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Ab initio studies of electric transport in terms of the real space Kubo-Greenwood equation
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We propose a method suitable to describe electrical transport properties of nanostructures. In this approach
a Green'’s function embedding technique based on the fully relativistic spin-polarized Korringa-Kohn-Rostoker
method and the coherent potential approximation is combined with a real-space formulation of the Kubo-
Greenwood equation. We present calculations for thel®@ surface, Ag bulk, two types of CuPt bulk alloys
in the “large cluster” limit as well as finite Fe and Co chains embedded into the surface layel(dG\gn
order to illustrate the reliability and applicability of this approach.
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INTRODUCTION oh
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Magnetic nanostructures on surfaces are of special inter-
est for the production of high-density magnetic recording n this equation, v e {x,y,2}, Ny is the number of atoms,

devices. It is therefore an important issue to investigate thléﬂ ! tali f the-th t of th A
magnetic and electrical transport properties of suc Op;a?o:epresen ation of the-th component of the curren

structures:? The fully relativistic screened Korringa-Kohn-
Rostoker Green’s function method has been successfully ap-
plied in the past to layered systenisystems with two- Ju={3hmts Jm=(n[J,|m), 2
dimensional translational symmetryand reliable results
have been provided for the magnetic properties of suclér iS the Fermi energyjm) an eigenstate of a particular
systems~° This approach was then extended in terms of theconfiguration of the random systeifl,, the atomic volume,
coherent potential approximati¢@PA), and, in order to de- and(---) denotes an average over configurations. Equation
scribe electrical transport properties of such systems, thel) can be reformulated in terms of the imaginary part of the
Kubo-Greenwood formufed was reformulated using one- (one-particl¢ Green's function
particle Green’s function$® This combination of methods
has been successfully applied to various disordered layered . .
systems with the aim of investigating giant magnetoresis- ‘TWZWT“J#WG (e£)d,IMG™(ep)), (3
tance effect® as well as evaluating residual resistivifies 2

The purpose of the present work is to propose a methogr, by using “up-” and “down-" side limits, this equation
suitable to describe electrical transport properties of nanocan be rewritten as
structures. We use the so-called embedding techiigne

order to describe the scattering properties of a specific region 1 . 5 5
of a surface or bulkcalled cluster in combination with a awzz{aw(sﬂs*ﬁaw(s*,s*)—ow(s*,s*)
real-space formulation of the Kubo-Greenwood equation. In
the present paper we are mainly concerned about the “large ~ -
p paper w Inly u g ~ (e &), (4)

cluster” limit of transport properties in order to check the
reliability of the proposed method. It should be noted, how-,
ever, that this method is primarily designed to evaluate elec-
tric properties of mesoscopic clusters, nanodot or nanowire
systems, etc. For this reason we investigated finite chains of
Fe and Co embedded into the surface layer of18¢). In
addition to this main goal, further theoretical challenges can
be investigated such as the change of electric properties from
a nanostructure scale to thin films or even bulk systems, as
well as comparing for low dimensional disordered structures
configurational averages in real space with CPA averages.

here

et=gp+id, e =eg—is, 6—0, (5)

- fi

0u(€1,82)=— MTF(%G(SOJVG(EZ)%
gi=e*, i=1,2. (6)

THEORETICAL APPROACH

Suppose the electrical conductivity of a disordered sys- Using “traditional” multiple scattering theory, in a rela-
tem, namelyo,, , is calculated using the Kubo-Greenwood tivistic approach the Green’s function can be wriftém a
formula®”’ configuration space representation as
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) i i [ with n being the number of sites in a chosen regfteius-
(rlG(e)|r")=2 Z\(ri,e)7i,.(8)Z (1 ,8) ter”). This implies, however, that the convergence properties
AN’ ~ . . .
of o,,(g1,82;n) with respect ton have to be investigated.
Clearly enough the most useful test cases are those where the

— i ir! eVe(ri—r! ; .
5ij; {RA(ri,8)Zy(r{ ,8)'O(ri—r{) answer is known, namely, for pu®eulk) metals or binary
_ _ bulk substitutional alloys.
+Z\(ri,e)R\(r ,&)TO(r/ =1}, (7) By using the embedded cluster metfofbr finite clusters

in or on a particular substratbosd, the real space scattering

- - - i i
where i and | label sites, theZ,(r.e) and Ry(r.e), A i operator of an ensemble of scatterers is given by

=(ku), k and u being the relativistic angular quantum
numbers, are properly normallzed regular and irregular scat- Teusted €)= Thos(&)[1 — AU X&) mos(£)]7 L, (12)
tering solutions corresponding to the enesggind the poten-

tial Vi(R), r=r;+R;. The matrix of the so-called where 7,,s(e) refers to the real-space SPO of thgo-

scattering-path operatd8PQ is of the form dimensionatranslational invariant host. In heraf ! stands
- - - for the difference of the inverse single-sttenatrices for the
e)={7l(e)}, Tle)={ri\ ()}, A=(kp), host atoms and all atoms that form the cluster:
and so are the single-sitematrices, At_l(s):{Atﬁl(S):(ti_,hlosn(s)—ti_,cl|uster(8))5ij}
tle)={t'(e)d;}, t'(e)={t)\.(e)},
and the matrix of structure constants In the particular case of a substitutional binary alloy serv-
ing as host, configurational averages have to be perfofmed,
G(e)={G% (&)}, GO"j(s)={Gi‘i1{,(s)}, e.g., for the site-diagonal terms in the following manner:

satisfying the following fundamental equation
e)=[t(s) " '=G%e)] " 8

a I
LetJ),(e1,&,) denote the angular momentum representa- *Iy(e1,82) 7 (2 Dizas 14
tion of the uth component of the current operator in a par-wherec, denotes the concentration of tlaéh component,
ticular sitei. Using a relativistic formulation for the current « e{A,B}, of a binary alloy. Omitting vertex corrections this
operator, namelyd=ece, the elements oﬂ'ﬂ(sl,gz) are reduces to
given by

<’&;1v(81,82)>=§ Cl T I%(e2,61) 7 (£1)

i i 1 i 3 <’5-i/iv(81182)>:2 CaTr[Jz(sz’8l)<Tii(81)>i=aJ‘j(81,82)
JH'AA’(Sl'SZ):eCfWSZA(ri &1) @,z (rj,e0)d g, =

©) X(7'(£2))i=al, (15

where thea,, are the standard44 Dirac matrices and WS and(7'(&))i—, can be calculated as
denotes the volume of the Wigner-Seitz sphere.

If no translational symmetry at all is present, then in prin- (71(£))i—o=D' (&) 71 (e)=11(g)D! (&), (16)
ciple one has to sum over all sites in the system including
leads, contacts, etc., i.e., where
S @ Dy (e)=[1—7(e){(tu(e)) T~ (th(e)) B,

"&M(sl,82)=(C/No)i§1 ;1 T3 (e2,61) 7 (81) | | | )
Dule)=[1—{(ti(e) "= (ty () ri(e)] Y (1D
and rici is theith site-diagonal block of the SPO correspond-

ing to a uniform coherent single-site t-matrix., Dia andﬁia
are the so-called impurity matricesee Eqs(51) and(52) of

XJL(Sl,Sz)Tji(82)> (10)

with C=—(4m?/%37Q,,) andNy=10?% As such a proce-
dure is numerically not accessible one can define the follow

ing quantity: Ref. 8. Fori=|j one therefore gets
n n
Tulere2im=2 2 7, (e1.2) (Fhe1,02)=2 €a T I (e2,61)D}(e1)
non ‘ ) i @ i i
=3, 3, T (ez00 7o) “reteghileneBulezrelea)
i=1j=1 (]_8)
X (e1,82) 7 (e2)), (1) For thei#]j case,
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BULK

A
FIG. 1. Sketch of different cluster types. The entry to the left &' 0 @—@—@—@—@
refers to bulk systems, the one in the middle to semi-infinite sys-~ | . - .
tems, and the one on the right to impurities embedded in the surfact _j 9 ® ®

plane of a semi-infinite system.

(}Hy(sl,sz))zaEﬁ CaC(TII%(e2,81) T (£1)

XJ(e1,8) T (e) izajop: (19

by omitting vertex corrections this reduces to

<?r‘,iv<sl,sz>>=;ﬁ CaCp T2 (82,61)

X(7(82))i- aj-pd0(81.62)

X{T(82) )i aj—p)- (20)
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FIG. 2. Different shapes of clusters in the surface plane of a
fcc(100 substrate.

gin, in the case of finite chains embedded in the surface layer
of a semi-infinite hosr is assumed to be one only in the
self-consistent calculations.

In all cases we used potentials as calculated self-
consistently for either a bulk systefftc-Ag, fcc-CyPt, ),
or a free surface of a semi-infinite systeffcc-Ag(100)], or
by embeddindf a given cluster in the semi-infinite system of
host atomgfinite chains of Fe and Co in the surface layer of

Using the above defined impurity matrices, the partial averAg(100)].

ages of the SPO in Eq20) can be writtefi as
(71(81))i=aj=p=Dlle1) 7 (£1)Dl(s1),
(7(82))i=aj=p=Dh(e2) Tt (2)Dy(82). (2D

Let us finally define the following expression:

3;<sl,82>=§ca’bL(sl)Jz(sl,ez)D;(sz); (22)

The orientation of the magnetization is chosen to be nor-
mal to the fc€100) plane, i.e., points along theaxis. For the
angular momentum expansion we usgd,=2. In the case
of the Ag surface(fcc parent lattice, no lattice relaxation
effects are includegdl830k; points in the irreducible wedge
of the two-dimensional Brillouin zone were used to perform
the real-space host SPO calculations, in the bulk casek 630
points, in the cases of Fe and Co impurities embedded into
the surface layer of Ag.00) 210k points.

If only unperturbedhost atoms form the cluster, then by
increasing the size of the cluster, the physical properties

then, in terms of above formulas and using the properties ofaracteristic for the bulk or surface host can be expected. As

a trace, the contributions to the averaged nonlocal condugs rigorous test for the proposed method we used therefore
tivity tensor between two different sites of a substitutionally g ,cph 4 “self-embedding” procedure, i.e., just taking

disordered host are given by

<?Ti;iv(81r82)>:Tr[jL(Szygl)TLj(Sl)jL(Sl182)chi(82)]-
(23)

COMPUTATIONAL DETAILS

Telusted €) = Thos(€) [OF 7 hosf(€) for a disordered system
in Eq. (12) and calculated the quantity

Puv= Iimp,u.v(ro;‘s)i P,w(ro;5)= lim P,w(r;5)v
6—0 r—ro
(25

wherer is a sufficiently large number,

For matters of convenience we define a cluster by the

following set of vectors of the underlying parent lattiée,

L={R},
R={R||R*—R’|=<r}, (24)

where theﬁi“e L refer to either impurities sitesao(=imp),

Pur:8)=[0%,(r;8)17, aiixr;a):lEI a%,(9),
Rpi|<r
N (26)

and ¢ refers to the imaginary part of the Fermi energy, see
Eq. (5). Performing the5— 0 limit at the stage of Eq25)

or perturbedhost sites &=h), or to sites in the vacuum actually means that the side limits in E¢) are taken at the

(a=vac); thelijQ e L to unperturbedsites of host atoms, and

r is a given length in units of the three- or two-dimensional
lattice constantgp or a,p of £. Sketches of such clusters
are displayed in Fig. 1. In the case of bulk systensamply

last possible step.

I. SURFACE LAYER OF AG (100

Two different squarelike shaped planar clusters were in-

denotes the radius of a sphere measured from a chosen oviestigated(see Fig. 2, both havingC,, symmetry which
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04 ———T—— T T T T T compare our results with known bulk resistivitiessee Refs.
- 1 10 and 11 It is quite clear that for large clusters the resis-
0,35_’ - tivity of these clusters has to approach to the corresponding
'S L ] bulk value, namely to zero for pure metals and to the so-
é}) 030k _ called residual resistivity for disordered alloy systems. If we
=i o assume the following behavior of the elements of the resis-
5 6oL ® A tivity tensor with respect to the size of the clqster, _given in
= terms of the radius of a sphere measured in units of the
a T 9 il three-dimensional lattice constdisee Eq.(24) and Fig. 1:
020 ¢ -
M (8)
oq5b—— L o1 Puu(r;0)=po()+ plr , (28
—  chdndeacnoo
50F POy = (po and p, are constanjsit is obvious that
L - ]
T O % . 913 8)=1pg(8) +p1( ), (29
Q F i
% 30 o _ which means that the residual resistivipy(5) can be ob-
= L * ) tained by a linear fit of p ,,(r; 6) with respect tar. In the
<. 20 . - case of substitutional alloys, the slopg(5), 6—0) corre-
. L sponds then to the residual resistivity.
a
101 -
L@‘l ] A. Ag bulk
% g ' 1|0 ' 1|5 ' 210 ' 2|5 30 The nonvanishing elements of the nonlocal conductivity
rila,,] tensor @,,) are shown in Fig. 4, where we chosd100)-

oriented plane in the bulk with one particular atom serving as

FIG. 3. Planar Ag clusters self-embedded into the surface layethe origin of the coordinate system. It should be noted that
of Ag(100. The in-plane xx) and perpendicular to the planeZ  for the out-of-plane conductivity, only scatterers are impor-
resistivity components for two different cluster shapes are showrgnt which are not too far away from the origin, while in the
versus the characteristic size of the clustey. (Diamonds corre-  jn_plane case also scatterers at farther distances do add non-
spond to type 1 in Fig. 2, squares to type 2. The horizontal lineyegligible contributions to the corresponding components of
refers to the layer-diagonal resistivitiRef. 9 as calculated using a o conductivity. As can be seen, tke andyy components
2D lattice Fourier transformations corresponds to 1 mRy, and are of similar form, only the shapes are rotated by 90° with
82p=5.508 a.u. respect to each other.
In principle it is sufficient to evaluate only one component

implies the following form forp,,,(r; 8): of the resistivity because the system and also the clusters

. have cubic symmetry, which means that by choosing the co-
pxx(r;0) 0 0 : ;
ordinate system properly, all nondiagonal elements of the
Pun(r;6)= 0 Pyy(T;9) 0 . (27)  resistivity tensor have to be zero and the diagonal compo-
0 0 p,Ar:8) nents must be identical. Deviations from this behavior can be

used to estimate numerical errors inherent to the calcula-
Increasing the size of the clusters we expect #)gi(r;6)  tional scheme and the fitting procedure. The actual fitting
approacheg?tl (6), namely, the layer-diagonap@) resis-  [see Eq(29)], was performed for each value éfconsider-
tivity of that layer in which the clusters are embedded. Theing the last three points afp,r;5) (Fig. 5. These points
latter quantity can be calculated directly using a two-have been chosen because they refer to the biggest clusters
dimensional lattice Fourier transformati¢see Ref. band  consideredthe biggest cluster contains 7935 atomis or-
compared to the cluster results. As can be seen from Fig. 3,der to obtain the real physical residual resistivity an extrapo-
reliable convergence of the resistivity can be achieved for |ation to =0 is needed; see E¢R5). This extrapolation is
>15a,p , Wherea,p is the two-dimensional lattice constant. illustrated in the top part of Fig. 7 and demonstrates that we
It should be noted that, in particular, for the resistivity nor- made an absolute error of roughly 0.0%) cm in our fitting
mal to the planes the visually faster convergence for clustergrocedure.
type 2(also see Fig. Ris due to the larger number of atoms
forming these clusters than those of type 1. B. Cu.Pt,_, bulk

More interesting than pure bulk metals are disordered
bulk alloys because the accuracy of the present approach can
In the following we investigate three-dimensional clustersbe directly compared with experimental data and results of
“self-embedded” into different bulk systems, such as in pureprevious calculations. For this reason (G§Ptyso and
bulk metals and in statistically disordered bulk alloys, andCu, 74Pt -5 have been chosen in order to test the reliability of

II. BULK RESISTIVITIES
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6, [(MQem) ] ol L A'/'A/'A_
= v . A
1.36 == =t A A A g Y
Re) o o
S 0.20F L De ® e * T
g g °
S .l @ |
E 0.18F -
o =
L. 016 e Jd=1mRy| |
A | o §=2mRy| |
~ A 3=3mRy
0.14- & _
R TR R TR SR R
0 1 2 3 4 ) 6 7 8
rlagy]

FIG. 5. Three-dimensional Ag clusters self-embedded into bulk
fcc Ag. The characteristic size of the clustey times thezz com-
ponent of the resistivity is shown vs the size of the cluster for three
different imaginary parts § of the Fermi energy. d;p
=7.78949 a.u.).

tween the in-plane and the perpendicular to the plane ele-
ments of the residual resistivity, since the residual resistivi-
ties, pyx andp,,, must be the same in cubic bulk systems. It

5 0 can be seen from Fig. 8 that this difference is more or less
’ independent of and is of order of a few tenth of a{) cm.

It should be noted that in a fairly recent paper Dulca et
al.® applied real space scattering via the KKR method to the
6, [(MQem)™] Kubo equation for bulk alloys. Although it might appear that
formally their approach looks very similar to the one pre-
sented in here, fundamental conceptual differences have to
be pointed out. The embedded cluster metliBE@M) used
by them is restricted to infinite systerfthree-dimensional
translational invariance, see E(L0) in Ref. 13, i.e., can
only be used in the case of bulk systems, while in here only
two-dimensional translational invariance for the substrate is

X [a2D]

1.36

_10 v—\Q 0.8 C -—wQ T
s 0.7 - N =
X[azD] 5 ) 210 § 0.6_— . L § - . ¢
2 0.5 " ® 20 g &
FIG. 4. Nonlocal conductivitiesr?, (x; y;) for bulk fcc Ag. & g";: . ~3 .
The atom labeled by 0 is at the position (0,0), while the position of % °r 4 - CupsPloso 1 F » " Cuy 5oPto 50
atomj is varied in a(100)-oriented plane. & corresponds to 1 N I T I
0.1
mRy) ) ® J&=1mRy
— 0TI T T | o s=2mey
. _r . ] 07 Q| 4 8=3mRy
the present approach. Again the fitting to a linear form has; 0650 S E
: : : : g
been appllgd to the last t.hree points of thg,,(r) function S osF Sk
for eachd, in turn; see Fig. 6. E 04| o EL o
Extrapolating to5=0, we get the residual resistivity for @K 0.3:— W é - @N:— o é -
the bulk systems shown in the lower parts of Fig. 7. As cang™ 02 e Yors7os J TF W Y075 0as
i 1 Col o by by by 1yl
be seen, the extrapolation can gasﬂy be performgd because S S s e s s 00 a4 E TR
the region < §<3 mRYy the resistivity depends linearly on rla,)] rla,)]
8. In comparing the present results with previous calcula-
tions and available experimental désee, in particular, Ref. FIG. 6. Three-dimensional clusters self-embedded into disor-

11 for a discussion of relativistic effects in these systems dered bulk alloys. The characteristic size of the cluétetimes the

we find that there is good quantitative agreement for bothn-plane &x) and perpendicular to the planeZ resistivity com-

concentrations of CuPt. ponents are shown versus the size of the cluster by three different
As already stated the numerical inaccuracy of the preserimaginary parts §) of the Fermi energy. g5 ©%=7.14 a.u.,

approach can be seen best by evaluating the difference bagg"-”? 10252 6,995 a.u.).
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assumed, which facilitates a correct embedding into semi-

— 4r ] infinite systemgsystems with surface or interfageBurther-
?, 3 - more, as stated by Dulcet al*® their ECM necessarily is
% - ] (charge non-self-consistent, whereas in the present case for
= 2r ] substitutional alloys serving as substrate the embedding
< 1k 4 problem is solved(charge selfconsistently. The results
al 0.05 Ag ] shown in here for bulk systems have to be viewed entirely as
0r ! | | L] an illustration of the accuracy of the present approach. The
08 approach suggested by Duleaal’® is perfectly suited to
o6 b discuss short-range order effects in bulk binary substitutional
T oal R alloys; it cannot be used for evaluating electric properties of
é}) 9 1 nanostructures in or at surfaces of semi-infinite systems.
:_ -
— 0F ]
@N 88~ 7 1. NANOSTRUCTURES
a 86 . : : I o
gal " Uy 50Pto.50 h As an illustration for applications in direction of nano-
' ' ' ' structures finite chains of Fe and Co embedded in the surface
Pr s T T ] of Ag(100 were considered, also see Fig. 1, and Refs. 12
— 4L ™ b and 15, using the above mentioned embedded cluster method
g kb b for semi-infinite systems. For this particular investigation the
% ol b orientation for the magnetization was chosen to point along
= w0k 1 the surface normalzaxis).
< - Since clearly enough a summation over all sites including
& B v Pt A the semi-infinite substrate would yield only the resistivity of
36 349 075 0.25
I I [
M0 1 2 3 20— T T
i ° 1T 2| 1
8 [mRy] - .. __ . . . _
i ® 1 _
FIG. 7. Extrapolation t&d=0 for the investigated bulk systems. & 50}~ o__ i R * =l
Full circles refer to the extrapolated values and squares, to experic - A, + A
mental values measured at room temperatRef. 1. The results =, 1001 O o AA AT N
of Dulcaet al. (Ref. 13 are 80.2 and 31.x{) cm for CugPts, and a - L T N
Cu,sPbs, respectively. i 1 U O0Oo g
0
250 ——1— —t—
i 3+ 71
200 - -+ =
— i T [ ] ) il
£ 150 2 -T ° =
0.3 I I I T é:) 2 2 g e + o
L | = w00 8 A A
& I 1 -
g 02r® o - or y
Q O N0 oo m]
- . 0
% 0.1 250 T ——
= —o Cu Pty o T (6] ]
UO -
= m—a Cu Pt s - i T 1
N 0.0 E 1501 o T n
Q e - * e, T ° o o .
'y r e 2 100 a B o_
< % L 4 A
Z 0.1F — = ol 1 d
| 1 O 0o o
B T 0 ? 50 I ] O I
_0.2 | | | | 1 1 1 1
0 1 2 3 0.5 1 1.5 2 1.5 2
rlay,] rlay]
0 [mRy]

FIG. 9. Residual resistivities of finite chains of Farcles and

FIG. 8. Difference between the residual resistivity for the in- Co (triangles atoms embedded in the surface plane of 149).

plane kx) and the perpendicular to the planez( component is
shown vs the imaginary partj of the Fermi energy for GisPt 50

and Ci 71 2.
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Open squares refer to the difference between the Fe and Co residual
resistivity. The length of the chains is shown explicitly. For defini-
tions, see the text.
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the substrate, namely zero in the case ofl4), a kind of
“residual resistivity” for finite clusters has to be defined,

1 m n -
o (min)=— Z)l ,Zl [0, Jiza (30)
Py (Min)=ay (m;n)~*, (3D

wherem denotes the number of impurities of typeat sites
i. The summation over the second indgxis restricted as in
the previous cases by a certain length of the difference vect

FEU- [see Eq(24)], the convergence of which has to be inves-
tigated.

In Fig. 9 such residual resistivities are shown for finite
chains of Fe and Co embedded alongxi&10) direction in
the surface layer of Ad.00. As can be seen in this figure
chains with an even number of atoms differ distinctly from
those with an odd number of atoms. Furthermore,nfior 1

PHYSICAL REVIEW B7, 174404 (2003

SUMMARY

By using a real-space embedding technique within the
KKR Green'’s function method and the CPA in combination
with the real-space Kubo-Greenwood formula, we proposed
a description of electrical transport properties for semi-
inifinite systems suitable to be applied to magnetic nano-
structures. We investigated the “large cluster” limits for the
Ag(100 surface, Ag bulk, and two types of CuPt bulk alloys

dp order to document the reliability of this approach. Good

convergence to the surface resistivity was achieved by in-
creasing the size of planar clusters, and quite reliable bulk
resistivities were obtained in the case of substitutionally dis-
ordered binary alloys. Applications to finite chains of Fe and
Co atoms in the surface layer of A0 demonstrated the
usefulness of this approach also for nanostructures. Quite
clearly there are more efficient methods to evaluate resistiv-

and an odd chain length there is almost no differencdties for bulk or layered systems by making use of two- or
whether Fe or Co atoms form the chains, i.e., the differencdhree-dimensional lattice Fourier transformations. However,

Ap(m;n) = pEe(m;n) — p2(m;n), (32)

is nearly vanishing for alh considered, whereas in the case
of even chain lengtha p,,(m;n) is finite and varies slowly
with respect to the cluster size. For all chain lendtims the

once it comes to determine, e.g., the electric properties of

magnetic islands on surfaces, these methods are no longer
applicable, and one has to rely on real space approaches as
presented here.

pyx(M;n) decrease monotonically with the cluster size and

can in principle again be extrapolated to large values o§
considering them as products with the cluster size.
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