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ABSTRACT

In conventional calculations of transport in magnetic tunnel junctions, one
usually assumes that the transverse momentum of the tunnelling electrons is
conserved and that the itinerant electron states are orthogonal to localized
states. However, in most of the junctions studied, there is di� use scattering in
both the bulk of the electrodes and the barrier so that the transverse momentum is
not conserved, and there are processes that couple localized states at the
electrode±barrier interface to the itinerant states in the bulk of the electrodes.
While it is in principle possible to include these e� ects, it leads to lengthy
calculations. Here we propose an approximate scheme in which we do not take
explicit account of either of the e� ects mentioned above, but in which we calculate
the tunnelling through all the states that exist at the electrode±barrier interfaces.
We compare the kk-resolved density of states and tunnelling currents across a
junction in our approximate scheme with that found using the Landauer
formalism in the ballistic limit.

Measurements of the resistance and magnetoresistance of magnetic tunnel
junctions (MTJs) are usually made by passing a current with voltage probes
far removed from the interfaces between the electrodes and insulating barrier.
Therefore it makes sense to calculate these transport properties as the transmis-
sion probability of going from eigenstates in one lead (electrode) to those of the
other. This is the essence of the Landauer±BuÈ ttiker (LB) formalism which equates
the current to the probability of transmission between sets of eigenstates in the
leads (Datta 1995). While this formalism can take into account di� use scattering
in the junction most calculations are made in the purely ballistic limit; so one has
conservation of momentum parallel to the planes of the layers perpendicular to
the current.
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Also, the complete eigenvalue spectrum of a semi-in®nite solid contains states
localized at the surface as well as the continuum for the bulk (Zangwill 1988). If the
energies of the surface states lie in the gaps between the bands of the bulk states, they
form localized states; otherwise they are resonant states, that is, mixtures of localized
surface and itinerant band states. At a surface the electronic structure, for example,
the local density of states (DOS), which is a projection of the eigenvalue spectrum in
a spatially local region, contains these localized and resonant states; in the bulk of a
metal no weight is given to surface states in the electronic structure. In metallic
multilayered structures, states localized at interfaces appear in much the same way
as surface states. In tunnel junctions these states may couple to excited states in the
barrier better than the itinerant states; therefore they can increase the tunnelling
conductance if there are mechanisms for electrons arriving in itinerant states from
the leads to scatter into these localized states as well as for electrons to exit from
states on the other side of the barrier. If these states lie on the Fermi level and at

T ˆ 0 K, these interfacial or barrier states contribute if processes exist that elastically
scatter electrons from the itinerant to surface states of the metallic electrodes and
vice versa; this comes from impurities and roughness of the interface or surface.
When electrons tunnel across a biased junction, they undergo inelastic scattering,
and surface states contribute if this takes place at the metal±barrier interface, even if
they do not lie at the Fermi level. However, by calculating the electronic structure
and eigenstates far from the interfaces these localized states are not considered in a
purely ballistic treatment, even if they lie on the Fermi surface, since they are ortho-
gonal to the delocalized states and therefore cannot carry a steady-state current. In
principle it is possible to take account of the contribution of these localized states to
tunnelling conduction; however, it is a rather di� cult calculation, and one usually
does not consider their contribution.

Here we suggest an approximate scheme which is to calculate the transport as if
the DOS in the leads were replaced by those at the electrode±barrier interfaces.
While we do not explicitly take into account the di� use scattering in the electrodes
or at the interfaces, all the states at the electrode±barrier interfaces, localized as well
as itinerant, contribute to tunnelling. In this way we accent the role of the interfacial
DOS in controlling tunnelling. We compare the kk-resolved DOS and tunnelling
currents for model MTJs with vacuum barriers found with our scheme with those
in the traditional LB approach in which one does not take account of di� use scatter-
ing or localized states. Comparisons with data as they become available will even-
tually determine whether our approximation or the ballistic LB approach is better
able to represent the features of the electronic structure that control tunnelling in
MTJs.

The following estimates tell us whether the scattering rates are su� cient for
localized states to participate in conduction. The lifetime due to electron±electron
interaction is (V. Qi 2000, private communication),
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where p is Planck’s constant and EF is the Fermi energy. The tunnelling rate is
estimated from the Wentzel±Kramers±Brillouin approximation as
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where C is of the order of 1 eV, k � 1A
¯ ¡1

is the decay length in the barrier and d is
the thickness of barrier which we take to be between 10 and 15 AÊ . By comparing
these two expressions, we ®nd the relaxation rate (1) is faster than the tunnelling rate
(2) when T > 14 mK for 15 AÊ barriers, and 2 K for 10A

¯
barriers. Also we can

estimate the role of electron±phonon interactions. For acoustic phonons the relaxa-
tion rate is given by (Mahan 1990)
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where !D is the Debye energy in units of temperature (approximately equal to
300 K). This rate is comparable with that from electron±electron scattering at T º
4 K. These relaxation rates are fast enough to populate localized states at the Fermi
level, even for ideal structures at the lowest temperatures at which MTJs have been
studied.

As real junctions have impurities and defects, the relaxation rate is actually faster
than the above estimates for ideal junctions. The mean free path in a magnetic
electrode is of the order of 100A

¯
; this is equivalent to a scattering rate of the

order of 1=½imp ˆ 1014s¡1. As the tunnelling rate estimated from equation (2) is
only 106 s¡1; the relaxation rate due to the impurity scattering is usually much larger.
Parenthetically, for currents perpendicular to the plane of the layers in metallic
multilayered structures there is no exponential decay factor in (2); so in place of
the tunnelling rate we have a rate that is of the order of 1015 s¡1. Thus, it is reason-
able to calculate the conductance in metallic multilayers by neglecting the relaxation
mechanisms mentioned here.

We have calculated the conductance of transition-metal±vacuum tunnel junc-
tions by using the Caroli (1971, 1972) formalism (Combescot 1971, Todorov et al,
1993). While real junctions have insulating barriers we have taken a vacuum as it is
the simplest insulator for which we can make an ab-initio calculation. In the linear
response region, the conductance for a ®nite conductor is (Wang 1999, Wang et al.
2001)

G ˆ 2pe2
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where t¬­ is the t-matrix between ¬ and ­ , the bounding surfaces across which the
current is coherent which in our case will be the electrode±barrier interfaces; the trace
Tr is over all (site and angular momentum, or energy level) indices; the DOSs »¬ and

»­ at the Fermi level used in this formalism are those at a surface created by cutting
the junction so that the two parts thereby created are isolated from one another
(Pollman and Pantelides 1978).

To calculate the t-matrix, we ®rst determine the propagator G from a full junc-
tion calculation and then backward derive t¬­ from the Dyson equation

G ˆ g ‡ gVG ˆ g ‡ gtg, where g is the propagator in the absence of the perturbation

V. In our case, V joins the electrodes on each side of a vacuum barrier of six
monolayers; it represents the coupling of the conductor to the leads (Datta 1995,
Wang 1999, Wang et al. 2001). We adopted an empty lattice that contains no atoms
for the vacuum layers. By de®nition g¬­ is zero and V is reasonably well localized so
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that we make the approximation of considering it as a nearest-neighbour interaction
(in a description in which we use two atomic layers per principal layer so that we
have indeed nearest- and next-nearest neighbour interactions (Szunyogh et al. 1994));
we ®nd that

G¬­ º g¬¬t¬­ g­ ­ : …5†

Upon inversion this yields the t matrix; t¬­ across the barrier is quite di� erent from
those for ¬ and ­ taken deep in the electrodes; this is reasonable inasmuch as the
physical conductors in these two cases are di� erent. By inserting this result in (4) to
calculate the conductance, we are treating the transport between ¬ and ­ coherently
inasmuch as we explicitly use the propagator G¬­ and, because we do not keep track
of the momentum outside ¬ and ­ ; the transport in the electrodes is treated as if it
was di� usive. This interpretation comes from the derivation of equation (1) (for
example see Datta (1995)).

To compare the conductances obtained in this approach with calculations in
which transport is considered coherent across the entire junction we calculated the
conductance for bcc Fe(100)/vacuum/Fe, and for fcc Co(100)/vacuum/Co tunnel
junctions from band structures obtained from the spin-polarized scalar-relativistic
screened Korringa±Kohn±Rostoker method (Szunyogh et al. 1994). The atomic-
sphere approximation (ASA) is used; while this is an approximation it does not
alter the main point that we are making about the two di� erent approaches to
calculating the conductance of a MTJ. Here we present the results for Fe; they are
further corroborated by those on Co. The lattice parameter for Fe is 5.27 au. Two
atomic layers are included in each screened principal layer, and the screening poten-
tial is set to 2 Ry inside each atomic cell. The Gunnarsson±Lundqvist (1976)
exchange-correlation potential is used, and energy integration is performed by
means of Gaussian quadrature with 16 points on a semicircle in the upper half
complex energy plane. For self-consistent calculations of the bulk metal, the free
metal surface and the metal±vacuum±metal interface potentials, 45 kk points are
used in the irreducible wedge of the two-dimensional Brillouin zone, which enables
the Fermi level to be converged up to 10¡7 Ry. For more details of this method see
Szunyogh et al. (1994). We used a small imaginary part of the energy of ° ˆ 0:5 mRy
in the propagators in order to converge our results in a reasonable time. As this has a
di� erent e� ect on the states in the electrodes (metallic conduction) and the evanes-
cent states in the barriers, we shall not dwell on di� erences in the absolute values of
the conductances we calculate for ®nite ° directly across and far from the barrier.
Rather we stress the qualitative di� erences, for example symmetries, in the kk-
resolved conductances in the two cases.

In ®gures1 (a) and (b) we show the kk-resolved surface and bulk DOS for the
minority channel for Fe/vacuum/Fe junctions at ° ˆ °F ¡ 0:05 eV. As we indicate
below, this energy corresponds to the position of a localized state; therefore the DOS
includes a strong peak about kk ˆ 0 which is not there at °F. In ®gures 1 (c) and (d)
we show conductances calculated across the barrier and far from it, for Fe/vacuum
(4 monolayers)/Fe all at the Fermi level. We note the strong correlation between the
surface DOS (without the peak at kk ˆ 0) and conductance calculated directly across
the barrier.

Let us turn our attention to the putative contribution of states localized at the
electrode±barrier to tunnelling. In ferromagnetic metals such as Fe(100) the existence
of localized states at the surface has been known for some time (Gadzuk 1979,
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Stroscio et al. 1995); more recently, surface states were also observed in Gd(0001)
(Bode et al. 1998, 1999). If the energies of the surface states lie in the gaps between
the bands of the bulk states, they form true localized states; otherwise they are
resonant states, that is admixtures of itinerant and localized states. When one treats
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Figure 1. kk-resolved plots in the minority channel. The DOS of the Fe electrodes is shown
for EF ¡ 0:05 eV (a) at the surface (note the high density around kk ˆ 0 which is due to
a localized state that would be absent at EF) and (b) in the bulk (which is more or less
the same at EF). The conductances of a Fe/vacuum (4 monolayers)/Fe barrier are
presented at EF (c) directly across the interfaces and (d) seven layers from the barrier.
A similar conductance plot is given for Fe/vacuum (10 monolayers)/Fe at
EF ¡ 0:05 eV where we can focus on the centre of the zone (e) directly across the
interfaces and ( f ) seven layers away.



the entire junction coherently, tunnelling is certainly a� ected by these resonant states
at the interfaces of the junction; see for example ®gure 2 (b) in the paper by
MacLaren et al. (1999) where these resonances appear along the ¡–M direction
away from the zone centre. However, the true localized states, on the contrary,
are orthogonal to resonant and itinerant states; therefore coherent transport will
be una� ected by them. Nonetheless, it has been shown that the conductance through
the localized states at Fe±vacuum and Gd±vacuum interfaces can be substantial
because these states have orbits that point out from the surface into the barrier
(Gadzuk 1979, Stroscio et al. 1995, Bode et al. 1998, 1999). This further emphasizes
the di� usive nature of the transport in the electrodes and the ambient relaxation that
allows the localized states to contribute to conduction; both of these are neglected in
the approach where we assume coherent, that is ballistic, transport for the entire
junction.

At the Fe(100)±vacuum interface, surface states exist in the minority channel
at the Fermi level for kk 6ˆ 0; for kk º 0 localized states exist above °F (Gadzuk
1979, Stroscio et al. 1995, Bode et al. 1998, 1999, Papanikolaou et al. 2000);
therefore those with kk º 0 contribute to tunnelling if one applies a bias. In
our ASA calculations there are only surface resonant states at °F, and we have
found localized states in the minority channel about kk º 0 just below the Fermi
level at ° º °F ¡ 0:05 eV. In ®gures 1 (e) and ( f ) we show the conductance 0:05 eV
below the Fermi level calculated across the barrier and deep in the electrodes; we
use 10 monolayers of vacuum to demonstrate the role of the localized state in
promoting transport about kk º 0. The large DOS at the surface about kk ˆ 0 at
0:05 eV below the Fermi level, which is absent at °F as well as in the bulk DOS at

° ˆ °F ¡ 0:05 eV (not shown) indicates the presence of a localized surface state.
On comparing these conductances with those in ®gures 1 (c) and (d) (this time for
10 monolayers of vacuum), only the conductance for the barrier and at

°F ¡ 0:05 eV has a strong contribution from the localized states about kk ˆ 0;
all the other conductances have no contributions about kk ˆ 0. One notes that
the average of the conductance calculated across the barrier at °F ¡ 0:05 eV is
four times than at °F.

The conclusion that can be drawn is that one cannot have truly localized
states contributing to the tunnelling conduction when one treats the entire
junction coherently, which one does in a LB approach with kk conserved.
The assumption of coherent conduction across an entire junction overestimates
the e� ect on tunnelling of the matching of states in the bulk of the electrodes
to those at the interface and, if they are present, overlooks contributions from
states localized near the interfaces that are coupled to itinerant states in the
electrodes by di� usive and relaxation processes in real planar junctions. In our
approximate scheme any state that exists at the electrode±barrier interface will
be populated by the leads. It remains to be seen whether, in real junctions,
localized states are mixed with resonant and itinerant states at the interfaces so
that they contribute to the conduction as measured across electrodes far from
the barrier.

We have used a vacuum whereas the barriers in the tunnel junctions studied to
date have been insulators; while this changes the conductance that one calculates, it
does not alter the conclusion that we arrive at. For a ®nite bias, one probes a larger
region about the Fermi level so that localized surface states away from °F contribute
to conduction; their contribution to the conductance will be included if one does the
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calculation directly across the barrier rather than in the electrodes far from the
barrier.
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