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Abstract
Tunnelling between two semi-in®nite ferromagnetic electrodes separated by

vacuum is studied theoretically on an ab-initio level by using the fully relativistic
spin-polarized screened Korringa±Kohn±Rostoker and the spin-polarized non-
relativistic tight-binding linear mu� n-tin orbital method. The Kubo±
Greenwood equation is employed to calculate the non-local conductivity and
layer-resolved sheet resistances; the transmission matrix formulation in turn is
used to evaluate the conductance. We show that the dependence of sheet
resistance on the imaginary part of the Fermi energy allows us to distinguish
between the tunnelling and conductive regimes of electron transport. Our
numerical studies of the system bcc Fe(100)/vacuum/bcc Fe(100) show quite
dramatic variations in the electrostatic potential in the vacuum region and a
gradual development of the tunnelling barrier with increasing thickness of the
vacuum barrier. Varying the Madelung potential in the interior of the vacuum
barrier allowed us to simulate spacers made of semiconducting or insulating
material and to discuss the conditions for the presence of a magnetoresistance
in such multilayers. As far as the thickness of the vacuum barrier is concerned the
results obtained with the transmission matrix approach for fcc Co(001)/vacuum/
fcc Co(001) show a similar tendency to those obtained within the Kubo±
Greenwood equation for bcc Fe(100)/vacuum/bcc Fe(100); asymptotically, that
is with increasing thickness of the vacuum barrier, the magnetoresistance tends to
zero.

} 1. Introduction
At present, enormous scienti®c and commercial interest is devoted to spin-depen-

dent tunnelling between ferromagnetic electrodes separated by a semiconducting or
insulating barrier such as in Fe/MgO/Fe or Fe/ZnSe/Fe. These systems can be
produced with relative ease and bear great promise for technological applications.
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In order to calculate their electronic and transport properties, however, reliable
structural information about the interfaces between the metal and the insulator is
required. So far such information based on direct experimental data is not available.
Only very recently has a set of criteria for tunnelling in magnetic±insulator±
magnetic structures been discussed (Akerman et al. 2001) which concluded that
`tunnelling is rare’. Also very recently an interesting theoretical discussion of the
use of the Kubo formula and its relation to the Landauer approach was presented
(NikolicÂ 2001) (see also NikolicÂ and Allen (1999, 2000)). At the moment, at least in
terms of ab-initio-type approaches, one has to resort to various structural models or,
as we do in this study, assume a simpli®ed structural model in which the insulating
spacer is replaced by a vacuum.

In the following we ®rst summarize brie¯y the theoretical concepts applied for
layered systems, namely the Kubo±Greenwood approach in terms of the screened
Korringa±Kohn±Rostoker (KKR) method, and the transmission matrix formulation
of the conductance via the tight-binding (TB) linear mu� n-tin orbital (LMTO)
method. The section containing the numerical results is meant to illustrate main
aspects of the tunnelling through a vacuum barrier. In particular the comparison
between the two diŒerent kinds of approach applied is to con®rm the main conclu-
sion of this paper concerning the functional behaviour of the magnetoresistance
regarding the thickness of the vacuum barrier.

} 2. The Kubo ± Greenwood equation for layered systems
Within the Kubo (1957) ± Greenwood (1958) approach the diagonal elements of

the conductivity tensor are given (Butler 1985) by

¼·· ˆ 1
4 ¼··…"‡; "‡† ‡ ¼··…" ; " † ¼··…"‡; " † ¼··…" ; "‡† ; …1†

with · 2 …x; y; z† and " ˆ "F i¯ …¯ ! 0†. For a layered system with n atomic layers
matched properly via surface Green function techniques to left and right substrates
(leads), equation (1) can be reformulated (Weinberger et al. 1996) as

¼··…C; n† ˆ 1

n

Xn

p;qˆ1

¼pq
··…C; n†; …2†

¼pq
··…C; n† ˆ 1

4

X2

i; jˆ1

… 1†i‡j¼pq
··…C; "i; "j; n† ; …3†

where C denotes a particular magnetic con®guration, "1 "‡, "2 " , and in the
absence of disorder (for a generalization to disordered systems, see Weinberger et al.
(1996)) the ¼pq

··…C; "¬; "­ ; n† are de®ned by

¼pq
··…C; "i; "j; n† ˆ A

OSBZ

…
Tr Jp

·…C; "j; "i†½ pq…C; k; "i†Jq
·…C; "i; "j†½qp…C; k; "j† d2k :

…4†

In A, all occurring fundamental constants are collected, the ½pq…C; k; "i† are the k
resolved layer oŒ-diagonal scattering path operators (Weinberger and Szunyogh
2000) respectively, OSBZ is the unit area of the surface Brillouin zone (SBZ), and
in the relativistic case the current matrices are given (Weinberger et al. 1996) by
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Jp
·…C; "i; "j† ˆ fJp

·;LL0 …C; "i; "j†g; …5†

Jp

·;LL0 …C; "i; "j† ˆ ec

…

WS

Zp
L…C; rp0; "i†y¬·Zp

L0 …C; rp0; "j† d3rp0; …6†

where L are appropriate angular momentum quantum numbers, e is the charge of
the electron, c the speed of light, the ¬· are the Dirac matrices, and the Zp

L…C; rp0; "i†
are regular scattering solutions (Weinberger 1990).

It should be noted that, with respect to the discussion given by NikolicÂ (2001),
equation (1) contains all cross-products and therefore does not correspond to an
approximate form of the Kubo equation. The only assumption made is that in the
case of perpendicular transport the restriction Ej j ˆ V=L for the electric ®eld E
(NikolicÂ 2001) is assumed to be valid, where V is the bias voltage (V ! 0 in the
linear transport regime) and L is the (®nite) length of the sample, that is E is a
homogeneous electric ®eld (Kubo et al. 1965, Rammer 1998). Formulated in terms
of atomic layers this in turn implies that for · ˆ z the electric current jp·…C; n† in layer
p is related to electric ®eld Eq in layer q by the following equation:

jp·…C; n† ˆ
Xn

qˆ1

¼pq
··…C; n†Eq…n† ˆ E…n†j j

Xn

qˆ1

¼pq
··…C; n†: …7†

2.1. Perpendicular electric transport via the Kubo±Greenwood equation
By mapping the conductivity tensor (Levy 1994) ¼…C; z; z 0†, z and z 0 being con-

tinuous variables along the surface normal, on to the corresponding conductivity
tensor elements ¼pq…C; n† ¼pq

zz …C; n† for a layered system, such that the algebraic
structure is conserved, that is

…
»…C; z; z 00†¼…C; z 00; z 0† ˆ ¯…z z 0†;

Xn

tˆ1

»pt…C; n† ¼tq…C; n† ˆ ¯pq; …8†

the sheet resistance

r…C; n† ˆ
Xn

p;qˆ1

»pq…C; n† …9†

then serves as a measure for the mapping (Weinberger et al. 2001). In fact, equation
(8) can be derived immediately from equation (7) with E…n†j j serving as a measure:

Xn

qˆ1

¼pq…C; n† 1
jq…C; n†

Xn

qˆ1

»pq…C; n† jq…C; n† ˆ E…n†j j: …10†

Suppose that ¯ is the imaginary part of the complex Fermi energy, then

r…C; n† ˆ lim
¯!0

‰r…C; n; ¯†Š ˆ lim
¯!0

Xn

p;qˆ1

»pq…C; n; ¯†
Á !

; …11†

where

Xn

tˆ1

»pt…C; n; ¯† ¼tq…C; n; ¯† ˆ ¯pq: …12†
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Furthermore, layer-resolved sheet resistances rp…C; n; ¯† can be de®ned as

rp…C; n; ¯† ˆ
Xn

qˆ1

»pq…C; n; ¯†; …13†

such that

r…C; n; ¯† ˆ
Xn

pˆ1

rp…C; n; ¯†: …14†

It was recently shown (Weinberger et al. 2001) that for heterojunctions of the type
. . . /LnXsLn/. . . , where Ln denotes n layers of the electrode material L and Xs s layers
of a suitable spacer X, the corresponding sheet resistance r…C; 2n ‡ s; ¯† for a given
value of ¯ and n 5 n0 varies linearly with respect to n:

r…C; 2…n ‡ m† ‡ s; ¯† ˆ r…C; 2n ‡ s; ¯† ‡ 2mk1…C; ¯†; …15†

lim
¯!0

‰k1…C; ¯†Š ˆ 0; …16†

which for a given n and s is linear in ¯:

r…C; 2n ‡ s; ¯† ˆ r…C; 2n ‡ s† ‡ ¯k2…C; 2n ‡ s†: …17†

From these two equations follows immediately that for n 5 n0

lim
¯!0

‰r…C; 2 n0 ‡ m… † ‡ s; ¯†Š ˆ r…C; 2n0 ‡ s†: …18†

The magnetoresistance is then given as

R…2n0 ‡ s† ˆ r…AP; 2n0 ‡ s† r…P; 2n0 ‡ s†
r…AP; 2n0 ‡ s† ; …19†

R…2n0 ‡ s; ¯† ˆ r…AP; 2n0 ‡ s; ¯† r…P; 2n0 ‡ s; ¯†
r…AP; 2n0 ‡ s; ¯† ; …20†

where AP and P explicitly denote the antiparallel and parallel magnetic con-
®gurations respectively. It should be noted that, since R…2n0 ‡ s; ¯† 4 R…2n0 ‡ s†,
the quantity R…2n0 ‡ s; ¯† can be used for qualitative discussions of the magneto-
resistance.

} 3. The transmission matrix formalism
Within a non-relativistic spin-polarized TB LMTO description of the transmis-

sion matrix formalism (KudrnovskyÂ et al. 2000) the conductance for a particular
magnetic con®guration C of a layered system of n properly embedded atomic layers
is given by

S…C; n† ˆ
X

¼ˆ 1=2

S¼…C; n† ; S¼…C; n† ˆ e2

h

1

OSBZ

…
T¼…C; k; "F; n† d2k; …21†

where for T¼…C; k; "F; n† the following expression can be used (KudrnovskyÂ et al.
2000):

T¼…C; k; "F; n† ˆ 1
2

Tr‰B­ ;¼
1 …C; k; "F† g­ ;¼

1n …C; k; "‡†B­ ;¼
n …C; k; "F† g­ ;¼

n1 …C; k; " †

‡ B­ ;¼
1 …C; k; "F† g­ ;¼

1n …C; k; " † B­ ;¼
n …C; k; "F† g­ ;¼

n1 …C; k; "‡†Š: …22†
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The layer-diagonal blocks of the inverse of the auxiliary Green function matrix
g­ ;¼

pq …C; k; " † are de®ned (Turek et al. 1997) in terms of potential functions

P­ ;¼
p …C; " † and structure constants S­

pq…k†:

…g­ ;¼…C; k; " †† 1
pp

ˆ
P­ ;¼

1 …C; " † S­
00…k† G­ ;¼

1 …C; k; " †; p ˆ 1;

P­ ;¼
p …C; " † S­

00…k†; 1 < p < n;

P­ ;¼
N …C; " † S­

00…k† G­ ;¼
N …C; k; " †; p ˆ n;

8
>><

>>:
…23†

while its oŒ-diagonal blocks (1 4 p; q 4 n) are independent of the magnetic con®g-
uration and given by

…g­ ;¼…C; k; " †† 1
pq

ˆ
S­

01…k†; q ˆ p ‡ 1;

S­
10…k†; q ˆ p 1;

0; otherwise:

8
><

>:
…24†

It should be noted that these expressions only apply in the case of an in®nite parent
lattice (Weinberger 1997). The B­ ;¼

p …C; k; "F† refer to the so-called embedding
potentials G­ ;¼

p …C; k; " †:

B­ ;¼
p …C; k; "F† ˆ i ‰G­ ;¼

p …C; k; "‡† G­ ;¼
p …C; k; " †Š; …25†

which arise from the matching (Turek et al. 1997) to the left (L) and right (R) semi-
in®nite systems (leads)

G­ ;¼
p …C; k; " † ˆ

S­
10…k† G­ ;¼

L …C; k; " † S­
01…k†; p ˆ 1

S­
01…k† G­ ;¼

R …C; k; " † S­
10…k†; p ˆ n;

0; otherwise;

8
><

>:
…26†

with corresponding surface Green functions G­ ;¼
L …C; k; " † and G­ ;¼

R …C; k; " †.
Comparing equation (21) with equations (10)±(12) in the paper by NikolicÂ (2001)

it is evident that the embedding potentials formally play the role of the left and right
imaginary parts of the self-energy there. Quite clearly the advantage of this kind of
formulation is that only the Green functions for the end points (1 and n) need to be
calculated, both of which have to be within the leads.

} 4. Relation to the Kubo ± Greenwood approach for perpendicular
electric transport

As equations (21) and (22) are based on the Kubo±Greenwood equation (see the
appendix of the paper by KudrnovskyÂ et al. (2000)), they ought to show certain
similarities to equations (1)±(4). For further similarities see also Weinberger et al.
(1997) and Turek et al. (2002). The most obvious diŒerences between these two
approaches arise from, ®rstly, the use of a localized (TB) representation, secondly,
imposing spin±current conservation, which of course is restricted to a non-relativistic
description, and, thirdly, reducing the double sum over layer indices in equation (2)
to a single term between two arbitrarily chosen layers from the left and right lead
each, namely between those labelled by 1 and n. In order to obtain more insight into
the relationship between the two formalisms, we de®ne the following auxiliary quan-
tities for perpendicular electric transport by restricting the summation in equation
(3) to p ˆ 1 and q ˆ n:
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¼…C; n† ˆ 1
4

X2

i; jˆ1

… 1†i‡j ¼1n
zz …C; "i; "j; n†; …27†

¼1n
zz …C; "i; "j; n† ˆ A

OSBZ

…
Tr ‰J1

z …C; "j; "i†½1n…C; k; "i†Jn
z …C; "i; "j†½n1…C; k; "j†Š d2k;

…28†

and consequently

r…C; n† ˆ 1

¼zz…C; n† ; …29†

with indices 1 and n referring to lead layers.
Clearly enough the two-point conductivity in equation (28) is not independent of

the choice of the two end points. Therefore, in keeping one end point ®xed in a lead
layer and the other variable, one can de®ne the following quantity, p > 1:

r…p†…C; n† ˆ 1
4

X2

i; jˆ1

… 1†i‡j ¼1p
zz …C; "i; "j; n†

Á ! 1

; …30†

r…n†…C; n† ˆ r…C; n†; …31†

which then can be used to trace the role of diŒerent layers in perpendicular transport.
A formally similar quantity can be de®ned in terms of the layer-dependent sheet
resistances introduced in equation (13):

r…p†…C; n† ˆ
Xp

qˆ1

rq…C; n†; …32†

such that

r…n†…C; n† ˆ r…C; n†: …33†

} 5. Vertex corrections and the coherent potential approximation
Although this is not the main topic of the present paper, it is worthwhile to

comment on the application of the above two approaches for disordered systems.
Returning to equations (4) and (22) it is evident that in the case of disorder in the
spacer region or in the case of interdiŒusion at interfaces in principle the following
con®gurational average has to be performed:

AiG
‡
ij AjGji ˆ AiG

‡
ij …1 O† AjGji ˆ Ai G‡

ij …1 O†Aj Gji ; …34†

where the Ai refer either to current matrices or to the embedding potentials both of
which are translationally invariant within a chosen layer i and Gij simply denotes a
scattering path operator (see equation (4)) or an auxilary Green function (equation
(22)). Even after omitting vertex corrections (O ˆ 0) the problem arises of how to
average Gij . In the case of the coherent potential approximation this is achieved by
considering a two-impurity problem, that is by occupying distinctly two sites in the
coherent potential medium and then averaging over the occupations of these two
sites; for details see Weinberger et al. (1996) and Turek et al. (1997). This, however, is
only possible in the case of equation (3) since there is a double sum over all layers
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which of course consists of disordered but also lead layers. Thus by using equation
(4) not only do the scattering path operators have to refer to the coherent potential
medium, but also all the Gij have to be averaged properly. Equation (22) only
applies to pure leads; for pure leads there is no (additional) averaging that can be
performed for Gij , i ˆ 1; j ˆ n; although the elements of the Green function matrix
itself refer to the coherent potential medium. Of course this particular problem does
not arise when averaging over superlattices (supercell approach), since per de®nition
superlattices are ordered (translationally invariant) systems. Using superlattices
implies, however, an average over all possible ordered structures and structural
arrangements, a procedure that requires additional computational eŒorts.

} 6. Computational details

6.1. Screened Korringa±Kohn±Rostoker and Kubo±Greenwood calculations
In this paper the fully relativistic spin-polarized form of the Kubo±Greenwood

equation for layered systems (Weinberger et al. 1996, Blaas et al. 1999, 2001) is
applied by using 1830 kk points in the irreducible wedge of the surface Brillouin
zone (ISBZ) for the occurring SBZ integrals and by choosing n0 5 11; see also
equation (18). In all cases the eŒective potentials and eŒective exchange ®elds were
determined self-consistently by means of the fully relativistic spin-polarized screened
KKR method (Weinberger and Szunyogh 2000) within the local-density approxima-
tion (Vosko et al. 1980) considering a minimum of 45 kk points in the ISBZ and by
assuming a bcc parent lattice (Weinberger 1997) with a lattice spacing of bcc Fe
(a0 ˆ 5:27 au). All self-consistent calculations refer to a ferromagnetic (parallel)
magnetic con®guration with the orientation of the magnetization parallel to the
surface normal.

6.2. Tight-binding linear mu� n-tin orbital transmission matrix calculations
The transmission matrix formalism is implemented within the framework of the

scalar-relativisti c TB LMTO method (KudrnovskyÂ et al. 2000). Keeping in mind the
presence of the so-called hot spots (Wunnicke et al. 2001) a very large number
(980 700) of kk points in the ISBZ were used in order to perform the kk integration
properly. We assumed a model of semi-in®nite fcc Co(001) leads separated by a
vacuum slab of various thicknesses represented by atomic layers of empty spheres.
The lattice spacing was that of the parent fcc Co lattice. The lead potentials were
bulk-like potentials of fcc Co while the vacuum potentials corresponded to a vacuum
layer far away from a single Co±vacuum interface. We have thus assumed a `rect-
angular’ tunnelling barrier. Finally, the potentials for the parallel and the anti-
parallel alignments of the two Co parts of the system were the same, implying
that, for the antiparallel con®guration, the majority and minority spins only have
to be interchanged.

} 7. Results

7.1. Kubo±Greenwood approach for perpendicular electric transport
In ®gure 1 the layer-resolved Madelung potentials in bcc Fe(100)/Fen0

/vacuums/
Fen0

/Fe(100) are shown for s 4 6. As can be seen for s 4 2 the spill-out of charge is
still su� cient to connect the two Fe semi-in®nite systems while for s 5 3 in the
middle of the vacuum barrier a rather large positive barrier is building up. This
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positive barrier causes a dramatic increase in the corresponding layer-resolved sheet
resistances rp…C; 2n0 ‡ s; ¯†, ¯ ˆ 2 mRy (®gure 2). For s 4 2 the layer-resolved sheet
resistances oscillate weakly; the shape of the curves and, in particular, the size of
these layer-wise contributions seem to indicate at a ®rst glance metallic-like conduc-
tance. For s 5 3 a characteristic change in the shapes of the curves happens; in
all those layers whose Madelung potentials are su� ciently positive (see ®gure 1),

1034 P. Weinberger et al.

Figure 1. Layer-resolved Madelung potentials in bcc Fe(100)/Fen0
/vacuums/Fen0

/Fe(100),
n0 5 11: (*), Fe-like contributions; (*), contributions from the vacuum layers. The
number s of vacuum layers is indicated explicitly.



the corresponding layer-resolved sheet resistances are very large and grow in size
with increasing thickness of the vacuum barrier.

Not only does ®gure 3 serve as an illustration for the analytical continuation of
the sheet resistances r…C; 2n0 ‡ s; ¯† to the real energy axis but also, depending on the
sign of the slope of the sheet resistances with respect to ¯ (see also equation (16)), one

Magnetoresistance from ab-initio-type calculations 1035
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Figure 2. Layer-resolved sheet resistances ri…C; 2n0 ‡ s; ¯†, n0 5 11; ¯ ˆ 2 mRy, for (a) the
parallel and (b) the antiparallel magnetic con®guration: (*), Fe-like contributions;
(*), contributions from the vacuum layers. The number s of vacuum layers is
indicated explicitly.



can easily distinguish qualitatively between a metallic and a tunnelling type of elec-
tric transport,

k2 ˆ > 0; metallic conductance;

< 0; tunnelling conductance:
…35†

Interestingly, the above statement can be correlated with the density of states (DOS),
n…"F†, at the Fermi level since, for k2 > …<† 0, n…"F† is decreased (increased) with
increasing ¯. This can be seen in ®gure 4 in the case when s ˆ 3; 6 and 9: In this ®gure
(note the diŒerent scaling factors) the DOS at the Fermi energy is displayed as a
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(b)

Figure 3. Analytical continuation of the sheet resistances r…C; 2n0 ‡ s; ¯†; n0 5 11; s ˆ 3, to
the real energy axis for (a) the parallel con®guration and (b) the antiparallel con®g-
uration: (*), calculated values; ( ) corresponding linear ®t.



function of ¯ for the centre vacuum layer. From this ®gure it is also evident that
only for s 5 9 does the DOS in the centre layer vanish completely at the Fermi
energy.

In ®gure 5 (a) the logarithm of the sheet resistance in the parallel con®guration is
displayed for various values of ¯ with respect to the number s of vacuum layers; in
®gure 5 (b) for a particular value of ¯ a comparison between the results obtained by
means of either equation (13) or (29) is shown. As can be seen from ®gure 5 by using
the auxiliary quantity de®ned in equation (29) for s 5 3, ln r…P; 2n0 ‡ s; ¯†‰ Š increases
linearly with increasing s whereas, in the Kubo±Greenwood type of formulation,
ln r…P; 2n0 ‡ s; ¯†‰ Š; this is only the case for 3 4 s 4 5. For s > 5 the shape of the curve
turns into behaviour that is proportional ln (s). This diŒerent `asymptotic behaviour’
results in a totally diŒerent behaviour of the magnetoresistanc e (®gure 6), while in
the case of the auxiliary quantity for very large values of s a constant value of about
75% is reached; in the Kubo±Greenwood description the magnetoresistance vanishes
for s > 6.

In order to illustrate this diŒerent behaviour, in ®gure 7, end-point-dependent
sheet resistances as de®ned in equations (30) and (32) are shown. From this ®gure,
one can see that ln r… p†…P; 2n0 ‡ s; ¯† increases linearly in the interior of the vacuum
barrier with increasing number of vacuum layers, while because of the shape of the
layer-resolved sheet resistance, having a maximum in the centre of the vacuum
barrier (see ®gure 2), the quantity ln r… p†…P; 2n0 ‡ s; ¯† only shows a sharp increase
in the ®rst part of vacuum barrier. It should be noted that by choosing the end point
p in an arbitrary layer of the right lead, both r… p†…C; n† and r… p†…C; n† remain almost
unchanged, that is in both cases the sheet resistances are independent of the position
of the contacts in the leads.

Abbreviating r…C; 2n0 ‡ s; ¯† simply by rC…s† and assuming that the increase in
rC…s† with increasing s is of an exponential form, that is

rP…s† ˆ AP exp KPs… †; rAP…s† ˆ AAP exp KAPs… †; …36†

Magnetoresistance from ab-initio-type calculations 1037

Figure 4. DOS of the centre vacuum layer at the complex Fermi energy "F ‡ i¯ as a function
of ¯ in bcc Fe(100)/Fe12/vacuums/Fe12/Fe(100) for s ˆ 3 (*), s ˆ 6 (&) (multiplied by
100) and s ˆ 9 (^) (multiplied by 250).



then quite clearly the corresponding magnetoresistance R…s† is given by

R…s† ˆ 1 C exp KP KAP… †s‰ Š; …37†

where C ˆ AP=AAP. This now implies that the following cases have to be distin-
guished:

KAP < KP ! lim
s!1

‰R…s†Š ˆ 1; …38†

KAP ˆ KP ! lim
s!1

‰R…s†Š ˆ 1 C 2 ‰0; 1†; …39†

KAP > KP ! lim
s!1

‰R…s†Š ˆ 1; …40†
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(a)

(b)

Figure 5. (a) ln r…P; 2n0 ‡ s; ¯†‰ Š; n0 5 11; as calculated in terms of the Kubo±Greenwood
approach and displayed versus the number s of vacuum layers: (^), ¯ ˆ 0:1 mRy;
(*), ¯ ˆ 2:0 mRy; (&), ¯ ˆ 3:0 mRy. (b) Comparison between the Landauer type
(*) (equation (29)) and the Kubo±Greenwood type (&) (equation (18)). Displayed is
ln r…P; 2n0 ‡ s; ¯†‰ Š; n0 5 11; ¯ ˆ 2 mRy, as a function of the number s of vacuum
layers.



leaving the conclusion that, with `strict’ exponential growth of the sheet resistance in
the limit of in®nitely separated magnetic leads, R…s† tends to zero only in the parti-
cular case when AP ˆ AAP (C ˆ 1) and KP ˆ KAP, that is rP…s† ˆ rAP…s† (8s).

As already seen in ®gure 2 from the layer-resolved sheet resistances, for s ˆ 3 a
sudden increase in the magnetoresistance occurs; at s ˆ 3 the mode of electric trans-
port seems to change dramatically; for s > 3; however, the magnetoresistance drops
again and vanishes beyond s ˆ 9. In order to explain this perhaps unexpected result,
model calculations were performed for s ˆ 12 in which the (layer-resolved)
Madelung potentials in the `interior’ of the vacuum barrier were modi®ed by a
constant:

V i
M ˆ V i

M; i 4 n0 ‡ 1; i 5 n0 ‡ s 1;

V i
M ‡ VC; otherwise:

(
…41†
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(a)

(b)

Figure 6. Magnetoresistance R…2n0 ‡ s; ¯†; n0 5 11; as described in terms of (a) equation (29)
and (b) equation (18) versus the number s of vacuum layers: (*), ¯ ˆ 0 mRy;
(~), ¯ ˆ 2 mRy; (*), ¯ ˆ 2:5 mRy; (^), ¯ ˆ 3 mRy.



This procedure is illustrated in ®gure 8 (a). Figure 8 (b) shows that, for VC > 0,
ln r…C; 2n0 ‡ s; ¯†‰ Š ®rst increases dramatically and then turns into a kind of asymp-
totic value for very high potential barriers. This asymptotic value is by orders of
magnitude smaller than the value obtained from r…C; 2n0 ‡ s; ¯† (see equation (29)).
On the other hand for VC 4 0 a cusp seems to exist. As can be seen from ®gure 9 (a),
by reducing the value of the potential barrier the layer-resolved sheet resistance
immediately drops in the interior of the vacuum barrier and the magnetoresistance
(bottom) increases. It should be noted that ®gure 9 oŒers an interesting aspect of
the transition between metallic behaviour of electric transport and tunnelling; at
V i

M ‡ VC ˆ 0 there is a cusp that separates these two regimes of electric transport.
Once V i

M ‡ VC 4 0 a situation as in a metal/metal heterojunction is reached. If
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(a)

(b)

Figure 7. (a) End-point-dependent Landauer-type resistance (see equation (30)) and (b) the
corresponding partial sums over layer-resolved sheet resistances (see equation (16)) for
the parallel con®guration of bcc Fe(100)/Fe12/vacuum12/Fe12/Fe(100).



0 4 V i
M ‡ VC 4 V0; where V0 is a reasonably small but positive constant, a tunnel-

ling magnetoresistanc e can be expected even for rather very thick spacers, since the
case of s ˆ 12 already corresponds to a spacer thickness of about 17 A.

7.2. The transmission matrix formalism
As the results in } 7.1 leave the question of the `correct’ asymptotic value of the

magnetoresistance in the case of a vacuum barrier somewhat unanswered, also the
transmission matrix formalism in terms of the TB LMTO method was applied, this
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(a)

(b)

Figure 8. (a) Layer-resolved Madelung potentials and shifted potential barriers in the
vacuum region of bcc Fe(100)/Fe12/vacuum12=Fe12/Fe(100) (see also equation (41)):
(*), Fe; (&), vacuum region with VC ˆ 0 Ry; (~), VC ˆ 0:2 Ry; (^), vacuum
region with VC ˆ VM. (b) ln r…P; 2n0 ‡ s; ¯†‰ Š; n0 5 11; ¯ ˆ 2 mRy, of bcc Fe(100)/
Fe12/vacuum12/Fe12/Fe(100) as a function of VC.



time for a fcc Co(100)/vacuums/Co(100) heterojunction. In ®gure 10 the resistance
(see also equation (21)) is shown versus the number of vacuum layers for the parallel
as well as the antiparallel magnetic con®guration, and in ®gure 11 the corresponding
magnetoresistance . As can be easily seen from ®gure 11, the magnetoresistance has a
minimum at s ˆ 2, has a maximum at s ˆ 4 and falls oŒfor s 5 4, indicating a
vanishing magnetoresistance as s becomes large. The shape of the magnetoresistance
with respect to the number of vacuum layers is indeed very similar to the results
obtained in terms of the Kubo±Greenwood approach for bcc Fe(001)/vacuums/
Fe(001) shown in ®gure 6. This in turn implies that the `visually obvious’ exponential
growth of the resistances in ®gure 10 is only approximate and that an asymptotic
behaviour of the form

lim
s!1

‰rAP…s† rP…s†Š ˆ 0
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(a)

(b)

Figure 9. (a) Sheet resistance r…P; 2n0 ‡ s; ¯† ((&), VC ˆ 0 Ry; (~), VC ˆ 0:2 Ry; (*),
VC ˆ 0:3 Ry; (^), VC ˆ 0:4 Ry) and (b) magnetoresistance R…2n0 ‡ s; ¯†, ¯ ˆ 2
mRy, in bcc Fe(100)/Fe12/vacuum12/Fe12/Fe(100) as a function of the constant shift
VC (see also equation (41)). In (b) the regimes of metallic and tunnelling behaviour of
electric transport are separated by the condition V i

M ˆ VC (vertical line).
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Figure 10. Parallel (&) and antiparallel (*) resistance of Co(100)/vacuums/Co(100) as calcu-
lated in terms of the transmission matrix formalism versus the number s of vacuum
layers.

Figure 11. Magnetoresistance ratio of Co(100)/vacuums/Co(100) as calculated in terms of
the transmission matrix formalism versus the number s of vacuum layers.



has to apply, which of course is the behaviour that one intuitively would expect as it
appears unphysical to assume that two pieces of a magnetic metal separated by a
`truly macroscopic’ distance would show a ®nite magnetoresistance . Since the TB
LMTO calculations are not performed for self-consistent potentials, the similarity
between ®gures 6 and 11 is the most important aspect of this comparison in here. The
actual fall-oŒin the magnetoresistance with respect to s depends slightly on the types
of potential applied (self-consistency) ; also spin±orbit eŒects probably apply.

} 8. Conclusion
It was shown in this paper that even the academic case of vacuum as an insulat-

ing spacer between Fe slabs oŒers interesting aspects of magnetotunnelling. First of
all, as the thickness of the vacuum barrier increases, one reaches rather very quickly
the case of free surfaces of the magnetic substrate that are stacked together but
isolated. It should be noted that this is very reassuring since otherwise no proper
description of free surfaces could be given. If, however, the potential barrier between
the two slabs of magnetic material is su� ciently reduced, as can be the case in a
realistic system, a reasonably large magnetoresistance is found. The size of the
potential barrier therefore serves as one criterion for a tunnelling-type electric trans-
port. The other criterion is of course the sign of the slope of the sheet resistances with
respect to the imaginary part ¯ of the complex Fermi energy. Since ¯ can be viewed as
a constant self-energy, a negative slope, that is decreasing sheet resistances with
increasing ¯, is indicative of tunnelling, whereas the opposite applies for metallic-
like electric transport. Furthermore, the concept of layer-resolved sheet resistances
oŒers a clear visualization of the eŒects to be described. Most important, however,
are the consequences for the magnetoresistance ; both methods applied, namely the
Kubo±Greenwood approach and the transmission matrix formulation, show that,
when the vacuum barrier becomes very thick, the magnetoresistance tends to zero in
qualitative agreement with the work of Mathon (1997).

Since, in this paper, two diŒerent kinds of ab-initio approach are compared, it is
worthwhile to repeat certain aspects which make one or the other method more
practicable in use for particular problems.

The use of the fully relativistic Kubo equation in terms of the screened KKR
approach de®nitely has the disadvantage of being `slow’. It assumes current conser-
vation only for the total current. Furthermore, in the case of interdiŒusion or alloy-
ing in the spacer the averaging of the oŒ-diagonal scattering path operators is
de®ned with respect to all layers and therefore the coherent potential approximation
is reasonably good, in particular considering that the diagonal elements
¼pp

··…C; "i; "j; n† are always by far the largest, the contribution from elements referring
to larger values of p qj j being rather small (Blaas et al. 2002). In principle a
calculation of vertex corrections is possible although at present numerically pro-
hibitive. The same type of restriction applies to the use of a supercell approach; at
present the numerical eŒort is insurmountable.

The transmission matrix formalism in terms of the TB LMTO method of course
has the great advantage of being very fast not merely because only Green function
matrix elements have to be calculated with respect to arbitrary chosen left and right
lead layers. Since at present this approach is non-relativistic, current conservation
for both `spins’ is required. As for thick spacers the relevant Green function matrix
elements become very small; they have to be calculated with extreme care which,
however, is only a matter of computational eŒort and therefore reduces to a
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technical problem. A disadvantage seems to be connected with the use of the coher-
ent potential approximation when interdiŒusion at interfaces is considered since, as
was pointed out, the Green function matrix referring to the coherent potential
medium does not give a full account of the scattering through the spacer when
electrons travel from one (pure) lead to the other, that is vertex corrections have
to be calculated. In this case the use of superlattices appears to be almost mandatory.
This in turn of course saves evaluating the vertex corrections, but of course the use of
supercells slows down the numerical e� ciency and, for every system investigated, in
principle the convergence with respect to the size (number of atoms per supercell) has
to be checked.
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