for the “closed” ones. For these cupola shapes
a more relevant parameter is their heights htop ≤ H in
the center, plotted in Fig. 4.c. For “open” profiles htop
equals simply the system height.
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Figure 4. Open and closed shear bands. (a) upper radius, (b) bulk
profiles for several filling heights (0 < H/Rs < 7), (c,d) height
of the shear band htop.

For “closed” bands htop is a monotonically decreas-
ing function of H . By large filling height or alterna-
tively, by applying additional pressure at the free sur-
face the shear band can be pressed down to the bot-
tom. To show this we solve the variational problem in
the limit H � htop, where it is useful to consider the
function h(r) instead of r(h). With change of variable
we get from Eq. (5)

∫ Rs

0

r2

√

1 + (dh/dr)2 (H − h)dr = min. , (6)

where the Euler-Lagrange equation gives

h′′r2(H − h) + (1 + h′2)
[

r2 + (H − h)2rh′
]

= 0 .
(7)

(h′ and h′′ stand for the first and second derivative of
the function h(r).) Retaining only first order terms of
h′ (h′2 ≈ 0) and assuming H − h ≈ H we obtain:

H
(

h′r2
)

′

= −r2 . (8)

This differential equation results in a parabolic profile
of the closed shear bands:

h(r) = htop −
1

6H
r2 , htop =

1

6H
R2

s . (9)

Fig. 4.d shows the numerical solution of htop : it is in
excellent agreement with the approximate analytical
solution.

7 CONCLUSIONS
In this paper we have presented a theoretical analy-
sis of recent experiments on shear band formation.
We applied the approximation of narrow bands and
a variational principle to describe the shape of the
shear bands. The theory provides two kinds of shape
depending on the filling height: i) a curved cylinder

which ends on the surface and ii) a cupola-like form
buried in the bulk. The results are in good agreement
with the experiments. Some predictions are also pre-
sented here concerning the pressure dependence of
the cupola height or the transition between the differ-
ent forms of the shear bands. It is the task of further
experiments to verify or disapprove these predictions.
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