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Limitations of the two-media approach in calculating magneto-optical properties
of layered systems
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It is shown that in polar geometry and normal incidence th&2matrix technique—as discussed in detalil
in a preceding papgPhys. Rev. B55, 144448(2002 —accounts correctly for multiple reflections and optical
interferences, and reduces only in the case of a periodic sequence of identical layers to the Fresnel formula of
reflectivity, which in turn is the theoretical basis of the two-media approach, widely used in the literature to
compute magneto—optical Kerr spectra. As a numerical exaatplaitio calculations of the optical constants
for an fcc Pt semi-infinite bulk using the spin-polarized relativistic screened Korringa-Kohn-Rostoker method
show very good agreement with experimental data.
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INTRODUCTION resolved permittivity in cubic, hexagonal, or tetragonal sys-

) tems is given by
In the last few years magneto-optics has started to become

of prime interest in dealing with magnetic multilayer systems Py 0
and magnetic nanostructurésubmonolayer coverages of B ey
substrates with magnetic matejiaKerr measurements not eP=| —efy, e O], (p=1,...N), (1)

only turned out to be one of the standard experimental tools
applied; additional applications, in particular in the context
of time-resolved techniques, are presently believed to lead tg,qijeq that a possible anisotropy in the diagonal elements
fast magnetization switching devices. In many cases, how- C~p _~p .

ever, theoretical descriptions, even for time-integratecf@n P€ neglected, i.e:;;~ey,. In case of normal incidence,
magneto-optical effects, are lagging behind experimental efAp=n,,=0, four electromagnetic beams corresponding to
forts, mainly because relevant schemes to deal with semihe complex refractive indices

infinite systems—not to speak of nanostructured materials—

0 0 &P

are not commonly used. Bulklike approachésssumed n®=_-nb= \/;_szﬁp_ ,
three-dimensional periodicityand the so-called two-media P .

modef (assumed homogenejtgre still considered to be suf- O \/~_p=~

ficient to deal with magnetically inhomogeneous layered sys- Mpz = = Mpz = V&L =Npy

tems. propagate in layep. By considering harmonic fields

In a recent papérthe authors showed that only by includ-
ing multiple reflections and optical interferences, e.g., via the 5 (z,t)= 4 exf i (qz— wt) Jexp — ot) = A exdi (qz— ot)],
2X 2 matrix techniqué;* realisticab initio magneto-optical ®)
Kerr spectra for semi-infinite layered systems can be ob- _ ) _
tained. It is the purpose of the present paper to prove firstuch thats>0 describes thelnterzict|on between the layered
analytically and then numerically that only in the case ofsystem and its neighborhood=qgn is the complex wave
periodic layered systems, i.e., in by definition homogeneousector, with g, being the propagation constant in vacuum;
systems, the 8 2 matrix technique reduces to the two-media j\q = — ., —i5 beams 1 and 2 propagate alorg, and
approach. Formulated oppositely, this implies that the WOpaams 3 and 4 along z. The surface reflectivity mat,riésee
media approach is strictly valid only for this kind of systems.. * - tcular the A en.dix of Ref.)2
This is illustrated for fcc Pt viewed as a periodic layered P pp '
system, because Pt frequently serves as a substrate for ~ o~
magneto—optically active multilayer$. Rsurf:< Fxx rxy) ,

()

Ty T
THEORETICAL APPROACH _ o o
which relates the incident electric field to the reflected one,

Assuming the polar geometry and the magnetizaﬁm
in all layers p to point along thez direction, the layer- Reur= (Byact DNA 1) " H(Byae— DA ™), (4)
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is obtained as defined in E¢37) of Ref. 2, in terms of This finite periodic layered structure has to be properly
reflectivity matricesk,,; see Eq.(32) of Ref. 2, matched to a semi-infinite systefsubstratg of the same
material. InsertingRy=0 into Eq.(11) for p=1 yields G,
Rp=(By+Dy_1) Y(B,—Dp-1), P=1,...N, (5 =7, which, substituted into Eq(10), immediately proves
that alsoR,=0, and so on. In conclusion, for a periodic

and propagation matrice%, [see Eq(30) of Ref. 2, layered system,

exp(—igon,_dp) 0 R,=0, Vp=1,...N. (12
p ’ (6)

0 eXFi_iQOﬁerdp)

whered, refers to the thickness of laypr According to Egs.
(28), (32 and(35) of Ref. 2 the 2<2 matrices occurring in
Eq. (4) are defined as follows:

From an optical point of view a periodic layered system
behaves like a system with no boundaries. Viewed oppo-
sitely, Eq.(12) shows that there is a boundary in-between
two adjacent layers, if and only if, the respective layer—
resolved permittivities differ.

_ . —1 1 1—1 From Ry=0 it follows immediately thaDy= B, with B
Pp=BplCo=(Cp) "RpllCot(Cp) Rl ™ defined in Eq.(9); hence Eq(4) directly yields the surface
. - ~ reflectivity matrix
1 i in,_ Np+
A= i1) By= _ﬁp— —iﬁp+ ' R 1 1-n,n_ —i(n,—n_)
. TEenmo+yliGa-nn 1R
1 (13
Bvac:( -1 O) . (8)

i.e., T andr,y in Eq. (3) assume the following values

Ry results then recursively starting from the substrate reflec- -~ ~ -~ ~
tivity matrix Ro=0. It has been shown in quite some detail ~ ___ N+N-—1 T o n,—n-
in the appendix of Ref. 2 that the layer—resolved reflectivity h.+1)(n_+1) 7 . +1)(n_+1)°

XX
matricesRk, are all diagonal, o
P g In the case of periodic layered systems the complex reflec-
T 0 tivity coefficient of the right- and left-handed polarized light
p—
Rp: ( ) ,

is therefore given by

0 r

~ o - |

wherer .. is the complex reflectivity coefficient of the right- e Lt 1 (14
and left-handed light in layep. This implies that the right- =

and left-handed circularly polarized components of the inci-a relation which is known in the literature as the Fresnel
dent linearly polarized light, once they arrived at the surfaceormula for s polarization and normal incidenéeEquation
layer, propagate independently within the system such thgtl4) then leads directly to the well-known formula for the

after the first reflection, they become immediately elliptically complex Kerr angle in the two-media approdch,

polarized.
~ . —-12
) Oyy 4ari
Oktieg==—| 1+ —=—0y ,

SPECIAL CASE OF HOMOGENEOUS SYSTEMS Tx P

In principle in a finite periodic layered systerl an be  where ¢y is the Kerr rotation angle anek the Kerr elliptic-
large but finite; for matters of simplicity a simple parent jty.

lattice’ is assumedall layers have identical layer-resolved Clearly enough in the case ghomogeneousperiodic
permittivities. This implies in turn that also all matricBg in layered systems the>22 matrix technique and the two-

Eq. (8) are identical, i.e., are of the form media approach provide identical Kerr spectra. However, by
_ ~ using the two-media approach for calculating the Kerr spec-
in_ n, tra of inhomogeneous layered systems, such spectra are gov-

B= - A ©) erned almost exclusively by contributions from the surface
- + layer.

with n.=+/e.. The recursion relation in Eq5) therefore
reduces to APPLICATION TO FCC PT

_ In Figs. 1-3 the optical constants of fcc Pt bulk as calcu-
Rp=(I+Gp-1) NZ- Gp-1), P=1,...N, (10 lated via the X 2 matrix technique for normal incidence and
whereZ denotes the 2 identity matrix and different surface orientations are compared with available
experimental datéRef. 9, and references cited thereiBe-
gpfl:[cpfl_(Cpfl)ilRpfl][CpflJ’_(Cpfl)ilRpfl]il- cause fcc Pt is paramagnetic, the right— and left—handed
(11)  complex reflectivity coefficients are equal, (w)=T_(w)
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FIG. 1. Reflectance of fcc Pt bulk as calculated for (he0),
(110, and (111 surface orientations(diamonds, circles, and
squares The experimental data are taken from Refs.(@@sseks
21 (pluses, 22 (starg, 23 (triangle righ}, 24 (triangle lefy, and 25
(triangle up.

Im ()

=r(w), and the reflectancB(w) given in Figs. 1 is in fact
T(w)?. In accordance with Eq2) the refractive index ()

and the absorption coefficiek{ w) in Fig. 2 simply corre-
spond to the real and imaginary part of the complex refrac-

tive index n(w)= \/Z(w)zn(w)ﬂk(w). The total (com-
plex) permittivity E(w) displayed in Fig. 3 is evaluated FIG. 3. Permittivity of fcc Pt bulk as calculated for tt&00),

assuming a periodic layered system consistintyl &t layers (110, and (111) surface orientations(diamonds, circles, and
squares The experimental data are taken from Refs.(@@sses

21 (pluses, 22 (starg, 23 (triangle righ), and 26(triangle down).

8.0 The dotted line marks the photon energy that equals the used life-
time broadening 06=0.653 eV .
g
= 60 on top of a semi-infinite Pt substrate, i.e.,
>
< N
k= ~ 1 ~
° 40 e(w)= N 2 ePlw), (15
g p.a=1
g
T 20 where
~ Aai

0.0 qu(w)=5pq+ T(qu((x)), p,q:]., e ,N, (16)
100 @
8 ~
h-4 with 0?9 w) being the interlayer and intralayer contributions

8.0 . o ~ . .
g to the optical conductivity andv=w—i4. Equations(15)
ks and (16) follow directly from the Fourier—transformeftin-
g 60 . ol .
D) eal material equations by assuming that each layprcan
S 40 be viewed as a homogeneous medium and therefore the
%_ ' layer-resolved optical conductivity®(w) is related to the
g layer-resolved permittivity by
2 2.0

~ Aai
0.0 Sp(a))zl"r T(Tp((o), p,qzl,...,N. (17)
w

FIG. 2. Optical constants of fcc Pt bulk as calculated for the "%(w) in Eq. (16) are calculated in terms of Luttinger’s
(100), (110, and (111 surface orientatioridiamonds, circles and formula! using the spin—polarized relativistic screened
squares The experimental data of Ref. 9 are displayed as greyKorringa-Kohn-Rostoker method for layered systefis?
circles. The dotted line marks the photon energy that equals theontour integration techniqué&!’ the Konrod quadrature,
used lifetime broadening af=0.653 eV. and the cumulative special points method for the occurring
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Brillouin zone integralg® It should be noted that Luttinger’s I R A
formula uses a vector potential description of the electric
field and has several advantages over the well-known Kubo
formulal® both the absorptive and dissipative parts of the

conductivity tensor are included without using Kramers-

Kronig relations, and so are all interband and intraband con-
tributions avoiding thus a phenomenological Drude term in

order to mimic the latter contributions.

>
=)

—
("]

e (%)

-T W]/
o
[en]

=0

3

In the present study of fcc Pt bullattice parameter 3 -5
7.4137 a.u.) all complex energy arlfdspace integrals are 3,
performed with an accuracy of 16 (in atomic unit$ for all ) 3.0
surface orientations considered. The electronic temperature -
amounts tol' =300 K. Furthermore, a lifetime broadening of —_ 30
0.048 Ryd=0.653 eV is used and 2 and 37 Matsubara poles g
in the lower and upper semi—plane, respectively, are taken -
into account. I?g 1.5

As can be seen from Fig. 1, the reflectai{ev) of Pt as
calculated for normal incidence and different surface orien-
tations agrees very well with the experimental data. Unfor-
tunately the experimental d&tare not specified with respect

-2 W]/
o
[en]

r=0

3

to surface orientations, i.e., no surface normal is listed. The g -l5¢ 7]
dependence of all the calculated optical constants on the sur- ‘&, 1
face orientation reflects, however, merely the fact that in k= 30k 4

principle in spectroscopical experiments only physical prop- L Lo Lo 1 L. 1. |
erties of semi-infinite systems, i.e., of solid systems with a
surface, are recorded; see also Figs. 2 and 3.

A close inspection of Fig. 1 in the vicinity of very Iow £ 4 Relative error made by approximating the permittivity
photon energies reveals that the fine structure around 0.5 eV,

. . . ST of fcc Pty|Pt111) by the sum overe' ermittivities with r
seen in the experimental reflectance is missing in the theoé|p_q|i“|0 « 1)3. ;/ee theext. Up a:d((cjoc))wrl)’l triangles, diamonds
retical curves although the maximum in the refractive index,cjes squ;\;'e.s-,a'nd stars denote data obtaineM 8. 6. 9. 12
as a function of the photon energy is well reproduced. Thiss anq 18 oo

discrepancy between theory and experiments is caused by an

intrinsic feature of the applied approach: the finite lifetimejnfinite periodic layered system can be simply modeled as a
broadenings that enters Luttinger’s formula smears out pos-sequence of seven layefa central one plus three layers
sible fine structures fob< & (the value ofw= d'is indicated  apove and below thisn a constant dispersionless permittiv-

® (eV)

in Figs. 2 and 3 by a dotted line ity background, the contribution of which to the total permit-
In Figs. 1-3 the theoretical data refer to a totalf tjyity is negligible. Because of the fast convergence]pn
=12 Pt layers, because from calculations for3,...,18  —g|, calculations for periodic layered systems restricted to

Pt layers(not shown in hereno significantN dependence of =3 |ayers can already yield reasonably accurate optical
optical constants was found: the optical constants obtaineggynstants.

for N= 3 are almost as good as those obtained With18 Pt
layers in the system. _ _ SUMMARY

An extensive analysis of the interlayer and intralayer con-
tributions to the permittivityeP%(w) showed that in the case It was shown analytically and numerically that in polar
of periodic layered systemsimple latticesthe pg-like con- ~ geometry and normal incidence the complex reflectivity co-
tributions to the permittivity are only functions of the relative €fficient of the right- and left-handed polarized light for pe-
position of layersp and g, i.e., 5P%(w)=2""9(w); the riodic (layered systems is given by the Fresnel formula:

oo ) only in the case of periodifayered systems the X2 ma-

layer-resolved permittivities:"(w) are dominated by the i technique and the two-media approach become equiva-
corresponding intralayer contributios®?(w). Thus is not |ent, i.e., they lead to identical Kerr spectra. This in turn
surprising that in the case of periodic layered systems, thelearly marks the limitations of the two-media approach,

following approximative form applies since applied to inhomogeneous layered systems, the corre-
5 sponding Kerr spectra are dominated entirely by the optical
~ 1 ~lp—al . activity of the surface layer.
e(w)= N \p%=0 € (@); (18) Interlayer and intralayer contributions to the optical con-

ductivity for fcc Pt /Pt layered systems as calculated within
see Fig. 4. It was also found that the difference between ththe framework of the spin-polarized relativistic screened
exact permittivity and the approximated one defined aboveKorringa-Kohn-RostokeSKKR) method by means of a
not only is independent of, but also ofw. Thus a semi- contour integration technique lead to optical constants,
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which are in very good agreement with available experimensively in order to evaluate the elements of the optical con-
tal data for photon energies> 6 (5 being the finite lifetime  ductivity tensor.
broadening The calculated optical constants for fcg ARt
do depend on the surface orlgntatlon; foe 3 (number of Pt ACKNOWLEDGMENTS
layers they become virtually independent f
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