Preprints
[1] |
D. X. Horváth and G. Takács: Overlaps after quantum quenches in the sine-Gordon model, arXiv:1704.00594 [cond-mat.stat-mech]. |
Refereed research papers
[63] |
M. Kormos, M. Collura, G. Takács and P. Calabrese: Real time confinement following a quantum quench to a non-integrable model, Nature Physics 13 (2017) 246-249, arXiv:1604.03571 [cond-mat.stat-mech]. |
[62] |
T. Rakovszky, M. Mestyán, M. Collura, M. Kormos
and G. Takács: Hamiltonian truncation approach to quenches in the Ising field theory, Nucl. Phys. B911 (2016) 805-845, arXiv:1607.01068 [cond-mat.stat-mech]. |
[61] |
P. Azaria, R.M. Konik, Ph. Lecheminant, T. Pálmai, G. Takács and A.M. Tsvelik: Particle Formation and Ordering in Strongly Correlated Fermionic Systems: Solving a Model of Quantum Chromodynamics, Phys. Rev. D94 (2016) 045003, arXiv:1601.02979 [hep-th]. |
[60] |
D.X. Horváth, P.E. Dorey and G. Takács: Roaming form factors for the tricritical to critical Ising flow, JHEP 1607 (2016) 051, arXiv:1604.05635 [hep-th]. |
[59] |
D.X. Horváth, S. Sotiriadis and G. Takács: Initial states in integrable quantum field theory quenches from an integral equation hierarchy, Nucl. Phys. B902 (2016) 508-547, arXiv:1510.01735 [cond-mat.stat-mech]. |
[58] |
M. Lencsés and G. Takács: Confinement in the q-state Potts model: an RG-TCSA study, JHEP 1509 (2015) 146, arXiv:1506.06477 [hep-th]. |
[57] |
R.M. Konik, T. Pálmai, G. Takács and A.M. Tsvelik: Studying the Perturbed Wess-Zumino-Novikov-Witten SU(2)_{k} Theory Using the Truncated Conformal Spectrum Approach, Nucl. Phys. B889 (2015) 547-569, arXiv:1505.03860 [cond-mat.str-el]. |
[56] |
M. Mestyán, B. Pozsgay, G. Takács and M.A. Werner: Quenching the XXZ spin chain: quench action approach versus generalized Gibbs ensemble, J Stat. Mech. 1504 (2015) P04001, arXiv:1412.4787 [cond-mat.stat-mech]. |
[55] |
B. Pozsgay, I.M. Szécsényi and G. Takács: Exact finite volume expectation values of local operators in excited states, JHEP 1504 (2015) 023, arXiv:1412.8436 [hep-th]. |
[54] |
P. Dorey, G. Siviour and G. Takács: Form factor relocalisation and interpolating renormalisation group flows from the staircase model, JHEP 1503 (2015) 054, arXiv:1412.8442 [hep-th]. |
[53] |
M. Lencsés and G. Takács: Excited state TBA and renormalized TCSA in the scaling Potts model, JHEP 1409 (2014) 052, arXiv:1405.3157 [hep-th]. |
[52] |
B. Pozsgay, M. Mestyán, M. A. Werner, M. Kormos,
G. Zaránd and G. Takács: Correlations after quantum quenches in the XXZ spin chain: Failure of the Generalized Gibbs Ensemble, Phys. Rev. Lett. 113 (2014) 117203, arXiv:1405.2843 [cond-mat.stat-mech]. |
[51] |
S. Sotiriadis, G. Takács and G. Mussardo: Boundary State in an Integrable Quantum Field Theory Out of Equilibrium, Phys. Lett. B734 (2014) 52-57, arXiv:1311.4418 [cond-mat.stat-mech]. |
[50] |
Z. Bajnok, F. Buccheri, L. Holló, J. Konczer
and G. Takács: Finite volume form factors in the presence of integrable defects, Nucl. Phys. B882 (2014) 501-531, arXiv:1312.2623 [hep-th]. |
[49] |
F. Buccheri and G. Takács: Finite temperature one-point functions in non-diagonal integrable field theories: the sine-Gordon model, JHEP 1403 (2014) 026, arXiv:1312.2623 [hep-th]. |
[48] |
I.M. Szécsényi, G. Takács and G.M.T. Watts: One-point functions in finite volume/temperature: a case study, JHEP 1308 (2013) 094, arXiv:1304.3275 [hep-th]. |
[47] |
T. Pálmai and G. Takács: Diagonal multi-soliton matrix elements in finite volume, Phys. Rev. D87 (2013) 045010, arXiv:1209.6034 [hep-th]. |
[46] |
Á. Rapp, P. Schmitteckert, G. Takács and G. Zaránd: Asymptotic scattering and duality in the one-dimensional three-state quantum Potts model on a lattice, New Journal of Physics 15 (2013) 013058, arXiv:1112.5164 [cond-mat.stat-mech]. |
[45] |
I.M. Szécsényi and G. Takács: Spectral expansion for finite temperature two-point functions and clustering, J. Stat. Mech. 1212 (2012) P12002, arXiv:1210.0331 [hep-th]. |
[44] |
G.Z. Fehér, T. Pálmai and G. Takács: Sine-Gordon multi-soliton form factors in finite volume, Phys. Rev. D85 (2012) 085005, arXiv:1112.6322 [hep-th]. |
[43] |
G. Takács and G. Watts: Excited state g-functions from the Truncated Conformal Space, JHEP 1202 (2012) 082, arXiv:1112.2906 [hep-th]. |
[42] |
G. Takács: Determining matrix elements and resonance widths from finite volume: the dangerous mu-terms, JHEP 1111 (2011) 113, arXiv:1110.2181 [hep-th]. |
[41] |
M. Lencsés and G. Takács: Breather boundary form factors in sine-Gordon theory, Nucl. Phys. B852 (2011) 615-633, arXiv:1106.1902 [hep-th]. |
[40] |
G. Fehér and G. Takács: Sine-Gordon form factors in finite volume, Nucl. Phys. B852 (2011) 441-467, arXiv:1106.1901 [hep-th]. |
[39] |
B. Pozsgay and G. Takács: Form factor expansion for thermal correlators, J. Stat. Mech 1011 (2010) P11012, arXiv: 1008.3810 [hep-th]. |
[38] |
G. Takács: Form factor perturbation theory from finite volume, Nucl. Phys. B825 (2010) 466-481, arXiv: 0907.2109 [hep-th]. |
[37] |
G. Mussardo and G. Takács: Effective potentials and kink spectra in non-integrable perturbed conformal field theories J. Phys. A: Math. Theor. 42 (2009) 304022, arXiv: 0901.3537 [hep-th]. |
[36] |
G. Takács: Finite temperature expectation values of boundary operators, Nucl. Phys. B805 (2008) 391-417, arXiv: 0804.4096 [hep-th]. |
[35] |
G. Takács: Form factors of boundary exponential operators in the sinh-Gordon model, Nucl. Phys. B801 (2008) 187-206, arXiv: 0801.0962 [hep-th]. |
[34] |
M. Kormos and G. Takács: Boundary form factors in finite volume, Nucl. Phys. B803 (2008) 277-298, arXiv: 0712.1886 [hep-th]. |
[33] |
B. Pozsgay and G. Takács: Form factors in finite volume II: disconnected terms and finite temperature correlators, Nucl. Phys. B788 (2008) 209-251, arXiv: 0706.3605 [hep-th]. |
[32] |
B. Pozsgay and G. Takács: Form factors in finite volume I: form factor bootstrap and truncated conformal space, Nucl. Phys. B788 (2008) 167-208, arXiv: 0706.1445 [hep-th]. |
[31] |
M. Szőts and G. Takács: Spectrum of local boundary operators from boundary form factor bootstrap, Nucl. Phys. B785 (2007) 211-233, hep-th/0703226. |
[30] |
Z. Bajnok, L. Palla and G. Takács: Boundary one-point function, Casimir energy and boundary state formalism in D+1 dimensional QFT, Nucl. Phys. B772 (2007) 290-322, hep-th/0611176. |
[29] |
B. Pozsgay and G. Takács: Characterization of resonances using finite size effects, Nucl. Phys. B748 (2006) 485-523, hep-th/0604022. |
[28] |
Z. Bajnok, L. Palla and G. Takács: On the boundary form factor program, Nucl. Phys. B750 (2006) 179-212, hep-th/0603171. |
[27] |
G. Takács and F. Wágner: Double sine-Gordon model revisited, Nucl. Phys. B741 (2006) 353-367, hep-th/0512265. |
[26] |
Z. Bajnok, L. Palla and G. Takács: Casimir force between planes as a boundary finite size effect, Phys. Rev. D73 (2006) 065001, hep-th/0506089. |
[25] |
C. Ahn, Z. Bajnok, R.I. Nepomechie, L. Palla and G. Takács: NLIE for hole excited states in the sine-Gordon model with two boundaries, Nucl. Phys. B714 (2005) 307-335, hep-th/0501047. |
[24] |
Z. Bajnok, L. Palla and G. Takács: Finite size effects in quantum field theories with boundary from scattering data, Nucl. Phys. B716 (2005) 519-542, hep-th/0412192. |
[23] |
Z. Bajnok, L. Palla and G. Takács: (Semi)classical analysis of sine-Gordon theory on a strip, Nucl. Phys. B702 (2004) 448-480, hep-th/0406149. |
[22] |
Z. Bajnok, C. Dunning, L. Palla, G. Takács and F. Wágner: SUSY sine-Gordon theory as a perturbed conformal field theory and finite size effects, Nucl. Phys. B679 (2004) 521-544, hep-th/0309120. |
[21] |
Z. Bajnok, G. Böhm and G. Takács: On perturbative quantum field theory with boundary, Nucl. Phys. B682 (2004) 585-617, hep-th/0309119. |
[20] |
Z. Bajnok, L. Palla and G. Takács: Spectrum of boundary states in N=1 SUSY sine-Gordon theory, Nucl. Phys. B644 (2002) 509-532, hep-th/0207099. |
[19] |
Z. Bajnok, G Böhm and G. Takács: Boundary reduction formula, J. Phys. A35 (2002) 9333-9342, hep-th/0207079. |
[18] |
G. Takács and G.M.T. Watts: RSOS revisited, Nucl. Phys. B642 (2002) 456-482, hep-th/0203073. |
[17] |
Z. Bajnok, L. Palla and G. Takács: Finite size effects in boundary sine-Gordon theory, Nucl. Phys. B622 (2002) 565-592, hep-th/0108157. |
[16] |
Z. Bajnok, L. Palla, G. Takács and G.Zs. Tóth: The spectrum of boundary states in sine-Gordon model with integrable boundary conditions, Nucl. Phys. B622 (2002) 548-564, hep-th/0106070. |
[15] |
Z. Bajnok, L. Palla, and G. Takács: Boundary states and finite size effects in sine-Gordon model with Neumann boundary conditions, Nucl. Phys. B614 (2001) 405-448, hep-th/0106069. |
[14] |
Z. Bajnok, L. Palla, G. Takács and F. Wágner: Nonperturbative study of the two-frequency sine-Gordon model, Nucl. Phys. B601 (2001) 503-538, hep-th/0008066. |
[13] |
Z. Bajnok, L. Palla, G. Takács and F. Wágner: The k-folded sine-Gordon model in finite volume, Nucl. Phys. B587 (2000) 585-618, hep-th/0004181. |
[12] |
G. Feverati, F. Ravanini and G. Takács: Nonlinear integral equation and finite volume spectrum of minimal models perturbed by Φ_{(1,3)}, Nucl. Phys. B570 (2000) 615-643, hep-th/9909031. |
[11] |
G. Takács and G.M.T. Watts: Nonunitarity in quantum affine Toda theory and perturbed conformal field theory, Nucl. Phys. B547 (1999) 538-568, hep-th/9810006. |
[10] |
G. Feverati, F. Ravanini and G Takács: Scaling functions in the odd charge sector of sine-Gordon / massive Thirring theory, Phys. Lett. B444 (1998) 442-450, hep-th/9807160. |
[9] |
G. Feverati, F. Ravanini and G. Takács: Nonlinear integral equation and finite volume spectrum of sine-Gordon theory, Nucl. Phys. B540 (1999) 543-586, hep-th/9805117. |
[8] |
G. Feverati, F. Ravanini and G. Takács: Truncated conformal space at c=1, nonlinear integral equation and quantization rules for multi-soliton states, Phys. Lett. B430 (1998) 264-273, hep-th/9803104. |
[7] |
G. Takács: The R-matrix of the U_{q}(d_{4}^{(3)}) algebra and g_{2}^{(1)} affine Toda field theory, Nucl. Phys. B501 (1997) 711-727, hep-th/9702196. |
[6] |
G. Takács: Quantum affine symmetry and scattering amplitudes of the imaginary coupled d_{4}^{(3)}affine Toda field theory, Nucl. Phys B502 (1997) 629-648, hep-th/9701118. |
[5] |
H.G. Kausch, G. Takács and G.M.T. Watts: On the relation between Φ_{(1,2)} and Φ_{(1,5)} perturbed minimal models, Nucl. Phys. B489 (1997) 557-579, hep-th/9605104. |
[4] |
G. Takács: New RSOS restriction of the Zhiber-Mikhailov-Shabat model and Φ_{(1,5)} perturbations of nonunitary minimal models, Nucl. Phys. B489 (1997) 532-556, hep-th/9604098. |
[3] |
Z. Horváth and G. Takács: Form-factors of the sausage model obtained with bootstrap fusion from sine-Gordon theory, Phys. Rev. D53 (1996) 3272-3284, hep-th/9601040. |
[2] |
Z Horváth and G. Takács: Free field representation for the O(3) nonlinear sigma model and bootstrap fusion, Phys. Rev. D51 (1995) 2922-2932, hep-th/9501006. |
[1] |
Z. Bajnok, L. Palla and G. Takács: A_{2} Toda theory in reduced WZNW framework and the representations of the W Algebra Nucl. Phys. B385 (1992) 329-360, hep-th/9206075. |
Refereed conference proceedings
[1] |
Z. Bajnok, L. Palla and G. Takács: Casimir effect in the boundary state formalism, Workshop on Quantum Field Theory under the Influence of External Conditions (QFEXT07), University of Leipzig, September 16-21, 2007. J. Phys. A41 (2008) 164011, arXiv: 0801.2836 [hep-th]. |
Other conference proceedings
[6] |
Z. Bajnok, L. Palla and G. Takács: Finite size effects in integrable boundary theories, IV International Symposium, Varna, Bulgaria, August 2005 Quantum Theory & Symmetries IV, Volume II, pp. 612-621. Edited by V.K. Dobrev, September 2006, Heron Press. |
[5] |
Z. Bajnok, L. Palla and G. Takács: (Semi)classical analysis of sine-Gordon theory on a strip, 37th International Symposium Ahrenshoop on the theory of Elementary Particles: Recent Developments in String / M Theory and Field Theory, Berlin, Germany, 23-27 Aug 2004. Fortsch. Phys. 53 (2005) 548-553. |
[4] |
Z. Bajnok, L. Palla and G. Takács: Boundary states in SUSY sine-Gordon model with supersymmetric integrable boundary condition, 35th International Symposium Ahrenshoop on the theory of Elementary Particles: Recent Developments in String / M Theory and Field Theory, Berlin, Germany, 26-30 Aug 2002. Fortsch. Phys. 51 (2003) 799-804. |
[3] |
Z. Bajnok, L. Palla and G. Takács: Boundary sine-Gordon model, Workshop on Integrable Theories, Solitons and Duality, Sao Paulo, Brazil, 1-6 Jul 2002. *Sao Paulo 2002, Integrable theories, solitons and duality* Proceedings of Science PoS(unesp2002)004, hep-th/0211132. |
[2] |
Z. Bajnok, L. Palla and G. Takács: The Spectrum of Boundary Sine-Gordon Theory, Proceedings of the NATO Advanced Research Workshop on "Statistical Field Theories", Como, Italy, 18-23 June 2001, hep-th/0108211. |
[1] |
Z. Bajnok, L. Palla, G. Takács and F. Wágner: Nonperturbative analysis of the two-frequency sine-Gordon model Proceedings of Johns Hopkins Workshop on "Nonperturbative QFT Methods and Their Applications" eds. Z. Horváth and L. Palla, World Scientific, 2001. |
Dissertations, theses
[4] |
G. Takács: Finite size effects in quantum field theory (in Hungarian) DSc dissertation, 2007, Hungarian Academy of Sciences. |
[3] |
Habilitation thesis (in Hungarian) Eötvös University, 2005. |
[2] |
G. Takács: Free field representation for the form factors of the O(3) nonlinear sigma model and its generalizations PhD thesis, 1996, Eötvös University, Budapest, Hungary (in English). |
[1] |
G Takács: Investigation of classical A_{2} Toda theory Diploma (MSc) thesis, 1992, Eötvös University, Budapest, Hungary (in Hungarian). |
Popular science articles
[1] |
G Takács: Physics in the Standard Model and Beyond in: Hungarian periodical "Természet Világa" ("World of Nature") Special issue: "Mikrovilág 2012" ("Microworld 2012"), March 2013. |
Publication and citation statistics
Number of publications | 76 |
Refereed journal articles | 63 |
Refereed conference papers | 1 |
Other conference papers | 6 |
Preprints | 1 |
Dissertations, theses | 4 |
Popular science articles | 1 |
Number of non-self citations | 1127 |
Number of independent citations | 1000 |
Total impact factor | 305.172 |
(Citation and impact factor data valid as of 20th April 2017.
Independent citation count: excluding citations by coauthors as well)