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Limitations of the two-media approach in calculating magneto-optical properties
of layered systems
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It is shown that in polar geometry and normal incidence the 232 matrix technique—as discussed in detail
in a preceding paper@Phys. Rev. B65, 144448~2002!#—accounts correctly for multiple reflections and optical
interferences, and reduces only in the case of a periodic sequence of identical layers to the Fresnel formula of
reflectivity, which in turn is the theoretical basis of the two-media approach, widely used in the literature to
compute magneto–optical Kerr spectra. As a numerical exampleab initio calculations of the optical constants
for an fcc Pt semi-infinite bulk using the spin-polarized relativistic screened Korringa-Kohn-Rostoker method
show very good agreement with experimental data.
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INTRODUCTION

In the last few years magneto-optics has started to bec
of prime interest in dealing with magnetic multilayer syste
and magnetic nanostructures~submonolayer coverages o
substrates with magnetic material!: Kerr measurements no
only turned out to be one of the standard experimental to
applied; additional applications, in particular in the conte
of time-resolved techniques, are presently believed to lea
fast magnetization switching devices. In many cases, h
ever, theoretical descriptions, even for time-integra
magneto-optical effects, are lagging behind experimenta
forts, mainly because relevant schemes to deal with se
infinite systems—not to speak of nanostructured materia
are not commonly used. Bulklike approaches~assumed
three-dimensional periodicity! and the so-called two-medi
model1 ~assumed homogeneity! are still considered to be suf
ficient to deal with magnetically inhomogeneous layered s
tems.

In a recent paper,2 the authors showed that only by includ
ing multiple reflections and optical interferences, e.g., via
232 matrix technique,3,4 realisticab initio magneto-optical
Kerr spectra for semi-infinite layered systems can be
tained. It is the purpose of the present paper to prove
analytically and then numerically that only in the case
periodic layered systems, i.e., in by definition homogene
systems, the 232 matrix technique reduces to the two-med
approach. Formulated oppositely, this implies that the tw
media approach is strictly valid only for this kind of system
This is illustrated for fcc Pt viewed as a periodic layer
system, because Pt frequently serves as a substrate
magneto–optically active multilayers.5,6

THEORETICAL APPROACH

Assuming the polar geometry and the magnetizationMW p
in all layers p to point along thez direction, the layer-
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for

resolved permittivity in cubic, hexagonal, or tetragonal s
tems is given by

«̃p5S «̃xx
p «̃xy

p 0

2 «̃xy
p «̃xx

p 0

0 0 «̃xx
p
D , ~p51, . . . ,N!, ~1!

provided that a possible anisotropy in the diagonal eleme
can be neglected, i.e.,«̃zz

p . «̃xx
p . In case of normal incidence

ñpx5ñpy50, four electromagnetic beams corresponding
the complex refractive indices

ñpz
(3)52ñpz

(1)5A«̃2
p [ñp2 ,

ñpz
(4)52ñpz

(2)5A«̃1
p [ñp1

propagate in layerp. By considering harmonic fields

AW ~z,t !5AW exp@ i ~ q̃z2vt !#exp~2dt !5AW exp@ i ~ q̃z2ṽt !#,
~2!

such thatd.0 describes the interaction between the laye
system and its neighborhood,q̃5q0ñ is the complex wave
vector, with q0 being the propagation constant in vacuu
and ṽ5v2 id, beams 1 and 2 propagate along2z, and
beams 3 and 4 along1z. The surface reflectivity matrix~see
in particular the Appendix of Ref. 2!,

Rsurf5S r̃ xx r̃ xy

2 r̃ xy r̃ xx
D , ~3!

which relates the incident electric field to the reflected on

Rsurf5~Bvac1DNA 21!21~Bvac2DNA 21!, ~4!
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is obtained as defined in Eq.~37! of Ref. 2, in terms of
reflectivity matricesRp ; see Eq.~32! of Ref. 2,

Rp5~Bp1Dp21!21~Bp2Dp21!, p51, . . . ,N, ~5!

and propagation matricesCp @see Eq.~30! of Ref. 2#,

Cp5S exp~2 iq0ñp2dp! 0

0 exp~2 iq0ñp1dp!
D , ~6!

wheredp refers to the thickness of layerp. According to Eqs.
~28!, ~32! and ~35! of Ref. 2 the 232 matrices occurring in
Eq. ~4! are defined as follows:

Dp5Bp@Cp2~Cp!21Rp#@Cp1~Cp!21Rp#21, ~7!

A5S 1 i

i 1D , Bp5S i ñp2 ñp1

2ñp2 2 i ñp1

D ,

Bvac5S 0 1

21 0D . ~8!

RN results then recursively starting from the substrate refl
tivity matrix R050. It has been shown in quite some det
in the appendix of Ref. 2 that the layer–resolved reflectiv
matricesRp are all diagonal,

Rp5S r̃ p2 0

0 r̃ p1

D ,

wherer̃ p6 is the complex reflectivity coefficient of the righ
and left-handed light in layerp. This implies that the right-
and left-handed circularly polarized components of the in
dent linearly polarized light, once they arrived at the surfa
layer, propagate independently within the system such
after the first reflection, they become immediately elliptica
polarized.

SPECIAL CASE OF HOMOGENEOUS SYSTEMS

In principle in a finite periodic layered system (N can be
large but finite; for matters of simplicity a simple pare
lattice7 is assumed! all layers have identical layer-resolve
permittivities. This implies in turn that also all matricesBp in
Eq. ~8! are identical, i.e., are of the form

B5S i ñ2 ñ1

2ñ2 2 i ñ1

D , ~9!

with ñ65A«̃6. The recursion relation in Eq.~5! therefore
reduces to

Rp5~I1Gp21!21~I2Gp21!, p51, . . . ,N, ~10!

whereI denotes the 232 identity matrix and

Gp215@Cp212~Cp21!21Rp21#@Cp211~Cp21!21Rp21#21.
~11!
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This finite periodic layered structure has to be prope
matched to a semi-infinite system~substrate! of the same
material. InsertingR050 into Eq. ~11! for p51 yields G0
5I, which, substituted into Eq.~10!, immediately proves
that alsoR150, and so on. In conclusion, for a period
layered system,

Rp50, ;p51, . . . ,N. ~12!

From an optical point of view a periodic layered syste
behaves like a system with no boundaries. Viewed op
sitely, Eq. ~12! shows that there is a boundary in-betwe
two adjacent layers, if and only if, the respective laye
resolved permittivities differ.

From RN50 it follows immediately thatDN5B, with B
defined in Eq.~9!; hence Eq.~4! directly yields the surface
reflectivity matrix

Rsurf5
1

~ ñ111!~ ñ211!
S 12ñ1ñ2 2 i ~ ñ12ñ2!

i ~ ñ12ñ2! 12ñ1ñ2

D ,

~13!

i.e., r̃ xx and r̃ xy in Eq. ~3! assume the following values

r̃ xx52
ñ1ñ221

~ ñ111!~ ñ211!
, r̃ xy52 i

ñ12ñ2

~ ñ111!~ ñ211!
.

In the case of periodic layered systems the complex refl
tivity coefficient of the right- and left-handed polarized lig
is therefore given by

r̃ 65 r̃ xx7 i r̃ xy52
ñ621

ñ611
, ~14!

a relation which is known in the literature as the Fres
formula for s polarization and normal incidence.8 Equation
~14! then leads directly to the well-known formula for th
complex Kerr angle in the two-media approach,1

uK1 i eK.
s̃xy

s̃xx
S 11

4p i

ṽ
s̃xxD 21/2

,

whereuK is the Kerr rotation angle andeK the Kerr elliptic-
ity.

Clearly enough in the case of~homogeneous! periodic
layered systems the 232 matrix technique and the two
media approach provide identical Kerr spectra. However,
using the two-media approach for calculating the Kerr sp
tra of inhomogeneous layered systems, such spectra are
erned almost exclusively by contributions from the surfa
layer.

APPLICATION TO FCC PT

In Figs. 1–3 the optical constants of fcc Pt bulk as calc
lated via the 232 matrix technique for normal incidence an
different surface orientations are compared with availa
experimental data~Ref. 9, and references cited therein!. Be-
cause fcc Pt is paramagnetic, the right– and left–han
complex reflectivity coefficients are equal,r̃ 1(v)5 r̃ 2(v)
4-2
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[r̃(v), and the reflectanceR(v) given in Figs. 1 is in fact
r̃ (v)2. In accordance with Eq.~2! the refractive indexn(v)
and the absorption coefficientk(v) in Fig. 2 simply corre-
spond to the real and imaginary part of the complex refr

tive index ñ(v)5A«̃(v)[n(v)1 ik(v). The total ~com-
plex! permittivity «̃(v) displayed in Fig. 3 is evaluate
assuming a periodic layered system consisting ofN Pt layers

FIG. 1. Reflectance of fcc Pt bulk as calculated for the~100!,
~110!, and ~111! surface orientations~diamonds, circles, and
squares!. The experimental data are taken from Refs. 20~crosses!,
21 ~pluses!, 22 ~stars!, 23 ~triangle right!, 24 ~triangle left!, and 25
~triangle up!.

FIG. 2. Optical constants of fcc Pt bulk as calculated for
~100!, ~110!, and ~111! surface orientation~diamonds, circles and
squares!. The experimental data of Ref. 9 are displayed as g
circles. The dotted line marks the photon energy that equals
used lifetime broadening ofd50.653 eV.
21440
-

on top of a semi-infinite Pt substrate, i.e.,

«̃~v!5
1

N (
p,q51

N

«̃pq~v!, ~15!

where

«̃pq~v!5dpq1
4p i

ṽ
s̃pq~v!, p,q51, . . . ,N, ~16!

with s̃pq(v) being the interlayer and intralayer contribution
to the optical conductivity andṽ5v2 id. Equations~15!
and ~16! follow directly from the Fourier–transformed~lin-
ear! material equations10 by assuming that each layerp can
be viewed as a homogeneous medium and therefore
layer-resolved optical conductivitys̃p(v) is related to the
layer-resolved permittivity by

«̃p~v!511
4p i

ṽ
s̃p~v!, p,q51, . . . ,N. ~17!

s̃pq(v) in Eq. ~16! are calculated in terms of Luttinger’
formula11 using the spin–polarized relativistic screen
Korringa-Kohn-Rostoker method for layered systems,12–15

contour integration techniques,16,17 the Konrod quadrature
and the cumulative special points method for the occurr

y
e

FIG. 3. Permittivity of fcc Pt bulk as calculated for the~100!,
~110!, and ~111! surface orientations~diamonds, circles, and
squares!. The experimental data are taken from Refs. 20~crosses!,
21 ~pluses!, 22 ~stars!, 23 ~triangle right!, and 26~triangle down!.
The dotted line marks the photon energy that equals the used
time broadening ofd50.653 eV .
4-3
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Brillouin zone integrals.18 It should be noted that Luttinger’
formula uses a vector potential description of the elec
field and has several advantages over the well-known K
formula:19 both the absorptive and dissipative parts of t
conductivity tensor are included without using Krame
Kronig relations, and so are all interband and intraband c
tributions avoiding thus a phenomenological Drude term
order to mimic the latter contributions.

In the present study of fcc Pt bulk~lattice parameter
7.4137 a.u.) all complex energy andkW -space integrals are
performed with an accuracy of 1023 ~in atomic units! for all
surface orientations considered. The electronic tempera
amounts toT5300 K. Furthermore, a lifetime broadening
0.048 Ryd.0.653 eV is used and 2 and 37 Matsubara po
in the lower and upper semi–plane, respectively, are ta
into account.

As can be seen from Fig. 1, the reflectanceR(v) of Pt as
calculated for normal incidence and different surface ori
tations agrees very well with the experimental data. Unf
tunately the experimental data9 are not specified with respec
to surface orientations, i.e., no surface normal is listed. T
dependence of all the calculated optical constants on the
face orientation reflects, however, merely the fact that
principle in spectroscopical experiments only physical pr
erties of semi-infinite systems, i.e., of solid systems with
surface, are recorded; see also Figs. 2 and 3.

A close inspection of Fig. 1 in the vicinity of very low
photon energies reveals that the fine structure around 0.5
seen in the experimental reflectance is missing in the th
retical curves although the maximum in the refractive ind
as a function of the photon energy is well reproduced. T
discrepancy between theory and experiments is caused b
intrinsic feature of the applied approach: the finite lifetim
broadeningd that enters Luttinger’s formula smears out po
sible fine structures forv<d ~the value ofv5d is indicated
in Figs. 2 and 3 by a dotted line!.

In Figs. 1–3 the theoretical data refer to a total ofN
512 Pt layers, because from calculations forN53, . . . ,18
Pt layers~not shown in here! no significantN dependence o
optical constants was found: the optical constants obta
for N53 are almost as good as those obtained withN518 Pt
layers in the system.

An extensive analysis of the interlayer and intralayer c
tributions to the permittivity«̃pq(v) showed that in the cas
of periodic layered systems~simple lattices! thepq-like con-
tributions to the permittivity are only functions of the relativ
position of layersp and q, i.e., «̃pq(v)5 «̃ up2qu(v); the
layer-resolved permittivities«̃p(v) are dominated by the
corresponding intralayer contribution«̃pp(v). Thus is not
surprising that in the case of periodic layered systems,
following approximative form applies

«̃~v!.
1

N (
up2qu50

3

«̃ up2qu~v!; ~18!

see Fig. 4. It was also found that the difference between
exact permittivity and the approximated one defined abo
not only is independent ofN, but also ofv. Thus a semi-
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infinite periodic layered system can be simply modeled a
sequence of seven layers~a central one plus three layer
above and below this! in a constant dispersionless permitti
ity background, the contribution of which to the total perm
tivity is negligible. Because of the fast convergence inup
2qu, calculations for periodic layered systems restricted
N53 layers can already yield reasonably accurate opt
constants.

SUMMARY

It was shown analytically and numerically that in pol
geometry and normal incidence the complex reflectivity c
efficient of the right- and left-handed polarized light for p
riodic ~layered! systems is given by the Fresnel formul
only in the case of periodic~layered! systems the 232 ma-
trix technique and the two-media approach become equ
lent, i.e., they lead to identical Kerr spectra. This in tu
clearly marks the limitations of the two-media approac
since applied to inhomogeneous layered systems, the co
sponding Kerr spectra are dominated entirely by the opt
activity of the surface layer.

Interlayer and intralayer contributions to the optical co
ductivity for fcc Pt N/Pt layered systems as calculated with
the framework of the spin-polarized relativistic screen
Korringa-Kohn-Rostoker~SKKR! method by means of a
contour integration technique lead to optical constan

FIG. 4. Relative error made by approximating the permittiv

of fcc PtNuPt~111! by the sum overẽ r(v) permittivities with r
[up2qu50, . . . ,3; see thetext. Up and down triangles, diamond
circles, squares, and stars denote data obtained forN53, 6, 9, 12,
15, and 18.
4-4
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which are in very good agreement with available experim
tal data for photon energiesv.d (d being the finite lifetime
broadening!. The calculated optical constants for fcc PtN/Pt
do depend on the surface orientation; forN>3 ~number of Pt
layers! they become virtually independent ofN.

The conclusion to be drawn for magnetic multilyer sy
tems is rather simple: only the 232 matrix technique tha
includes all multiple reflections and optical interferences c
produce reliable spectra for this kind of systems. This in t
implies that a computational scheme such as the SK
method, designed especially for systems with only tw
dimensional translational symmetry, has to be applied ex
f
l-

g

s,

ed

u-

21440
-

-

n
n
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sively in order to evaluate the elements of the optical c
ductivity tensor.
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