Takács Gábor
egyetemi tanár Budapesti Műszaki és Gazdaságtudományi egyetem (BME)
Elméleti Fizikai Tanszék
tudományos tanácsadó
kutatócsoportvezető
MTA-BME „Lendület” Statisztikus Térelméleti Kutatócsoport

Preprintek

[1] D. X. Horváth and G. Takács:
Overlaps after quantum quenches in the sine-Gordon model,
arXiv:1704.00594 [cond-mat.stat-mech].

Referált szakcikkek

[63] M. Kormos, M. Collura, G. Takács and P. Calabrese:
Real time confinement following a quantum quench to a non-integrable model,
Nature Physics 13 (2017) 246-249, arXiv:1604.03571 [cond-mat.stat-mech].
[62] T. Rakovszky, M. Mestyán, M. Collura, M. Kormos and G. Takács:
Hamiltonian truncation approach to quenches in the Ising field theory,
Nucl. Phys. B911 (2016) 805-845, arXiv:1607.01068 [cond-mat.stat-mech].
[61] P. Azaria, R.M. Konik, Ph. Lecheminant, T. Pálmai, G. Takács and A.M. Tsvelik:
Particle Formation and Ordering in Strongly Correlated Fermionic Systems: Solving a Model of Quantum Chromodynamics,
Phys. Rev. D94 (2016) 045003, arXiv:1601.02979 [hep-th].
[60] D.X. Horváth, P.E. Dorey and G. Takács:
Roaming form factors for the tricritical to critical Ising flow,
JHEP 1607 (2016) 051, arXiv:1604.05635 [hep-th].
[59] D.X. Horváth, S. Sotiriadis and G. Takács:
Initial states in integrable quantum field theory quenches from an integral equation hierarchy,
Nucl. Phys. B902 (2016) 508-547, arXiv:1510.01735 [cond-mat.stat-mech].
[58] M. Lencsés and G. Takács:
Confinement in the q-state Potts model: an RG-TCSA study,
JHEP 1509 (2015) 146, arXiv:1506.06477 [hep-th].
[57] R.M. Konik, T. Pálmai, G. Takács and A.M. Tsvelik:
Studying the Perturbed Wess-Zumino-Novikov-Witten SU(2)k Theory Using the Truncated Conformal Spectrum Approach,
Nucl. Phys. B889 (2015) 547-569, arXiv:1505.03860 [cond-mat.str-el].
[56] M. Mestyán, B. Pozsgay, G. Takács and M.A. Werner:
Quenching the XXZ spin chain: quench action approach versus generalized Gibbs ensemble,
J Stat. Mech. 1504 (2015) P04001, arXiv:1412.4787 [cond-mat.stat-mech].
[55] B. Pozsgay, I.M. Szécsényi and G. Takács:
Exact finite volume expectation values of local operators in excited states,
JHEP 1504 (2015) 023, arXiv:1412.8436 [hep-th].
[54] P. Dorey, G. Siviour and G. Takács:
Form factor relocalisation and interpolating renormalisation group flows from the staircase model,
JHEP 1503 (2015) 054, arXiv:1412.8442 [hep-th].
[53] M. Lencsés and G. Takács:
Excited state TBA and renormalized TCSA in the scaling Potts model,
JHEP 1409 (2014) 052, arXiv:1405.3157 [hep-th].
[52] B. Pozsgay, M. Mestyán, M. A. Werner, M. Kormos, G. Zaránd and G. Takács:
Correlations after quantum quenches in the XXZ spin chain: Failure of the Generalized Gibbs Ensemble,
Phys. Rev. Lett. 113 (2014) 117203, arXiv:1405.2843 [cond-mat.stat-mech].
[51] S. Sotiriadis, G. Takács and G. Mussardo:
Boundary State in an Integrable Quantum Field Theory Out of Equilibrium,
Phys. Lett. B734 (2014) 52-57, arXiv:1311.4418 [cond-mat.stat-mech].
[50] Z. Bajnok, F. Buccheri, L. Holló, J. Konczer and G. Takács:
Finite volume form factors in the presence of integrable defects,
Nucl. Phys. B882 (2014) 501-531, arXiv:1312.2623 [hep-th].
[49] F. Buccheri and G. Takács:
Finite temperature one-point functions in non-diagonal integrable field theories: the sine-Gordon model,
JHEP 1403 (2014) 026, arXiv:1312.2623 [hep-th].
[48] I.M. Szécsényi, G. Takács and G.M.T. Watts:
One-point functions in finite volume/temperature: a case study,
JHEP 1308 (2013) 094, arXiv:1304.3275 [hep-th].
[47] T. Pálmai and G. Takács:
Diagonal multi-soliton matrix elements in finite volume,
Phys. Rev. D87 (2013) 045010, arXiv:1209.6034 [hep-th].
[46] Á. Rapp, P. Schmitteckert, G. Takács and G. Zaránd:
Asymptotic scattering and duality in the one-dimensional three-state quantum
Potts model on a lattice
,
New Journal of Physics 15 (2013) 013058,
arXiv:1112.5164 [cond-mat.stat-mech].
[45] I.M. Szécsényi and G. Takács:
Spectral expansion for finite temperature two-point functions and clustering,
J. Stat. Mech. 1212 (2012) P12002, arXiv:1210.0331 [hep-th].
[44] G.Z. Fehér, T. Pálmai and G. Takács:
Sine-Gordon multi-soliton form factors in finite volume,
Phys. Rev. D85 (2012) 085005, arXiv:1112.6322 [hep-th].
[43] G. Takács and G. Watts:
Excited state g-functions from the Truncated Conformal Space,
JHEP 1202 (2012) 082, arXiv:1112.2906 [hep-th].
[42] G. Takács:
Determining matrix elements and resonance widths from finite volume: the dangerous mu-terms,
JHEP 1111 (2011) 113, arXiv:1110.2181 [hep-th].
[41] M. Lencsés and G. Takács:
Breather boundary form factors in sine-Gordon theory,
Nucl. Phys. B852 (2011) 615-633, arXiv:1106.1902 [hep-th].
[40] G. Fehér and G. Takács:
Sine-Gordon form factors in finite volume,
Nucl. Phys. B852 (2011) 441-467, arXiv:1106.1901 [hep-th].
[39] B. Pozsgay and G. Takács:
Form factor expansion for thermal correlators,
J. Stat. Mech 1011 (2010) P11012, arXiv: 1008.3810 [hep-th].
[38] G. Takács:
Form factor perturbation theory from finite volume,
Nucl. Phys. B825 (2010) 466-481, arXiv: 0907.2109 [hep-th].
[37] G. Mussardo and G. Takács:
Effective potentials and kink spectra in non-integrable perturbed conformal field theories
J. Phys. A: Math. Theor. 42 (2009) 304022, arXiv: 0901.3537 [hep-th].
[36] G. Takács:
Finite temperature expectation values of boundary operators,
Nucl. Phys. B805 (2008) 391-417, arXiv: 0804.4096 [hep-th].
[35] G. Takács:
Form factors of boundary exponential operators in the sinh-Gordon model,
Nucl. Phys. B801 (2008) 187-206, arXiv: 0801.0962 [hep-th].
[34] M. Kormos and G. Takács:
Boundary form factors in finite volume,
Nucl. Phys. B803 (2008) 277-298, arXiv: 0712.1886 [hep-th].
[33] B. Pozsgay and G. Takács:
Form factors in finite volume II: disconnected terms and finite temperature correlators,
Nucl. Phys. B788 (2008) 209-251, arXiv: 0706.3605 [hep-th].
[32] B. Pozsgay and G. Takács:
Form factors in finite volume I: form factor bootstrap and truncated conformal space,
Nucl. Phys. B788 (2008) 167-208, arXiv: 0706.1445 [hep-th].
[31] M. Szőts and G. Takács:
Spectrum of local boundary operators from boundary form factor bootstrap,
Nucl. Phys. B785 (2007) 211-233, hep-th/0703226.
[30] Z. Bajnok, L. Palla and G. Takács:
Boundary one-point function, Casimir energy and boundary state formalism in
D+1 dimensional QFT
,
Nucl. Phys. B772 (2007) 290-322, hep-th/0611176.
[29] B. Pozsgay and G. Takács:
Characterization of resonances using finite size effects,
Nucl. Phys. B748 (2006) 485-523, hep-th/0604022.
[28] Z. Bajnok, L. Palla and G. Takács:
On the boundary form factor program,
Nucl. Phys. B750 (2006) 179-212, hep-th/0603171.
[27] G. Takács and F. Wágner:
Double sine-Gordon model revisited,
Nucl. Phys. B741 (2006) 353-367, hep-th/0512265.
[26] Z. Bajnok, L. Palla and G. Takács:
Casimir force between planes as a boundary finite size effect,
Phys. Rev. D73 (2006) 065001, hep-th/0506089.
[25] C. Ahn, Z. Bajnok, R.I. Nepomechie, L. Palla and G. Takács:
NLIE for hole excited states in the sine-Gordon model with two boundaries,
Nucl. Phys. B714 (2005) 307-335, hep-th/0501047.
[24] Z. Bajnok, L. Palla and G. Takács:
Finite size effects in quantum field theories with boundary from scattering data,
Nucl. Phys. B716 (2005) 519-542, hep-th/0412192.
[23] Z. Bajnok, L. Palla and G. Takács:
(Semi)classical analysis of sine-Gordon theory on a strip,
Nucl. Phys. B702 (2004) 448-480, hep-th/0406149.
[22] Z. Bajnok, C. Dunning, L. Palla, G. Takács and F. Wágner:
SUSY sine-Gordon theory as a perturbed conformal field theory and finite size effects,
Nucl. Phys. B679 (2004) 521-544, hep-th/0309120.
[21] Z. Bajnok, G. Böhm and G. Takács:
On perturbative quantum field theory with boundary,
Nucl. Phys. B682 (2004) 585-617, hep-th/0309119.
[20] Z. Bajnok, L. Palla and G. Takács:
Spectrum of boundary states in N=1 SUSY sine-Gordon theory,
Nucl. Phys. B644 (2002) 509-532, hep-th/0207099.
[19] Z. Bajnok, G Böhm and G. Takács:
Boundary reduction formula,
J. Phys. A35 (2002) 9333-9342, hep-th/0207079.
[18] G. Takács and G.M.T. Watts:
RSOS revisited,
Nucl. Phys. B642 (2002) 456-482, hep-th/0203073.
[17] Z. Bajnok, L. Palla and G. Takács:
Finite size effects in boundary sine-Gordon theory,
Nucl. Phys. B622 (2002) 565-592, hep-th/0108157.
[16] Z. Bajnok, L. Palla, G. Takács and G.Zs. Tóth:
The spectrum of boundary states in sine-Gordon model with integrable boundary conditions,
Nucl. Phys. B622 (2002) 548-564, hep-th/0106070.
[15] Z. Bajnok, L. Palla, and G. Takács:
Boundary states and finite size effects in sine-Gordon model with Neumann boundary conditions,
Nucl. Phys. B614 (2001) 405-448, hep-th/0106069.
[14] Z. Bajnok, L. Palla, G. Takács and F. Wágner:
Nonperturbative study of the two-frequency sine-Gordon model,
Nucl. Phys. B601 (2001) 503-538, hep-th/0008066.
[13] Z. Bajnok, L. Palla, G. Takács and F. Wágner:
The k-folded sine-Gordon model in finite volume,
Nucl. Phys. B587 (2000) 585-618, hep-th/0004181.
[12] G. Feverati, F. Ravanini and G. Takács:
Nonlinear integral equation and finite volume spectrum of minimal models perturbed by Φ(1,3),
Nucl. Phys. B570 (2000) 615-643, hep-th/9909031.
[11] G. Takács and G.M.T. Watts:
Nonunitarity in quantum affine Toda theory and perturbed conformal field theory,
Nucl. Phys. B547 (1999) 538-568, hep-th/9810006.
[10] G. Feverati, F. Ravanini and G Takács:
Scaling functions in the odd charge sector of sine-Gordon / massive Thirring theory,
Phys. Lett. B444 (1998) 442-450, hep-th/9807160.
[9] G. Feverati, F. Ravanini and G. Takács:
Nonlinear integral equation and finite volume spectrum of sine-Gordon theory,
Nucl. Phys. B540 (1999) 543-586, hep-th/9805117.
[8] G. Feverati, F. Ravanini and G. Takács:
Truncated conformal space at c=1, nonlinear integral equation and quantization rules
for multi-soliton states
,
Phys. Lett. B430 (1998) 264-273, hep-th/9803104.
[7] G. Takács:
The R-matrix of the Uq(d4(3)) algebra and g2(1) affine Toda field theory,
Nucl. Phys. B501 (1997) 711-727, hep-th/9702196.
[6] G. Takács:
Quantum affine symmetry and scattering amplitudes of the imaginary coupled
d4(3)affine Toda field theory
,
Nucl. Phys B502 (1997) 629-648, hep-th/9701118.
[5] H.G. Kausch, G. Takács and G.M.T. Watts:
On the relation between Φ(1,2) and Φ(1,5) perturbed minimal models,
Nucl. Phys. B489 (1997) 557-579, hep-th/9605104.
[4] G. Takács:
New RSOS restriction of the Zhiber-Mikhailov-Shabat model and Φ(1,5) perturbations of nonunitary minimal models,
Nucl. Phys. B489 (1997) 532-556, hep-th/9604098.
[3] Z. Horváth and G. Takács:
Form-factors of the sausage model obtained with bootstrap fusion from sine-Gordon theory,
Phys. Rev. D53 (1996) 3272-3284, hep-th/9601040.
[2] Z Horváth and G. Takács:
Free field representation for the O(3) nonlinear sigma model and bootstrap fusion,
Phys. Rev. D51 (1995) 2922-2932, hep-th/9501006.
[1] Z. Bajnok, L. Palla and G. Takács:
A2 Toda theory in reduced WZNW framework and the representations of the W Algebra
Nucl. Phys. B385 (1992) 329-360, hep-th/9206075.

Referált konferencia kiadványok

[1] Z. Bajnok, L. Palla and G. Takács:
Casimir effect in the boundary state formalism,
Workshop on Quantum Field Theory under the Influence of External Conditions (QFEXT07), University of Leipzig, September 16-21, 2007.
J. Phys. A41 (2008) 164011, arXiv: 0801.2836 [hep-th].

Egyéb konferencia kiadványok

[6] Z. Bajnok, L. Palla and G. Takács:
Finite size effects in integrable boundary theories,
IV International Symposium, Varna, Bulgaria, August 2005
Quantum Theory & Symmetries IV, Volume II, pp. 612-621. Edited by V.K. Dobrev, September 2006, Heron Press.
[5] Z. Bajnok, L. Palla and G. Takács:
(Semi)classical analysis of sine-Gordon theory on a strip,
37th International Symposium Ahrenshoop on the theory of Elementary Particles: Recent Developments in String / M Theory and Field Theory, Berlin, Germany, 23-27 Aug 2004.
Fortsch. Phys. 53 (2005) 548-553.
[4] Z. Bajnok, L. Palla and G. Takács:
Boundary states in SUSY sine-Gordon model with supersymmetric integrable boundary condition,
35th International Symposium Ahrenshoop on the theory of Elementary Particles: Recent Developments in String / M Theory and Field Theory, Berlin, Germany, 26-30 Aug 2002.
Fortsch. Phys. 51 (2003) 799-804.
[3] Z. Bajnok, L. Palla and G. Takács:
Boundary sine-Gordon model,
Workshop on Integrable Theories, Solitons and Duality, Sao Paulo, Brazil, 1-6 Jul 2002.
*Sao Paulo 2002, Integrable theories, solitons and duality*
Proceedings of Science PoS(unesp2002)004, hep-th/0211132.
[2] Z. Bajnok, L. Palla and G. Takács:
The Spectrum of Boundary Sine-Gordon Theory,
Proceedings of the NATO Advanced Research Workshop on "Statistical Field Theories", Como, Italy, 18-23 June 2001,
hep-th/0108211.
[1] Z. Bajnok, L. Palla, G. Takács and F. Wágner:
Nonperturbative analysis of the two-frequency sine-Gordon model
Proceedings of Johns Hopkins Workshop on "Nonperturbative QFT Methods and Their Applications"
eds. Z. Horváth and L. Palla, World Scientific, 2001.

Értekezések

[4] Takács G.:
Végesméret effektusok a kvantumtérelméletben
MTA doktori értekezés, 2007.
[3] Habilitációs pályázat
ELTE, Budapest, 2005.
[2] G. Takács:
Free field representation for the form factors of the O(3) nonlinear sigma model and its generalizations (angol nyelven)
Doktori (PhD) értekezés, ELTE, Budapest, 1996.
[1] Takács G.:
Az A2 Toda térelmélet klasszikus vizsgálata
Diplomamunka, ELTE, Budapest, 1992.

Ismeretterjesztő cikkek

[1] Takács G.:
Fizika a Standard Modellben és azon túl
Megjelent: Természet Világa, "Mikrovilág 2012" különszám, 2013 március.

Publikációs és hivatkozási statisztika

Publikációk teljes száma76
Referált folyóiratcikkek63
Referált konferencia kiadványok1
Egyéb konferencia kiadványok6
Preprintek1
Értekezések4
Ismeretterjesztő cikkek1
Idegen hivatkozások száma1127
Független hivatkozások száma1000
Összesített impakt faktor305.172
Hivatkozási adatok (pdf)

(Adatok érvényesek: 2017. április 20.)