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Ab initio studies of electric transport in terms of the real space Kubo-Greenwood equation
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We propose a method suitable to describe electrical transport properties of nanostructures. In this approach
a Green’s function embedding technique based on the fully relativistic spin-polarized Korringa-Kohn-Rostoker
method and the coherent potential approximation is combined with a real-space formulation of the Kubo-
Greenwood equation. We present calculations for the Ag~100! surface, Ag bulk, two types of CuPt bulk alloys
in the ‘‘large cluster’’ limit as well as finite Fe and Co chains embedded into the surface layer of Ag~100! in
order to illustrate the reliability and applicability of this approach.
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INTRODUCTION

Magnetic nanostructures on surfaces are of special in
est for the production of high-density magnetic record
devices. It is therefore an important issue to investigate
magnetic and electrical transport properties of su
structures.1,2 The fully relativistic screened Korringa-Kohn
Rostoker Green’s function method has been successfully
plied in the past to layered systems~systems with two-
dimensional translational symmetry! and reliable results
have been provided for the magnetic properties of s
systems.3–5 This approach was then extended in terms of
coherent potential approximation~CPA!, and, in order to de-
scribe electrical transport properties of such systems,
Kubo-Greenwood formula6,7 was reformulated using one
particle Green’s functions.8,9 This combination of methods
has been successfully applied to various disordered lay
systems with the aim of investigating giant magnetore
tance effects10 as well as evaluating residual resistivities11.

The purpose of the present work is to propose a met
suitable to describe electrical transport properties of na
structures. We use the so-called embedding technique12 in
order to describe the scattering properties of a specific re
of a surface or bulk~called cluster! in combination with a
real-space formulation of the Kubo-Greenwood equation
the present paper we are mainly concerned about the ‘‘la
cluster’’ limit of transport properties in order to check th
reliability of the proposed method. It should be noted, ho
ever, that this method is primarily designed to evaluate e
tric properties of mesoscopic clusters, nanodot or nanow
systems, etc. For this reason we investigated finite chain
Fe and Co embedded into the surface layer of Ag~100!. In
addition to this main goal, further theoretical challenges c
be investigated such as the change of electric properties
a nanostructure scale to thin films or even bulk systems
well as comparing for low dimensional disordered structu
configurational averages in real space with CPA averages8,13

THEORETICAL APPROACH

Suppose the electrical conductivity of a disordered s
tem, namelysmn , is calculated using the Kubo-Greenwoo
formula:6,7
0163-1829/2003/67~17!/174404~7!/$20.00 67 1744
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smn5
p\

N0Vat
K (

m,n
Jmn

m Jnm
n d~«F2«m!d~«F2«n!L . ~1!

In this equationm,nP$x,y,z%, N0 is the number of atoms
Jm is a representation of them-th component of the curren
operator,

Jm5$Jnm
m %, Jnm

m 5^nuJmum&, ~2!

«F is the Fermi energy,um& an eigenstate of a particula
configuration of the random system,Vat the atomic volume,
and ^•••& denotes an average over configurations. Equa
~1! can be reformulated in terms of the imaginary part of t
~one-particle! Green’s function

smn5
\

pN0Vat
Tr^Jm Im G1~«F!Jn Im G1~«F!&, ~3!

or, by using ‘‘up-’’ and ‘‘down-’’ side limits, this equation
can be rewritten as

smn5
1

4
$s̃mn~«1,«1!1s̃mn~«2,«2!2s̃mn~«1,«2!

2s̃mn~«2,«1!%, ~4!

where

«15«F1 id, «25«F2 id, d→0, ~5!

and

s̃mn~«1 ,«2!52
\

pN0Vat
Tr ^JmG~«1!JnG~«2!&,

« i5«6, i 51,2. ~6!

Using ‘‘traditional’’ multiple scattering theory, in a rela
tivistic approach the Green’s function can be written4 in a
configuration space representation as
©2003 The American Physical Society04-1
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^r uG~«!ur 8&5 (
LL8

ZL
i ~r i ,«!tLL8

i j
~«!ZL8

j
~r j8 ,«!†

2d i j (
L

$RL
i ~r i ,«!ZL

i ~r i8 ,«!†Q~r i2r i8!

1ZL
i ~r i ,«!RL

i ~r i8 ,«!†Q~r i82r i !%, ~7!

where i and j label sites, theZL
i (r ,«) and RL

i (r ,«), L
5(km), k and m being the relativistic angular quantum
numbers, are properly normalized regular and irregular s
tering solutions corresponding to the energy« and the poten-
tial Vi(Ri), rÄr i1Ri . The matrix of the so-called
scattering-path operator~SPO! is of the form

t~«!5$t i j ~«!%, t i j ~«!5$tLL8
i j

~«!%, L5~km!,

and so are the single-sitet matrices,

t~«!5$t i~«!d i j %, t i~«!5$tLL8
i

~«!%,

and the matrix of structure constants

G0~«!5$G0,i j ~«!%, G0,i j ~«!5$GLL8
0,i j

~«!%,

satisfying the following fundamental equation

t~«!5@ t~«!212G0~«!#21. ~8!

Let Jm
i («1 ,«2) denote the angular momentum represen

tion of themth component of the current operator in a pa
ticular site i. Using a relativistic formulation for the curren
operator, namelyJ5eca, the elements ofJm

i («1 ,«2) are
given by

Jm,LL8
i

~«1 ,«2!5ecE
WS

ZL
i ~r i ,«1!†amZL8

i
~r i ,«2!d3r i ,

~9!

where theam are the standard 434 Dirac matrices and WS
denotes the volume of the Wigner-Seitz sphere.

If no translational symmetry at all is present, then in pr
ciple one has to sum over all sites in the system includ
leads, contacts, etc., i.e.,

s̃mn~«1 ,«2!5~C/N0!(
i 51

N0

(
j 51

N0

Tr^Jm
i ~«2 ,«1!t i j ~«1!

3Jn
j ~«1 ,«2!t j i ~«2!& ~10!

with C52(4m2/\3pVat) and N0'1023. As such a proce-
dure is numerically not accessible one can define the foll
ing quantity:

s̃mn~«1 ,«2 ;n!5(
i 51

n

(
j 51

n

s̃mn
i j ~«1 ,«2!

5~C/n!(
i 51

n

(
j 51

n

Tr^Jm
i ~«2 ,«1!t i j ~«1!

3Jn
j ~«1 ,«2!t j i ~«2!&, ~11!
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with n being the number of sites in a chosen region~‘‘clus-
ter’’ !. This implies, however, that the convergence proper
of s̃mn(«1 ,«2 ;n) with respect ton have to be investigated
Clearly enough the most useful test cases are those wher
answer is known, namely, for pure~bulk! metals or binary
bulk substitutional alloys.

By using the embedded cluster method12 for finite clusters
in or on a particular substrate~host!, the real space scatterin
path operator of an ensemble of scatterers is given by

tcluster~«!5thost~«!@ I2Dt21~«!thost~«!#21, ~12!

where thost(«) refers to the real-space SPO of thetwo-
dimensionaltranslational invariant host. In here,Dt21 stands
for the difference of the inverse single-sitet matrices for the
host atoms and all atoms that form the cluster:

Dt21~«!5$Dt i j
21~«!5~ t i ,host

21 ~«!2t i ,cluster
21 ~«!!d i j %

~13!

In the particular case of a substitutional binary alloy se
ing as host, configurational averages have to be performe8,9

e.g., for the site-diagonal terms in the following manner:

^s̃mn
i i ~«1 ,«2!&5(

a
ca^Tr@Jm

a~«2 ,«1!t i i ~«1!

3Jn
a~«1 ,«2!t i i ~«2!#& i 5a , ~14!

whereca denotes the concentration of theath component,
aP$A,B%, of a binary alloy. Omitting vertex corrections th
reduces to

^s̃mn
i i ~«1 ,«2!&5(

a
ca Tr@Jm

a~«2 ,«1!^t i i ~«1!& i 5aJn
a~«1 ,«2!

3^t i i ~«2!& i 5a#, ~15!

and ^t i i («)& i 5a can be calculated as

^t i i ~«!& i 5a5Da
i ~«!tc

ii ~«!5tc
ii ~«!D̃a

i ~«!, ~16!

where

Da
i ~«!5@ I 2tc

ii ~«!$~ tc
i ~«!!212~ ta

i ~«!!21%#21,

D̃a
i ~«!5@ I 2$~ tc

i ~«!!212~ ta
i ~«!!21%tc

ii ~«!#21, ~17!

andtc
ii is the i th site-diagonal block of the SPO correspon

ing to a uniform coherent single-site t-matrix,tc . Da
i andD̃a

i

are the so-called impurity matrices@see Eqs.~51! and~52! of
Ref. 8#. For i 5 j one therefore gets

^s̃mn
i i ~«1 ,«2!&5(

a
ca Tr@Jm

a~«2 ,«1!Da
i ~«1!

3tc
ii ~«1!Jn

a~«1 ,«2!Da
i ~«2!tc

ii ~«2!#.

~18!

For theiÞ j case,
4-2
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^s̃mn
i j ~«1 ,«2!&5(

a,b
cacb^Tr@Jm

a~«2 ,«1!t i j ~«1!

3Jn
b~«1 ,«2!t j i ~«2!#& i 5a, j 5b ; ~19!

by omitting vertex corrections this reduces to

^s̃mn
i j ~«1 ,«2!&5(

a,b
cacb Tr@Jm

a~«2 ,«1!

3^t i j ~«1!& i 5a, j 5bJn
b~«1 ,«2!

3^t j i ~«2!& i 5a, j 5b#. ~20!

Using the above defined impurity matrices, the partial av
ages of the SPO in Eq.~20! can be written8 as

^t i j ~«1!& i 5a, j 5b5Da
i ~«1!tc

i j ~«1!D̃b
j ~«1!,

^t j i ~«2!& i 5a, j 5b5Db
j ~«2!tc

j i ~«2!D̃a
i ~«2!. ~21!

Let us finally define the following expression:

J̃m
i ~«1 ,«2!5(

a
caD̃a

i ~«1!Jm
a~«1 ,«2!Da

i ~«2!; ~22!

then, in terms of above formulas and using the propertie
a trace, the contributions to the averaged nonlocal cond
tivity tensor between two different sites of a substitutiona
disordered host are given by

^s̃mn
i j ~«1 ,«2!&5Tr@ J̃m

i ~«2 ,«1!tc
i j ~«1!J̃n

j ~«1 ,«2!tc
j i ~«2!#.

~23!

COMPUTATIONAL DETAILS

For matters of convenience we define a cluster by
following set of vectors of the underlying parent lattice14

L5$RW i%,

R5$RW i uuRW i
a2RW j

0u<r %, ~24!

where theRW i
aPL refer to either impurities sites (a5 imp),

or perturbedhost sites (a5h), or to sites in the vacuum
(a5vac); theRW j

0PL to unperturbedsites of host atoms, an
r is a given length in units of the three- or two-dimension
lattice constanta3D or a2D of L. Sketches of such cluster
are displayed in Fig. 1. In the case of bulk systemsr simply
denotes the radius of a sphere measured from a chosen

FIG. 1. Sketch of different cluster types. The entry to the l
refers to bulk systems, the one in the middle to semi-infinite s
tems, and the one on the right to impurities embedded in the sur
plane of a semi-infinite system.
17440
r-

of
c-

e

l

ri-

gin, in the case of finite chains embedded in the surface la
of a semi-infinite hostr is assumed to be one only in th
self-consistent calculations.

In all cases we used potentials as calculated s
consistently for either a bulk system~fcc-Ag, fcc-CuxPt12x),
or a free surface of a semi-infinite system5 @fcc-Ag~100!#, or
by embedding12 a given cluster in the semi-infinite system
host atoms@finite chains of Fe and Co in the surface layer
Ag~100!#.

The orientation of the magnetization is chosen to be n
mal to the fcc~100! plane, i.e., points along thez axis. For the
angular momentum expansion we usedl max52. In the case
of the Ag surface~fcc parent lattice, no lattice relaxatio
effects are included! 1830ki points in the irreducible wedge
of the two-dimensional Brillouin zone were used to perfo
the real-space host SPO calculations, in the bulk cases 63ki
points, in the cases of Fe and Co impurities embedded
the surface layer of Ag~100! 210 ki points.

If only unperturbedhost atoms form the cluster, then b
increasing the size of the cluster, the physical proper
characteristic for the bulk or surface host can be expected
a rigorous test for the proposed method we used there
such a ‘‘self-embedding’’ procedure, i.e., just takin
tcluster(«)5thost(«) @or tc,host(«) for a disordered system#
in Eq. ~12! and calculated the quantity

rmn5 lim
d→0

rmn~r 0 ;d!, rmn~r 0 ;d!5 lim
r→r 0

rmn~r ;d!,

~25!

wherer 0 is a sufficiently large number,

rmn~r ;d!5@smn
0 ~r ;d!#21, smn

0 ~r ;d!5 (
uRW 0 j u<r

smn
0 j ~d!,

~26!

and d refers to the imaginary part of the Fermi energy, s
Eq. ~5!. Performing thed→0 limit at the stage of Eq.~25!
actually means that the side limits in Eq.~4! are taken at the
last possible step.

I. SURFACE LAYER OF AG „100…

Two different squarelike shaped planar clusters were
vestigated~see Fig. 2!, both havingC4v symmetry which

t
-
ce

FIG. 2. Different shapes of clusters in the surface plane o
fcc~100! substrate.
4-3
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implies the following form forrmn(r ;d):

rmn~r ;d!5S rxx~r ;d! 0 0

0 ryy~r ;d! 0

0 0 rzz~r ;d!
D . ~27!

Increasing the size of the clusters we expect thatrmm(r ;d)
approachesrmm

pp (d), namely, the layer-diagonal (pp) resis-
tivity of that layer in which the clusters are embedded. T
latter quantity can be calculated directly using a tw
dimensional lattice Fourier transformation~see Ref. 5! and
compared to the cluster results. As can be seen from Fig.
reliable convergence of the resistivity can be achieved for
.15a2D , wherea2D is the two-dimensional lattice constan
It should be noted that, in particular, for the resistivity no
mal to the planes the visually faster convergence for clus
type 2~also see Fig. 2! is due to the larger number of atom
forming these clusters than those of type 1.

II. BULK RESISTIVITIES

In the following we investigate three-dimensional cluste
‘‘self-embedded’’ into different bulk systems, such as in pu
bulk metals and in statistically disordered bulk alloys, a

FIG. 3. Planar Ag clusters self-embedded into the surface la
of Ag~100!. The in-plane (xx) and perpendicular to the plane (zz)
resistivity components for two different cluster shapes are sho
versus the characteristic size of the cluster (r ). Diamonds corre-
spond to type 1 in Fig. 2, squares to type 2. The horizontal
refers to the layer-diagonal resistivity~Ref. 9! as calculated using a
2D lattice Fourier transformation.d corresponds to 1 mRy, an
a2D55.508 a.u.
17440
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compare our results with known bulk resistivities~see Refs.
10 and 11!. It is quite clear that for large clusters the res
tivity of these clusters has to approach to the correspond
bulk value, namely to zero for pure metals and to the
called residual resistivity for disordered alloy systems. If w
assume the following behavior of the elements of the re
tivity tensor with respect to the size of the cluster, given
terms of the radius of a sphere measured in units of
three-dimensional lattice constant@see Eq.~24! and Fig. 1#:

rmm~r ;d!5r0~d!1
r1~d!

r
, ~28!

(r0 andr1 are constants! it is obvious that

rrmm~r ;d!5rr0~d!1r1~d!, ~29!

which means that the residual resistivity,r0(d) can be ob-
tained by a linear fit ofrrmm(r ;d) with respect tor. In the
case of substitutional alloys, the slope (r0(d), d→0) corre-
sponds then to the residual resistivity.

A. Ag bulk

The nonvanishing elements of the nonlocal conductiv
tensor (smn

i j ) are shown in Fig. 4, where we chose a~100!-
oriented plane in the bulk with one particular atom serving
the origin of the coordinate system. It should be noted t
for the out-of-plane conductivity, only scatterers are imp
tant which are not too far away from the origin, while in th
in-plane case also scatterers at farther distances do add
negligible contributions to the corresponding components
the conductivity. As can be seen, thexx andyy components
are of similar form, only the shapes are rotated by 90° w
respect to each other.

In principle it is sufficient to evaluate only one compone
of the resistivity because the system and also the clus
have cubic symmetry, which means that by choosing the
ordinate system properly, all nondiagonal elements of
resistivity tensor have to be zero and the diagonal com
nents must be identical. Deviations from this behavior can
used to estimate numerical errors inherent to the calc
tional scheme and the fitting procedure. The actual fitt
@see Eq.~29!#, was performed for each value ofd consider-
ing the last three points ofrrzz(r ;d) ~Fig. 5!. These points
have been chosen because they refer to the biggest clu
considered~the biggest cluster contains 7935 atoms!. In or-
der to obtain the real physical residual resistivity an extra
lation to d50 is needed; see Eq.~25!. This extrapolation is
illustrated in the top part of Fig. 7 and demonstrates that
made an absolute error of roughly 0.05mV cm in our fitting
procedure.

B. CuxPt1Àx bulk

More interesting than pure bulk metals are disorde
bulk alloys because the accuracy of the present approach
be directly compared with experimental data and results
previous calculations. For this reason Cu0.50Pt0.50 and
Cu0.75Pt0.25 have been chosen in order to test the reliability

er

n

e
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the present approach. Again the fitting to a linear form h
been applied to the last three points of therrmm(r ) function
for eachd, in turn; see Fig. 6.

Extrapolating tod50, we get the residual resistivity fo
the bulk systems shown in the lower parts of Fig. 7. As c
be seen, the extrapolation can easily be performed becau
the region 0,d,3 mRy the resistivity depends linearly o
d. In comparing the present results with previous calcu
tions and available experimental data~see, in particular, Ref
11 for a discussion of relativistic effects in these system!,
we find that there is good quantitative agreement for b
concentrations of CuPt.

As already stated the numerical inaccuracy of the pres
approach can be seen best by evaluating the difference

FIG. 4. Nonlocal conductivitiessmm
0 j (xj ,yj ) for bulk fcc Ag.

The atom labeled by 0 is at the position (0,0), while the position
atom j is varied in a~100!-oriented plane. (d corresponds to 1
mRy!.
17440
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tween the in-plane and the perpendicular to the plane
ments of the residual resistivity, since the residual resist
ties,rxx andrzz, must be the same in cubic bulk systems.
can be seen from Fig. 8 that this difference is more or l
independent ofd and is of order of a few tenth of amV cm.

It should be noted that in a fairly recent paper Dulca
al.13 applied real space scattering via the KKR method to
Kubo equation for bulk alloys. Although it might appear th
formally their approach looks very similar to the one pr
sented in here, fundamental conceptual differences hav
be pointed out. The embedded cluster method~ECM! used
by them is restricted to infinite systems@three-dimensional
translational invariance, see Eq.~10! in Ref. 13#, i.e., can
only be used in the case of bulk systems, while in here o
two-dimensional translational invariance for the substrate

f

FIG. 5. Three-dimensional Ag clusters self-embedded into b
fcc Ag. The characteristic size of the cluster~r! times thezz com-
ponent of the resistivity is shown vs the size of the cluster for th
different imaginary parts (d) of the Fermi energy. (a3D

57.78949 a.u.).

FIG. 6. Three-dimensional clusters self-embedded into dis
dered bulk alloys. The characteristic size of the cluster~r! times the
in-plane (xx) and perpendicular to the plane (zz) resistivity com-
ponents are shown versus the size of the cluster by three diffe
imaginary parts (d) of the Fermi energy. (a3D

Cu0.50Pt0.5057.14 a.u.,
a3D

Cu0.75Pt0.2556.995 a.u.).
4-5
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FIG. 7. Extrapolation tod50 for the investigated bulk systems
Full circles refer to the extrapolated values and squares, to ex
mental values measured at room temperature~Ref. 11!. The results
of Dulcaet al. ~Ref. 13! are 80.2 and 31.5mV cm for Cu50Pt50 and
Cu75Pt25, respectively.

FIG. 8. Difference between the residual resistivity for the
plane (xx) and the perpendicular to the plane (zz) component is
shown vs the imaginary part (d) of the Fermi energy for Cu0.50Pt0.50

and Cu0.75Pt0.25.
17440
assumed, which facilitates a correct embedding into se
infinite systems~systems with surface or interfaces!. Further-
more, as stated by Dulcaet al.13 their ECM necessarily is
~charge! non-self-consistent, whereas in the present case
substitutional alloys serving as substrate the embedd
problem is solved~charge! selfconsistently. The result
shown in here for bulk systems have to be viewed entirely
an illustration of the accuracy of the present approach. T
approach suggested by Dulcaet al.13 is perfectly suited to
discuss short-range order effects in bulk binary substitutio
alloys; it cannot be used for evaluating electric properties
nanostructures in or at surfaces of semi-infinite systems.

III. NANOSTRUCTURES

As an illustration for applications in direction of nano
structures finite chains of Fe and Co embedded in the sur
of Ag~100! were considered, also see Fig. 1, and Refs.
and 15, using the above mentioned embedded cluster me
for semi-infinite systems. For this particular investigation t
orientation for the magnetization was chosen to point alo
the surface normal (z axis!.

Since clearly enough a summation over all sites includ
the semi-infinite substrate would yield only the resistivity

ri-

FIG. 9. Residual resistivities of finite chains of Fe~circles! and
Co ~triangles! atoms embedded in the surface plane of Ag~100!.
Open squares refer to the difference between the Fe and Co res
resistivity. The length of the chains is shown explicitly. For defin
tions, see the text.
4-6
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AB INITIO STUDIES OF ELECTRIC TRANSPORT IN . . . PHYSICAL REVIEW B67, 174404 ~2003!
the substrate, namely zero in the case of Ag~100!, a kind of
‘‘residual resistivity’’ for finite clusters has to be defined,

smm
a ~m;n!5

1

m (
i 51

m

(
j 51

n

@smm
i j # i 5a , ~30!

rmm
a ~m;n!5smm

a ~m;n!21, ~31!

wherem denotes the number of impurities of typea at sites
i. The summation over the second index~j! is restricted as in
the previous cases by a certain length of the difference ve
RW i j @see Eq.~24!#, the convergence of which has to be inve
tigated.

In Fig. 9 such residual resistivities are shown for fin
chains of Fe and Co embedded along thex ~110! direction in
the surface layer of Ag~100!. As can be seen in this figur
chains with an even number of atoms differ distinctly fro
those with an odd number of atoms. Furthermore, form.1
and an odd chain length there is almost no differen
whether Fe or Co atoms form the chains, i.e., the differen

Drxx~m;n!5rxx
Fe~m;n!2rxx

Co~m;n!, ~32!

is nearly vanishing for alln considered, whereas in the ca
of even chain lengthsDrxx(m;n) is finite and varies slowly
with respect to the cluster size. For all chain lengths~m! the
rxx

a (m;n) decrease monotonically with the cluster size a
can in principle again be extrapolated to large values ofn by
considering them as products with the cluster size.

Quite clearly at the moment no experimental data
available for such small clusters as the ones conside
in here, although patterned magnetic media for record
purposes are already investigated in industrial laboratorie16.
Actual ab initio calculations of the electric propertie
of magnetic nanostructures will have to be perform
for experimentally well-documented systems~type of
substrate, type and size of nanostructures, etc.!, the method
of evaluation, however, has to be along the lines prese
in here.
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SUMMARY

By using a real-space embedding technique within
KKR Green’s function method and the CPA in combinati
with the real-space Kubo-Greenwood formula, we propo
a description of electrical transport properties for sem
inifinite systems suitable to be applied to magnetic na
structures. We investigated the ‘‘large cluster’’ limits for th
Ag~100! surface, Ag bulk, and two types of CuPt bulk alloy
in order to document the reliability of this approach. Go
convergence to the surface resistivity was achieved by
creasing the size of planar clusters, and quite reliable b
resistivities were obtained in the case of substitutionally d
ordered binary alloys. Applications to finite chains of Fe a
Co atoms in the surface layer of Ag~100! demonstrated the
usefulness of this approach also for nanostructures. Q
clearly there are more efficient methods to evaluate resis
ities for bulk or layered systems by making use of two-
three-dimensional lattice Fourier transformations. Howev
once it comes to determine, e.g., the electric properties
magnetic islands on surfaces, these methods are no lo
applicable, and one has to rely on real space approache
presented here.
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