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LAYER-RESOLVED MAGNETO-OPTICAL KERR

EFFECT IN SEMI-INFINITE INHOMOGENEOUS

LAYERED SYSTEMS

A. VERNESa,*, L. SZUNYOGHa,b and P. WEINBERGERa

aCenter for Computational Materials Science, Technical University Vienna, 1060 Vienna, Austria;
bDepartment of Theoretical Physics, Budapest University of Technology and Economics,

1521 Budapest, Hungary

(Received in final form 29 March 2001)

The contour integration technique applied to calculate the optical conductivity tensor at finite temperatures in
the case of inhomogeneous surface layered systems within the framework of the spin-polarized relativistic
screened Korringa–Kohn–Rostoker band structure method is extended to arbitrary polarizations of the elec-
tric field. It is shown that besides the inter-band contribution, the contour integration technique also accounts
for the intra-band contribution. Introducing a layer-resolved complex Kerr angle, the importance of the first,
non-magnetic buffer layer below the ferromagnetic surface on the magneto-optical Kerr effect in the Co jPtm
multilayer system is shown. Increasing the thickness of the buffer Pt, the layer-resolved complex Kerr angles
follow a linear dependence with respect to m only after nine Pt mono–layers.

Keywords: Magneto-optical Kerr effect; Band structure calculations; Contour integration method; Layer-
resolved Kerr angles

1. INTRODUCTION

The magneto-optical Kerr effect (MOKE) was discovered by Rev. J. Kerr in 1876.
Nowadays, the MOKE occurring in multilayers is investigated because of obvious tech-
nological implications for high-density magneto-optic recording media (Bertero and
Sinclair, 1994; Mansuripur, 1995).
The first ab initio calculation of the absorptive part of the optical conductivity tensor

based on the Kubo linear response theory (Kubo, 1957), was carried out for Ni by
Wang and Callaway (1974). The dispersive part of the optical conductivity tensor,
needed to get the theoretical MOKE, is usually computed using the Kramers–Kronig
relations (Daalderop et al., 1988). However, the first magneto-optical Kerr spectra,
namely those for Fe and Ni, were calculated on the basis of a relativistic band-structure
method by Oppeneer et al. (1992).
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Commonly, the MOKE calculations for multilayers are performed using conven-
tional band-structure methods and super-cells (Guo and Ebert, 1995; Uba et al.,
1996). The contour integration technique developed by two of the authors (Szunyogh
and Weinberger, 1999) used in connection with the spin-polarized relativistic screened
Korringa–Kohn–Rostoker (SKKR) method (Szunyogh et al., 1994; Szunyogh et al.,
1995; Újfalussy et al., 1995), on the other hand, is a more realistic approach for the
magneto-optical Kerr spectra calculations in case of surface layered systems.
In Section 2 the theoretical framework is revisited and extended to arbitrary polari-

zations of the electric field. In Section 2.2 it is demonstrated that besides the inter-band
contribution to the optical conductivity tensor, the contour integration technique
(Szunyogh and Weinberger, 1999) includes also the intra-band contribution. In
Section 2.3 it is shown that the Luttinger formalism (Luttinger, 1967) – and accordingly
the contour integration technique, too – provides the complex conductivity tensor even
in the zero frequency limit for a finite life-time broadening. The symmetric part of
the dc-conductivity tensor, however, cannot be obtained by contour integrating in
the complex energy plane. Recently, the authors discussed in detail schemes of how
to control the accuracy of the computation (Vernes et al., 2000), therefore in Section
3 only the main aspects of these numerical methods are briefly reviewed. In Section 4
the layer-resolved complex Kerr angles are introduced. This concept is then used to
study separately the impact of the ferromagnetic surface layer and of the non-magnetic
buffer layers below the surface in the Co jPtm surface layered system. In addition, the
change of MOKE with the thickness of the buffer Pt-layer for a particular frequency is
also analyzed. Finally, the main results of the present work are summarized in Section 5.

2. THEORETICAL FRAMEWORK

When a time dependent external electric field is applied to a solid, currents are induced,
which create internal electric fields. The total electric field is then the sum of all these
fields and in the long-wavelength limit is written as (Eykholt, 1986)

~EEð~rr, tÞ ¼ ~EE0 e
ið~qq ~rr�!tÞ e�t, ð1Þ

the positive infinitesimal � implying the field to be turned on at t ¼ �1 (Lax, 1958).
Because the solid is not a homogeneous system, in linear response the resulting total

current density is given by (Mahan, 2000)

J�ð~rr, tÞ ¼
X
�

Z
d3r0

Z
dt0���ð~rr, ~rr

0; t, t0ÞE�ð~rr
0, t0Þ: ð2Þ

Here ���ð~rr, ~rr
0; t, t0Þ is the non-local, time dependent conductivity and expresses the

linear response of the current at t in ~rr and direction � to the local electric field applied
at t0 in ~rr 0 and direction � (Butler et al., 1994).
The Fourier transform of Eq. (2)

J�ð~qq
0,!0Þ ¼ �~qq 0, ~qq�ð!

0 � !Þ
X
�

���ð~qq,!ÞE0� ð�, � ¼ x, y, zÞ,
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introduces the wave-vector and frequency dependent complex conductivity tensor
�ð~qq,!Þ (Eykholt, 1986), which can be evaluated using the well-known Kubo formula
(Kubo, 1957)

���ð~qq,!Þ ¼ lim
�!0þ

1

V

Z 1

0

dt ei=�hh �hh!þ i�ð Þt

Z �

0

d	 J�
�~qqJ

�
~qq
tþ i �hh	ð Þ

D E
eq
: ð3Þ

Here V is the crystalline volume, � ¼ kBTð Þ
�1 and h� � �ieq the ensemble average in the

equilibrium state at t ¼ �1, respectively. Notice that when the electric field is not
transverse, i.e. ~qq ~EE0 6¼ 0 (Eykholt, 1986; Mahan, 2000), the Kubo conductivity tensor
�ð~qq,!Þ differs from that derived from the Maxwell equations (Kubo, 1966), i.e.

�Mð~qq,!Þ ¼ �ð~qq,!Þ 1�
4
i

!
q̂q ��ð~qq,!Þ � q̂q

� ��1
,

where q̂q is the unit vector along ~qq.

2.1. Luttinger Formalism

Based on the contour deformation method (Hu, 1993), it can easily be shown that

Z �

0

d	 J�
�~qqJ

�
~qq
tþ i �hh	ð Þ

D E
eq
¼
i

�hh

Z 1

t

dt0 J�
~qq
t0ð Þ, J�

�~qq

h iD E
eq
,

where J�
~qq
t0ð Þ is the Heisenberg operator:

J�
~qq
t0ð Þ ¼ eði= �hhÞHt

0

J�
~qq
eð�i= �hhÞHt

0

:

For a diagonal representation of the one-electron Hamiltonian H and for the equilib-
rium density operator

�eq � f ðHÞ ¼
1

e�ðH��Þ þ 1
,

with f ðHÞ being the Fermi–Dirac distribution function, � the chemical potential (in the
following the temperature dependence of the chemical potential is neglected, i.e. �
equals the Fermi level "F), Eq. (3) can be rewritten as

���ð~qq,!Þ ¼ lim
�!0þ

i

�hhV

X
m, n

f ð"mÞ � f ð"nÞ½ �J�
~qq,mn

J�
�~qq, nm �

Z 1

0

dt eði=�hhÞ �hh!þi�ð Þt

Z 1

t

dt0eði=�hhÞð"m�"nÞt
0

,

ð4Þ

where

J�
~qq,mn

� mh jJ�
~qq
nj i, J�

�~qq, nm � nh jJ�
�~qq mj i,

and "m denotes the eigenvalue of H corresponding to the eigen-vector mj i.
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Both integrations in Eq. (4) with respect to t0 and t, respectively, can be performed
taking advantage on the Laplace transform of the identity (Abramowitz and Stegun,
1972). Proceeding by this manner, the factor e�t introduced in Eq. (1) to describe
the interaction of the solid with its surroundings, can be seen also as a simple con-
vergence factor (Lax, 1958). However, the complex conductivity tensor a for finite

 ¼ �hh!þ i�, i.e.

���ð~qq, 
Þ ¼
�hh

iV

X
m, n

f ð"mÞ � f ð"nÞ

"m � "n

J�
~qq,mn

J�
�~qq, nm

"m � "n þ 

, ð5Þ

extends further the meaning of �. Here, � can be seen as the finite life-time broadening,
which accounts for all the scattering processes at finite temperature, which are not part
of a standard band-structure calculation. Introducing the current–current correlation
function as (Mahan, 2000)

��� ~qq, 

	 


¼
i�hh

V

X
m, n

f ð"mÞ � f ð"nÞ

"m � "n þ 

J�
~qq,mn

J�
�~qq, nm, ð6Þ

finally results in the well-known Luttinger formula (Luttinger, 1967)

���ð~qq, 
Þ ¼
��� ~qq, 


	 

� ��� ~qq, 0

	 




: ð7Þ

A rather technical point to be noticed is that in a previous paper (Szunyogh and
Weinberger, 1999), the variable 
 had a slightly different definition, namely it was
introduced as short-hand notation for !þ i�= �hh. For this meaning of 
, one has to
use Eqs. (2) and (3) from Szunyogh and Weinberger (1999) instead of Eqs. (6) and (7).
The Luttinger formula (7) differs in form from that originally deduced by Kubo using

the scalar potential description of the electric field (Kubo, 1957). In fact, Eq. (6) can be
straightforwardly obtained starting from the vector potential description of the electric
field (Callaway, 1974). Nevertheless, the formulae arising from the different descrip-
tions of the electric field are completely equivalent (Hu, 1993).
The inter-band contribution to the complex conductivity tensor �inter

�� ð~qq, 
Þ, can be
obtained directly from Eqs. (6) and (7), imposing for the former "m 6¼ "n.
Considering the intra-band life-time broadening equal to that taken for the inter-
band contribution, Eq. (5) provides in the "m ! "n limit immediately the intra-band
contribution

�intra
�� ð~qq, 
Þ ¼

�intra�� ð~qqÞ



, ð8Þ

where

�intra�� ð~qqÞ � � lim
"m!"n

���ð~qq, 0Þ, ð9Þ

because �intra�� ~qq, 

	 


¼ 0, if 
 6¼ 0. In contrast to the phenomenological Drude term,
which is supposed to give the intra-band contribution (Oppeneer et al., 1992),
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�intra
�� ð~qq, 
Þ is added to both, diagonal (� ¼ �) and off-diagonal (� 6¼ �) elements of the

complex conductivity tensor (Oppeneer, 1999). In conclusion, calculating ��� ~qq, 

	 


in
accordance with Eq. (6), both the inter- and intra-band contribution is present in the
Luttinger formula (7), i.e.

���ð~qq, 
Þ ¼ �inter
�� ð~qq, 
Þ þ�intra

�� ð~qq, 
Þ:

2.2. Contour Integration Technique

The contour integration technique, originally developed for ~qq ¼ 0 by Szunyogh and
Weinberger (1999), is extended below to calculate the current–current correlation
function for arbitrary polarizations of the electric field. This technique permits the
evaluation of Eq. (6) by performing a contour integration in the complex energy
plane at finite temperature. The integration can be performed by exploiting the proper-
ties of the Fermi–Dirac distribution in the selection of the contour (Mahan, 2000),

f ðzÞ ¼
1

e�ðz��Þ þ 1
,

with z 2 C. Namely, that f ðzÞ is analytical everywhere, except the so-called Matsubara
poles (Nicholson et al., 1994)

zk ¼ "F þ i 2k� 1ð Þ�T , k ¼ 0, � 1, � 2, . . .

(�T ¼ 
kBT) and for energies parallel to the real axis situated in-between two, succes-
sive Matsubara poles (Wildberger et al., 1995), f ð"� 2ik�T Þ ¼ f ð"Þ.
Initially, two contours �1 and �2 are considered around the eigenvalues "m and "n

including a finite number of Matsubara poles, see Fig. 1. The contour parts of �1

FIGURE 1 Selection of contour �1 and �2. "m and "n are eigenvalues of the Hamiltonian, 
 ¼ �hh!þ i�, with
! being the frequency and � the life-time broadening. "F is the Fermi level, "b the bottom valence band energy
and "u ¼ "F þ �kBT (� 2 N). zk ¼ "F þ i 2k� 1ð Þ�T are Matsubara poles with k ¼ 0, � 1, � 2, . . . and
�T ¼ 
kBT . �1, 2 were selected to fulfill the condition given by Eq. (10).
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parallel to the real axis (z ¼ "� i�j, j ¼ 1, 2) are taken in-between two, successive
Matsubara poles

ð2Nj � 1Þ�T < �j < ð2Nj þ 1Þ�T , ð10Þ

with N1 being the Matsubara poles in the upper and N2 in the lower semi-plane, respect-
ively, included in �1, e.g. �j ¼ 2Nj�T for j ¼ 1, 2. �2 is �1 mirrored along the real axis,
hence includes N2 Matsubara poles in the upper and N1 in the lower semi-plane.
In order to not have "n � 
 and "m þ 
 contained in the contour �2 and �1,
respectively, the only constraint applied is

� > �2: ð11Þ

Using the residue theorem, it was shown that (Szunyogh and Weinberger, 1999)

i
f ð"mÞ

"m � "n þ 

¼ �

1

2


Z
g

�1

dz
f ðzÞ

z� "mÞðz� "n þ 
ð Þ
þ i

�T



XN1

k¼�N2þ1

1

ðzk � "mÞðzk � "n þ 
Þ

and

�i
f ð"nÞ

"m � "n þ 

¼

1

2


Z
h

�2

dz
f ðzÞ

z� "nð Þ z� "m � 
ð Þ
þ i

�T



XN2

k¼�N1þ1

1

ðzk � "nÞðzk � "m � 
Þ
:

Observing that as long as 
 6¼ 0, the sum of these two expressions vanishes, when
"m ¼ "n, no restriction regarding to the eigenvalues must be imposed, such that by
using the resolvent (Weinberger, 1990)

GðzÞ ¼
X
n

nihnj j

z� "n
,

immediately follows that

���ð~qq, 
Þ ¼

Z
g

�1

dz f ðzÞ ~����ð~qq; zþ 
, zÞ �

Z
h

�2

dz f ðzÞ ~����ð~qq; z, z� 
Þ

� 2i�T
XN1

k¼�N2þ1

~����ð~qq; zk þ 
, zkÞ þ
XN2

k¼�N1þ1

~����ð~qq; zk, zk � 
Þ

" #
: ð12Þ

Here due to the trace, the quantity

~����ð~qq; z1, z2Þ ¼ �
�hh

2
V
Tr J�

~qq
Gðz1ÞJ

�
�~qqGðz2Þ

h i
, ð13Þ

contains the inter-band ("m 6¼ "n) and the vanishing intra-band ("m ¼ "n) contribution
too, i.e.

���ð~qq, 
Þ ¼ �inter�� ð~qq, 
Þ: ð14Þ
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Thus the contour integration technique – through Eq. (12) – preserves all the features of
the current–current correlation function introduced by the Luttinger formalism
(Section 2.1).
Originally, ~����ð~qq; z1, z2Þ was introduced for ~qq ¼ 0 as an auxiliary quantity to be eval-

uated for the calculation of the residual resistivity (!,T ¼ 0) of substitutionally disor-
dered bulk systems (Butler, 1985). Since its extension to deal with inhomogeneously
disordered layered systems (Weinberger et al., 1996), this quantity nowadays is
widely used to calculate the magneto-transport properties of multilayers (Blaas et al.,
1999). As it was shown in a previous paper (Szunyogh and Weinberger, 1999), it also
plays a central role, when the magneto-optical properties of semi-infinite layered
systems are calculated. In the case of electric fields with an arbitrary polarization,
~����ð~qq; z1, z2Þ obeys the following symmetry relations

~����ð~qq; z1, z2Þ ¼ ~����ð�~qq; z2, z1Þ

~����ð~qq; z
�
1, z

�
2Þ ¼ ~���

��ð~qq; z1, z2Þ ¼ ~���
��ð�~qq; z2, z1Þ,

(

by which Eq. (12) can be written as

���ð~qq, 
Þ ¼

Z
g

�1

dz f ðzÞ ~����ð~qq; zþ 
, zÞ �

Z
g

�1

dz f ðzÞ ~����ð�~qq; z� 
�, zÞ

� ��

� 2i�T
XN1

k¼�N2þ1

~����ð~qq; zk þ 
, zkÞ þ ~���
��ð�~qq; zk � 
�, zkÞ

h i
: ð15Þ

Although ���ð~qq, 0Þ is obtained directly from Eq. (6) by taking 
 ¼ 0, its evaluation
requires right from the beginning a single contour integration, namely that along �1,
because the residue theorem provides directly

i
f ð"mÞ � f ð"nÞ

"m � "n
¼ �

1

2


Z
g

�1

dz
f ðzÞ

z� "mÞðz� "nð Þ
þ i

�T



XN1

k¼�N2þ1

1

ðzk � "mÞðzk � "nÞ
:

From this expression results immediately the inter-band contribution �inter�� ð~qq, 0Þ, when
"m 6¼ "n and in the "m ! "n limit this leads to

i
@f ð"nÞ

@"n
¼ �

1

2


Z
g

�1

dz
f ðzÞ

ðz� "nÞ
2
þ i

�T



XN1

k¼�N2þ1

1

ðzk � "nÞ
2
:

Therefore, according to Eq. (13),

���ð~qq, 0Þ ¼

Z
g

�1

dz f ðzÞ ~����ð~qq; z, zÞ � 2i�T
XN1

k¼�N2þ1

~����ð~qq; zk, zkÞ ð16Þ

includes the intra-band contribution too, i.e. based on Eq. (9),

���ð~qq, 0Þ ¼ �inter�� ð~qq, 0Þ � �intra�� ð~qqÞ: ð17Þ
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In conclusion, it can be stated that within the contour integration technique, the opti-
cal conductivity tensor obtained by using the Luttinger formula (17), contains both
inter- and inter-band contributions, i.e. based on Eqs. (14), (17) and (8),

���ð~qq, 
Þ ¼
�inter�� ð~qq, 
Þ � �inter�� ð~qq, 0Þ



þ�intra

�� ð~qqÞ:

2.3. Static and Sharp Bands Limit

In order to derive the dc electrical conductivity, it has been shown, that first the limit of
~qq! 0 has to be taken (Luttinger, 1964). Equations (6) and (7) lead to finite values for
~qq! 0 in the static regime (! ! 0), or, separately, on sharp bands limit (� ! 0þ). It
should be recalled that the contour integration technique can be only used for ! ¼ 0
calculations, when

��� �ð Þ ¼
@���ð
Þ

@!

����
!¼ 0

,

because of the constraint (11) applied to the contour �1, the sharp bands limit (� ¼ 0) is
unreachable even when T ¼ 0K.
Alternatively, in the static limit and for finite life-time broadening, Eq. (15) is given by

��� �ð Þ ¼
1

2
�ðþÞ

�� �ð Þ þ�ð�Þ
�� �ð Þ

h i
�
1

2
�ðþÞ

�� �ð Þ ��ð�Þ
�� �ð Þ

h i
,

where

�ð�Þ
�� �ð Þ � �

�hh

iV

X
m, n

f ð"mÞ � f ð"nÞ

"m � "n

J�mnJ
�
nm

"m � "nð Þ � i�
:

The sharp bands limit of its symmetric part (Luttinger, 1967)

�ðsÞ
�� ¼

1

2
�ðþÞ

�� þ�ð�Þ
��

h i
, with �ð�Þ

�� ¼ lim
�!0þ

�ð�Þ
�� �ð Þ,

on the other hand, exists, but is restricted to the intra-band contribution and is given by
the Landau form of the dc conductivity (Greenwood, 1958)

�ðsÞ
�� ¼


�hh

V

X
m, n

�
@f ð"nÞ

@"n

� �
� "m � "nð ÞJ�mnJ

�
nm:

As a consequence of the presence of the Dirac �-function in this expression, �ðsÞ
�� can be

calculated performing an energy integration along the real axis when T > 0, i.e.

PðsÞ
�� ¼

Z 1

�1

d" �
@f ð"Þ

@"

� �
��� "ð Þ,
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where ��� "ð Þ is the arithmetic mean of the four ~���� z1, z2ð Þ, z1, 2 ¼ "� i0, given by
Eq. (13) in the ~qq! 0 limit (Butler, 1985; Weinberger et al., 1996).

3. COMPUTATIONAL DETAILS

In principle, the contour �1 along which one integrates in Eqs. (15) and (16), should
extend from þ1 to �1. In practice, however, the lower limit of the contour �1 is
set to the bottom valence band energy "b, i.e. no core states are assumed to contribute.
For the upper limit, on the other hand, "u ¼ "F þ �kBT (� 2 N) instead of 1 is taken,
because the Fermi–Dirac distribution decays fast, for more details, see Fig. 1.
In calculating the difference between Eqs. (15) and (16), one can distinguish between

four different contributions, i.e.

���ð~qq, 
Þ � ���ð~qq, 0Þ ¼
X4
j¼1

�ð jÞ
��ð~qq, 
Þ:

The part of contour �1 in the upper semi-plane contributes

�ð1Þ
�� ð~qq, 
Þ ¼

Z "uþi�1

"bþi0

dz f ðzÞ ~����ð~qq; zþ 
, zÞ � ~����ð~qq; z, zÞ
� �

�

Z "uþi�1

"bþi0

dz f ðzÞ ~����ð�~qq; z� 
�, zÞ

� ��
,

whereas the contour part in the lower semi-plane contributes

�ð2Þ
�� ð~qq, 
Þ ¼ �

Z "u�i�2

"b�i0

dz f ðzÞ ~����ð~qq; zþ 
, zÞ � ~����ð~qq; z, zÞ
� �

þ

Z "u�i�2

"b�i0

dz f ðzÞ ~����ð�~qq; z� 
�, zÞ

� ��
:

It should be mentioned, that in a previous paper the sign of the latter was misprinted,
see Eq. (25) from Szunyogh and Weinberger (1999). The Matsubara poles have two
contributions: one coming from the N1 �N2 poles situated in the upper semi-plane

�ð3Þ
�� ð~qq, 
Þ ¼ �2i�T

XN1

k¼N2þ1

�
~����ð~qq; zk þ 
, zkÞ � ~����ð~qq; zk, zkÞ þ ~���

��ð�~qq; zk � 
�; zkÞ
�

and an other one from the 2N2 poles near and on both sides of the real axis

�ð4Þ
�� ð~qq, 
Þ ¼ �2i�T

XN2

k¼1

�
~����ð~qq; zk þ 
, zkÞ � ~����ð~qq; zk, zkÞ þ ~���

��ð�~qq; zk � 
�, zkÞ

þ ~����ð~qq; z
�
k þ 
, z�kÞ � ~����ð~qq; z

�
k, z

�
kÞ þ ~���

��ð�~qq; z�k � 
�, z�kÞ
�
:
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In the present paper, the current–current correlation function needed to evaluate
�ð jÞ
�� ð~qq, 
Þ is computed using Eq. (13), relativistic current operators (Weinberger et al.,
1996) and the Green functions GðzÞ obtained by means of the spin-polarized relativistic
screened Korringa–Kohn–Rostoker (SKKR) method for layered systems (Szunyogh et
al., 1994, 1995; Újfalussy et al., 2000). Because of the finite imaginary part of the com-
plex energy variable z, the calculation scheme includes the so-called irregular solutions
of the Dirac equation too (Szunyogh and Weinberger, 1999).
From the computational point of view, besides the Matsubara poles, the optical

conductivity tensor ���ð~qq, 
Þ as given by Eq. (7), depends also on the number of
complex energy points nz considered for the energy integrals involved (�ð1, 2Þ

�� ð~qq, 
Þ), on
the number of ~kk-points used to calculate the scattering path operator and the
~����ð~qq; z� �hh! þ i�, zÞ for a given energy z, respectively. Recently, the authors have
proposed two schemes to control the accuracy of the z- and ~kk-integrations computing
���ð~qq, 
Þ (Vernes et al., 2001). For that reason, only the main aspects of these numerical
methods are given below.
The accuracy of the integrations with respect to z is controlled comparing the

obtained results by means of the Konrod quadrature (Laurie, 1997; Calvetti et al.,
2000), K2nzþ1�

ð jÞ
��ð~qq, 
Þ, with those computed by using the Gauss integration rule

(Press et al., 1992), Gnz�
ð jÞ
�� ð~qq, 
Þ, on each contour part in both semi-planes ( j ¼ 1, 2) –

for the notations used, see Vernes et al. (2001). Hence along a particular contour
part, �ð jÞ

��ð~qq, 
Þ is said to be converged, if

max K2nzþ1�
ð jÞ
��ð~qq, 
Þ � Gnz�

ð jÞ
��ð~qq, 
Þ

��� ��� � �z , ð18Þ

where �z is the accuracy parameter. One advantage of this scheme is that the integrands
have to be evaluated only in 2nz þ 1 points, because the 2nz þ 1 Konrod–nodes include
all the nz Gauss-nodes. Another advantage is, that Eq. (18) is fulfilled for any, arbitrary
small �z, as test calculations performed for ~qq ¼ 0 have shown (Vernes et al., 2001).
In order to compute the involved two-dimensional ~kk-space integrals with arbitrary

high precision, a new, cumulative special points method was developed by the present
authors (Vernes et al., 2001). This method exploits the arbitrariness of the mesh origin
(Hama and Watanabe, 1992) and requires to evaluate the integrands only for the
~kk-points newly added to the mesh. Test calculations for ~qq ¼ 0 have shown (Vernes
et al., 2001), that a requirement similar to Eq. (18), i.e.

max Sni ~����ð~qq; z
0, zÞ � Sni�1 ~����ð~qq; z

0, zÞ
�� �� � � ~kk , ð19Þ

for any z on the contour or zk Matsubara pole (z0 ¼ zþ 
, z� 
�) can be fulfilled with
arbitrarily high accuracy � ~kk.
Furthermore, it was shown Vernes et al. (2001), that if the z- and ~kk-integrations

are performed and controlled in the manner presented above, the computed optical
conductivity ���ð~qq, 
Þ does not depend on the form of the contour in the upper semi-
plane. Hence our computational set-up for ���ð~qq, 
Þ is completely specified by �z, � ~kk
and the number of Matsubara poles N2 near and on both sides of the real axis. (The
latter is taken in accordance with the life-time broadening �, i.e. to fulfill the condition:
2�2 ¼ �.)

176 A. VERNES et al.

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
C

al
if

or
ni

a,
 R

iv
er

si
de

 L
ib

ra
ri

es
] 

at
 1

7:
18

 2
3 

O
ct

ob
er

 2
01

4 



4. RESULTS AND DISCUSSION

The layered system studied in the present paper consists on a mono-layer of Co on the
top of fcc-Pt(100) with Pt-layers serving as ‘‘buffer’’ to bulk Pt (Pustogowa et al., 1999):

Co jPtm � Coð1Þ jPtð2Þ j . . . jPtðn�1Þ jPtðnÞ jPt ðbulkÞ

with the subscript in parenthesis being the layer index. The bottom valence band energy
�b was taken at �1 Ry, "u ¼ "F þ 8kBT and the Fermi level �F is that of Pt bulk, i.e.
�0:039 Ry. (Pt bulk acts as a charge reservoir for the layered system.)
The optical conductivity calculations were carried out for ~qq ¼ 0, T ¼ 300K and

using a life-time broadening of 0:048 Ry, i.e. N2 ¼ 2 Matsubara poles near and on
both sides of the real axis. The computation is less influenced by the Matsubara poles
considered in the upper semi-plane, as it was already mentioned in Section 3, therefore
we have taken N1 �N2 ¼ 35 poles to accelerate the computation in the upper semi-
plane. The convergence criteria (18) and (19) were fulfilled for �z ¼ � ~kk ¼ 10�3 a.u.
It was shown (Weinberger et al., 1996), that in case of layered systems the ~����

ð~qq; z1, z2Þ over which one has to integrate, see Section 2.2, can be split into intra-
( p ¼ q) and inter-layer ( p 6¼ q) contributions. This decomposition of the current–
current correlation function in Eq. (13), makes the optical conductivity for layered
systems to be of the form

���ð~qq, 
Þ ¼
Xn
p¼1

� p
��ð~qq, 
Þ, ð20Þ

where the layer-resolved optical conductivities are given by

� p
��ð~qq, 
Þ ¼

Xn
q¼1

�pq
��ð~qq, 
Þ, p ¼ 1, . . . , n: ð21Þ

Because in the present work, ~qq ¼ 0, � and T are fixed, in the following these variables
are omitted and the optical conductivity tensor is simply denoted by ���ð!Þ. In the
case of the layered system Co jPtm, for the inter-layer contribution it is verified with
an accuracy of 10�15fs�1 that

�pq
��ð!Þ ¼ �qp

��ð!Þ:

It was also found that these inter-layer contributions are always smaller than the intra-
layer contributions �pp

��ð!Þ.
When linearly polarized light is reflected from a magnetic solid, the reflected light

becomes elliptically polarized and its polarization plane is rotated with an angle �K
with respect to the incident light. The former effect is characterized by the ellipticity
"K and the phenomenon is called magneto-optical Kerr effect (MOKE). In the polar
geometry, considered in the present work, both the incident light and the magnetization
are perpendicular to the surface. For a precision up to several degrees the complex
Kerr angle is given then by Reim and Schoenes (1990)

�K ¼ �K þ i"K ¼ �xyð!Þ=�xxð!Þ 1þ 4
i=!�xxð!Þ½ �
�1=2: ð22Þ
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The frequency dependence of �K and "K in case of Co jPtm surface layered system
for different number of Pt buffer layers (m ¼ 0, . . . , 3) is shown in Fig. 2. As a general
trend of these curves, it can be observed, that apart from the m ¼ 0 situation at
low photon energies, our calculations are in agreement with the experimental fact,
that the MOKE decreases, if the thickness of the buffer Pt increases (Gao et al., 1998).
In fact, m ¼ 0 means, that one considers only the surface Co-layer in the calculations,

i.e. Eqs. (20) and (21) are taken for n ¼ 1. Although in this case, the layer-resolved
optical conductivity equals ���ð!Þ, the corresponding Kerr spectrum is the most
peculiar one in comparison with the results obtained for m � 1. Once the contribution
of different Pt buffer layers below the surface are accounted for (m � 1), the complex
Kerr angle changes dramatically in the whole frequency range and the calculated
MOKE for Co jPtm¼3, see right panels in Fig. 2 possesses already the features known
from the experiments: �K has two typical local minima about 2 and 4 eV and "K
has a flat region in-between two local extrema in the middle of the frequency range

FIGURE 2 Complex Kerr effect for the Co jPtm layered system with m ¼ 0; ð�Þ; 1 (.); 2 (&); 3 (M)
Pt-layers below the surface Co-layer (left panel) and separately for m ¼ 3 (right panel). � ¼ 0:048 Ry,
T=300K and "z ¼ " ~kk ¼ 10�3 a.u., respectively.
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(Uba et al., 1996). The frequency width, however, is smaller than that known from
experiments. Below 1 eV and above 5 eV our theoretical spectra are richer in fine details
than the experimental data Ebert et al. (1998). Finally, it should be mentioned that, both
the Kerr rotation angle and ellipticity are approximatively three times smaller than
those measured for thin films of Co–Pt alloy (Weller, 1996).
In order to understand this, we introduce layer-resolved complex Kerr angles by

using instead of ���ð!Þ in Eq. (22), the layer-resolved �p
��ð!Þ, i.e.

�
p
K ¼ � pK þ i" pK ¼ � p

xyð!Þ=�
p
xxð!Þ 1þ 4
i=!� p

xxð!Þ
� ��1=2

ð p ¼ 1, . . . , nÞ: ð23Þ

For Co jPtm¼3, �
p
K is plotted in Fig. 3. In contrast to a homogeneous system, like

bcc-Fe or fcc-Co Huhne and Ebert (1999), it is found that the surface resolved
MOKE cannot predict correctly the complex Kerr effect in our inhomogeneous, surface

FIGURE 3 Layer-resolved complex Kerr effect for Co jPtm¼3. In the left panel the Kerr spectra resolved
for the surface Co-layer^ are compared with that of the layered system M. The right panel show the complex
Kerr effect arising from the Pt-layers: ~ refers to the Kerr spectra resolved for the first Pt-layer below
the surface, � for the second Pt-layer and ! for the last Pt-layer, respectively.
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layered system Co jPtm¼3, see left panels of Fig. 3. Inspecting the layer-resolved com-
plex Kerr angles of the three Pt-layers (right panels in Fig. 3), it can be seen that
both � pK and " pK of the first Pt-layer below the surface Co-layer is in the experimental
range (Weller, 1996). This shows that the first buffer layer is as important as the
magnetic surface in an inhomogeneous layered system. Thus in order to exploit the rela-
tively big MOKE in the first buffer layer, one has to bring Pt into the surface Co-layer,
e.g. by alloying, and has to prepare thin films. This theoretical finding is completely
in-line with the known experimental facts (Hatwar et al., 1997).
In addition, we have also studied the variation of MOKE in Co jPtm with the thick-

ness of the Pt buffer for �hh! ¼ 0:68 eV. The change in the layer-resolved MOKE for m
up to 15 is given in Fig. 4. The Co jPtm system has only six Pt-layers below the surface
included self-consistently and the other Pt-layers are all bulk-like. This construction
is based on the fact, that no changes occur neither in MOKE nor in the optical con-
ductivity, if the system has more than six self-consistently included Pt-layers. (Test
calculations were carried out for Co jPtm¼9 and �hh! ¼ 0:68 eV by changing the
number of bulk-like Pt-layers in the system.)
As can be seen from Fig. 4, the layer-resolved complex Kerr angles up to nine (ten)

Pt mono-layers do not depend linearly on the thickness of the Pt buffer. This is in agree-
ment with other, ab-initio (Blaas et al., 2000) and model (Bruno et al., 1999) magneto-
transport calculations (! ¼ 0) for different multilayer systems, but does not confirm the
situation found performing super-cell calculations (Perlov and Ebert, 2000), where lin-
earity of the surface resolved optical conductivity seems to occur after a few layers.
We have found, that the Kerr angle of the surface Co-layer increases with the

thickness of Pt, whereas that of the first Pt-layer below the surface, decreases and the
opposite holds for the layer–resolved Kerr ellipticity. Although these two layers provide
the main contributions to the MOKE in Co jPtm, they alone are not sufficient to
describe the complex Kerr angle of the whole system (over nine Pt-layers), because
at least twelve Pt-layers are needed to get �K and "K stabilized around �0:005 and
0.009 deg, respectively. The change in the surface resolved MOKE with respect to m

FIGURE 4 Total and layer–resolved complex Kerr angle for �hh! ¼ 0:68 eV and the Co jPtm multiplayer
(m ¼ 0, . . . , 15), containing below the surface Co-layer six self–consistently included Pt-layers followed
by bulk–like layers. The symbols represent the same type of data as in Fig. 3.
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is compensated mainly by the change in the layer-resolved MOKE arising from the first
non-magnetic layer below the surface, and hence �K and "K finally are converging, for
simplicity the layer-resolved MOKE of the Pt-layers below the third one are not shown
in Fig. 4. They are situated always in-between the results obtained for the surface Co-
and the first Pt-layer below. The deeper the Pt-layer, the smaller its MOKE is, such that
the contribution arising from a Pt-layer below the twelveth layer has a really
negligible influence on the total MOKE.
Finally, in Fig. 5 we show that both, the layer-resolved and the total optical con-

ductivity tensor, respectively, can indeed be computed for ! ¼ 0 with a finite life-
time broadening by means of the contour integration technique, see also Section 2.3.
As can be seen from Fig. 5, the imaginary parts of all �p

��ð! ¼ 0Þ and ���ð! ¼ 0Þ
vanish (with an accuracy of 10�3 fs�1), whereas the real parts of the same quantities
remain finite. However, these values cannot be used to calculate the MOKE based
on Eqs. (22) and (23), because these expressions are diverging in the static limit.

FIGURE 5 Real and imaginary part of the total and layer-resolved optical conductivity for Co jPtm¼3. The
optical conductivity resolved for the surface Co-layer is given by ^ and that resolved for the Pt-layers by ~,
� and !, respectively. The optical conductivity of the multilayer is represented by �.
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5. SUMMARY

The contour integration technique applied to Luttinger’s formalism for the optical
conductivity tensor has been extended to electric fields with arbitrary polarizations
and is shown to straightforwardly account for both the inter- and intra-band contribu-
tion. Hence within our technique there is no need to approximate the intra-band
contribution by the so-called semi-empirical Drude term. The optical conductivity
tensor for finite life-time broadening can be computed also in the zero frequency
limit, however, the dc conductivity cannot be obtained integrating in the complex
energy plane. The contour integration technique was also completed here in deriving
formulae for the current–current correlation function at zero frequency and vanishing
life-time broadening (
 ¼ 0).
Introducing the concept of the layer-resolved complex Kerr angles and computing

the magneto-optical Kerr effect for the Co jPtm surface layered system in polar geome-
try, we have shown that (1) the layer-resolved complex Kerr angle for the ferromagnetic
surface alone cannot predict correctly the magneto-optical Kerr effect in inhomoge-
neous multilayers. In the case of Co jPtm the first Pt-layer below the surface is as
important for the polar MOKE as the ferromagnetic surface Co-layer itself. (2) The
Kerr spectra of Co jPtm¼3 possess all the known, experimental characteristics, but in
order to exploit the relatively big complex Kerr angle arising from the first Pt-layer
below the surface, one has to consider a Co–Pt alloy at the surface.
In addition, it was also shown that the layer-resolved MOKE shows a non-linear

dependence with respect to the thickness of the buffer Pt up to m ¼ 9 for Co jPtm;
only for m � 12 the complex Kerr angle is fully converged.
Finally, we have demonstrated that the contour integration technique developed for

the Luttinger formalism can be used straightforwardly with a finite life-time broadening
in the zero frequency limit. Calculations performed provide a purely real optical
conductivity tensor at zero frequency.
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