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A unified approach to interatomic electron transport within Kubo linear-response theory is sketched that is
applicable both in semiempiricgmatrix-element-basgdand ab initio (wave-function-basedtight-binding
(TB) techniques. This approach is based on a systematic neglect of the electron motion inside the atomic
(Wigner-Seitz cells leading thus to velocity operators describing pure intersite hopping. This is achieved by
using piecewise constant coordinates, i.e., coordinates that are constant inside the cells. The formalism is
presented within the simple semiempirical TB method, the TB linear muffin-tin ortkibdTO) method, and
the screened Korringa-Kohn-Rostoki@gKR) method with emphasis on the formal analogy of the derived
formulas. The results provide a justification of current assumptions used in semiempirical TB schemes, an
assessment of properties of recent TB-LMTO approaches, and an alternative formulation of electron transport
within the screened KKR method. The formalism is illustrated by a calculation of residual resistivity of
substitutionally disordered fcc Ag-Pd alloys.
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[. INTRODUCTION scriptions of interatomic electron transport. This analogy is
derived by a systematic neglect of intra-atomic motion in
During the last few decades, the tight-bindi(@B) pic-  wave-function-based methods. Our results justify some as-
ture proved to be indispensable in modern solid-state physicsumptions often used in semiempirical TB theories, shed
as it provides transparent theoretical concepts and leads &me light on the accuracy of recent TB-LMTO results, and
numerical problems featured by relatively small matrix di- Provide an alternative formulation of intersite electron trans-
mensions, typically of the order of ten orbitals per lattice POrt within the screened KKR method. As an illustrating ex-
site! The semiempirical scheme, originally based on a pa@mple, the developed formalism is applied to the residual
rametrization of matrix elements of a TB Hamiltonfamas  resistivity of substitutionally disordered Ag-Pd bulk alloys.
recently recast int@b initio—type schemes based on local In the following use will be made of Kubo's linear-
orbitals corresponding to an effective one-electron Hamilfesponse theor¥, which is a good starting point for proper-
tonian defined within the local-density approximation of theties such as the residual resistivity of disordered bulk metals
density-functional formalisri.The optimized linear combi- and bulk alloys;*~**the conductivity of disordered layered
nation of atomic orbital{LCAO) method and the TB linear Systems’'” as well as the conductance of quasi-one-
muffin-tin orbital (LMTO) method are just two examples of dimensional system$:*In the simplest casé.e., zero tem-
such schemes which can be derived in terms of a variationdlerature, zero frequency, and neglect of electron-electron
principle. In addition, the Korringa-Kohn-RostokéKKR)  correlations and of any inelastic procegsesansport prop-
method® which relies on multiple-scattering theory, has re- erties such as the conductivity or the conductance reduce to
cently been reformulated as a TBcreenedKKR schemé  expressions of the form
representing thus an alternative to more traditional TB tech-
nigues. Despite the very different formulations of the above C(E)=Tr{S(E—H)JS(E—H)J}, @)

TB approaches, a number of clear links between théem IS Welhere the energy variablE refers to the Fermi level of the
established, such as phase shifts, TB parameters, FIC.  gystemH is the effective one-electron Hamiltonian, ahé
example, the KKR method is closely related to the LMTO 5" ye|ocity (currem operator. The latter is defined by a
method while the simplest TB-LMTO Hamiltonian bears a quantum-mechanical relatioe€%=1)

two-center form usually encountered in semiempirical TB
schemes. J=—i[X.H], )

For an obvious reason, the situation is much less satisfac-
tory regarding transport properties: while wave-function-whereX is a coordinatéposition operator andA,B]=AB
based techniques naturally start from a continuous change of BA denotes a commutator. In the following(r) is sup-
the electron position in real space, matrix-element-based agosed to describe not only Cartesian coordinates but also any
proaches can describe essentially only an intersite electrasther real function of the position vector In particular, the
hopping from one localand possibly localizedorbital to  operatorX can also correspond to a projector onto a given
another. It is the aim of the present paper to sketch an anasubset of the real space in which case the funcign)
ogy between the semiempirical and thb initio—type de- acquires only two values: zero and unity. Consequently, the
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operatorJ in Eq. (2) represents a generalized velocity de-layers!®? In all cases, however, the diagonal shape of the

pending on the definition oX. matrix representation of the coordinate operatpiEq. (6),
In terms of a complex energy variableand the one- remains merely an assumption, sometimes loosely justified
electron Green functiofresolvent by a small overlap of the local orbita]RL) on neighboring
atomst*
G(z)=(z—H)™ %, ()
the spectral density operator in EG) can be written as IIl. TIGHT-BINDING LMTO METHOD
1 The LMTO method is routinely used for first-principles
S(E—H)=——ImG(E+i0), (4)  electronic structure calculations with sophistications ranging
a

from full-potential implementations to the atomic sphere ap-
proximation (ASA). However, transport properties of sys-
tems without three-dimensional translational symmetry were
formulated and calculated only using the least accurate ver-
sion, namely, the first-order TB-LMTO-ASA method. Below,
C(E)=—Tr{ImG(E+i0)[X,H]Im G(E+i0)[X,H]}. we first repeat briefly the basic expressions and then present
(5) @ less intuitive formulation in terms of a more accurate

. . . second-order Hamiltonian.
The use of Eq.5) within the semiempirical TB, the TB-

LMTO, and the TB-KKR approaches will be discussed in
Secs. lI-1V, respectively.

where ImA=(A—A")/(2i) denotes the anti-Hermitean part
of an operatoA. The resulting response coefficient is given
then by

A. First-order accuracy

The first-order TB-LMTO-ASA Hamiltonian is of two-
Il. SEMIEMPIRICAL TIGHT-BINDING APPROACHES center form sim_ilar to the semiempirical TB Hamiltonian and
can be written in two equivalent ways,

In a semiempirical TB scheme a matrix representation of (1)
the operators in Eq(5) is used. Most applications assume  Hg "z, /= Cg Srirrir T (AR)Y2SE, rri (AR )2
that the corresponding local orbitdBL) are orthonormal, N
(RL|R'L"y= 8g_ r'L/» WhereR denotes a site index arid =E,RriOrLRrL TR RrLr (8)
_=(I,m) is the or_b|_ta|_ momentum indekthe spin |nd_e?< S" The superscripte in Eq. (8) denotes the LMTO representa-
ignored here as it is irrelevant for our purposés addition tion, defined unambiguously by a deig } of screening con-

to that, two important assumptions are made: the Hamil- e > :
tonian matrixH={Hg, g/ s} is short range and the coordi- stants, and the quantiti€sy and Ag are the potential pa

nate operatoX can be represented by a diagonal matrix rameters related to thih-channel scattering properties of
P P y 9 the Rth atom near an energ¥, g . The matrix S*

XrLrL = XRORLRIL" (6) ={S§L’R,L,} is the matrix of screened structure constants in
representationy while the matrixh“z{th'R,L,} is related

to S* by a diagonal rescaling and shift, see Eg). The
matrix S* is given explicitly by the following matrix equa-
JrLrrLr = — 1 (Xp=Xp)HgL rrLr (7) ~ tom:

specified by a set of constanXg}. Consequently, the ve-
locity matrix is short range with vanishing on-site elements

describing explicitly intersite electron hopping. §*=8(1-aS") 7, 9
Using the above assumptions, a number of techniques ;0 . . .
were introduced in order to handle B§), such as, e.g., the Where SO_{SRLR’L’} IS the matrix of canonical structure

recursion method for topologically disordered systéftge ~ constants andv={ag Sr. L} denotes a diagonal matrix

coherent-potential approximatioi€PA) for substitutionally of the screening constants. With a suitable choice of the Iatj
disordered systend!216 a surface Green-function tech- ter, the spatial range of the screened structure constant matrix

nique for layered systems with semi-infinite led82 etc. S* can be reduced typically to the second-nearest neighbors

. . _ . . (l'a)
They are well documented in the literature and need not b&r close-packed latticesConsequently, the matrices '
described here. andh® become short range with obvious advantages in nu-

As mentioned in Sec. I, the generalized coordinate operdN€rical applications. However, the eigenvalues of the Hamil-
tor X and the underlying constanf&g! can be chosen in tonian (8) are correct only up to first order in the parameter

various ways. IfX denotes a Cartesian coordinatey(z) €~ E— Ev. Moreover, the Hamiltonian as well as its spec-
of the Rth lattice site, such a choice is suitable, e.g., for thellUm depend explicitly on the representation, i.e., on the cho-
residual resistivity of disordered bulk systethsr for the SN Set of screening constarhitey, .

electrical conductivity of layered systems with the current USing the first-order Hamiltonia(8) and assuming again
parallel to the layer& If X is a projector on a subspace, i.e., the diagonal character of the coordinaeEq. (6), the ve-

if X equals either O or 1, the velocity operatbgives the " locity operatorJ and the resolven®(z) can be written as
total current flowing out of the subspace and the formalism
can be applied to describe tunneling between two electrodes,
or layered systems with electric currents perpendicular to thand

J=—i(AMYX,s"] (A" (10)
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G =(A“ -1/ —CY(A¥ —l_Sa -1 A% —1/2. SR .
(2)=(A%) 2[(2 )(AY) 177(A%) 11 fo ¢R|(r)¢R|(r)r2dr=0, (16)

Here we used an obvious matrix notation with the symbols ) )
C® A% denoting diagonal matrices of the fornA where sy denotes the radius of theth sphere. Using the

—{Ag S rrir} (A=C%A%). Now let us introduce the so- abbreviationrg=r—R and the ASA, the LMTO’s in thex

called auxiliary Green functiog“(z)={g,‘{L,R,L,(Z)} inthe ePresentation are defined as

o representation as
XRL(r)= > drrL () (10N ") RrLr R

9%2)=[P*(2)-S1" %, (12 R'L'
where P“(z) ={Pg(2)dr_r'L'} iS a diagonal matrix of n ' ro)he 1
screened potential functions in the representation, given E! ro ) RILIRL? 0

explicitly in first order as
where the interstitial part of the orbital is omitted and the
PR(2)=(z—C&)(AR) 1=P&G(2). (13)  functions ¢ (rr) and ¢g (rg) are set to zero outside the
Rth atomic sphere. In Eq(17), the diagonal matrixo®
={0oR SrL rL’} CONtains potential parameters neglected in
the first-order approximation in Sec. Il A.
B o . o o . o Within the Rth Wigner-Seitz cell, the position vector can
C(E)=—Tr{Img*(E+i0)[X,5]mg*(E+i0)[X,S ](}1'4) be decomposed as=R+rg, where the first term on the
right-hand side specifies the center of the cell, i.e., it is con-
It is clear that this expression is a trivial modification of the stant throughout the cell, and the second one vanishes for
original equation, see E@5), used in the semiempirical ap- =R. Let us now consider the following analogous decompo-
proach:S* andg“®(z) substitute the TB Hamiltoniarl and  sition of the generalized coordina¥{r) based on the con-
its resolventG(z), respectively. However, keeping in mind cept of nonoverlapping cells:
parameter-free applications of the TB-LMTO method, a few
concerns related to Eq14) emerge:(i) the validity of the

The response coefficied(E) in Eq. (5) can then be rewrit-
ten as

diagonal character of the coordinaXe Eq. (6), and (ii) the X(r)=ER XR@R(F)’L% Er(T). (18)
accuracy of Eq(14). These two items were addressed in a
recent paper on electrical conductivity of liquid metal&n- | Eq. (18), valid throughout the whole space, thg are

other important concern refers to the sensitivity of Et)  some constants, and the functigBg(r) and&g(r) are non-
with respect to the LMTO representatian the most local-  zero only in theRth Wigner-Seitz cell: the former function is
ized representation, advantageous for the numerical treagpnstant throughout the celr(r) =1, while the latter one
ment, need not be the best one from a physical point of viewyanishes at the cell centefr(R)=0. It is clear that any

function X(r) can be decomposed according to EB) with

B. Second-order accuracy Xgr=X(R). The two terms on the right-hand side of Ef)

represent the “integer” and “fractional” parts oX(r), re-

uite clearly, a more profound treatment than that pre ;
Q 4 P P pectively.

sented in Secs. Il and Il A must be based on orbitals. Thé Within the ASA, the matrix elements of the functions

basic blocks of the linear muffin-tin orbitald MTO’s) . i . .
(Refs. 5 and P are functions defined inside each atomic QR(r) with respect to the LMTO's defined in Eq17) are

(Wigner-Seitz sphere centered at a lattice sRe namely, given by
(vaL(r) = ¢R|(r)YL(F)I <X;’L’|R|X§”L”> = ; (1+ haoa)RrL/‘RL
brL(r) = dri(1)YL(T), (15) X (140N g gy (19)

where the radial amplitudesg (1) and ¢g(r) are the regu- where we used the normalization and orthogonality condi-
lar solution of the radial Schdinger equation inside the tions for the spherical harmonics, (r) as well as for the
sphere at an enerdy, g and its first energy derivative, re- radial amplitudes, Eq(16), but neglected the normalization
spectively. The function¥ (r) in Eq. (15) are real spherical integral of ¢((r). This is fully compatible with the present
harmonics and=r/r. The radial amplitudes in Eq15) sat-  second-order accuracy of the LMTO-ASA methoérom
isfy standard normalization conditions and orthogonalitythe corresponding overlap matrix

relations>® namely,

(Xrulxr ) ={(1+h%")(1+0*h")}r rrr (20)

S
f Feqsrﬁ.‘u(r)rzdr:l, _ ~ _
0 an orthonormal basis of LMTO%Syg, (1)} can be defined by
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~ o H®)=C+AY257AY2 (26)
XrL(D= 2> Xpr (D{(L+0%h) " e me
R'L’ and

=dr(rR)+ 2 driL(rr) H@=C+AY259[ 1+ (a—y)S?] 1AL2
R'L’ :C+A1/2[l+sa(a_,y)]flSaAlIZ, 27

whereC,A, vy are diagonal matrices of standard potential pa-
In this orthonormal basis, the matrix elementstpf(r) are  rameter<Cg, AR/, andyg ande« is the diagonal matrix of
given by the screening constants, defining a particular LMTO rep-
resentation. As follows from Ed26), the Hamiltonian ma-
(L |Or|XRrLr) = BR/RORIROL L1 » (22)  trix H® is representation invariant despite its expligite-
pendence in Eqg25) and(27).
The velocity operator for a diagonal coordindtdollows
now from Eqgs.(2), (6), and(27) and is equal to

x{h*(1+0*h*) VgL gL - (21)

and therefore the matrix elementsXfr) by

AR - ’ o nt ~// ~////.
XR L",R"L XR 6R L, R"L ; <XR L |§R|XR L > J:_l A1/2{1+S“(a—7)}_1[X,Sa]{1+(a—7)8“}_1A1/2,

(23 (28)

A comparison of Eq(6) with Eq. (23) shows that the simple where we employed the fact theA,B]=0 for any pair of
diagonal form ofX is equivalent to neglecting the “frac- diagonal matrice®\, B. Using Eq.(28), the response coeffi-
tional” part of the functionX(r). In other words, Eq(6) can  cientC(E), Eq. (5), can be recast into the form

be justified for piecewise constant functions ) _
C(E)=—-=Tr{ImM(E+i0)[X,S*]ImM(E+i0)[ X,S*]},

(29)
X(r)=2 XgOg(r) (24)
R where
using standard approximations of the second-order LMTO- M(Z)=[1+(a—y)S*] AV z—H@)~1p12
ASA method.
Let us emphasize that we have proved the diagonal char- X[1+S*(a—y)]" (30

acter of the matrix representation Xffor piecewise constant
functions, Eq.(24), but without any assumptions about the
spatial localization of the orthonormal LMTO’s, EQ1).

Using the explicit form oH(®), Eq. (27), this matrix can be
rewritten as

Our proof of Eq.(6) differs from those found usually in the M(z)=[1+(a—y)S*] H(z—C)A~?
literature in which the electric dipole contributions to the
matrix elements of the position operator are neglettéd. +S(a—y)(z=C)AT =1}

The magnitude of the dipole contributions is difficult to es- _ 1 a1
timate quantitatively, in contrast to the approximations used ={(z=O)A+(y=a)(z-C)] "- 5%
in our proof of Eq.(6) in which the error cannot be greater +[1+(a—y)S*] Ya—1y). (32)
than the neglected “fractional” part of(r). ) ) ]
Piecewise constant coordinatés Eq. (24), need not be By _mtroducmg the second-order screened potential
considered merely as approximations to the “true” coordi-functions
nates, Eq(18), but can be viewed as quantities appropriate o _
for a pure interatomicintersite electron transport. The ve- PR(2)=(z—Cr)[Ar+ (Yri— @r)(z—Cr)] ™t
locity operators, Eq(2), describe then only the electron hop- =pa)(z) (32)
ping between two different Wigner-Seitz cells and do not Rl ’
take into account the electron motion inside the individualusing the definition of the auxiliary Green functigt(z),
cells. Such an approach is undoubtedly useful, e.g., for deEq. (12), and by taking into account that the last term in Eq.
scribing systems consistingeally or virtually) of two sub-  (31) is a Hermitean matrix, we finally get
systemgtunneling between two electrodes
The second-order LMTO-ASA Hamiltonian in the ortho- ImM(z2)=Img“(z). (33

normal basig21) can be written as This relation can now be inserted into E§9) such that the

(2)— a apay—1_ o_papepa resultingC(E) is again of the form given by Ed14).
H=E, +h*(1+0%h®)""=E,+h*=h%h"+ 625) The present analysis based on the LMTO'’s proves that the
previous expression for the response coefficient,(E4), is

which yields eigenvalues correct up to second ordeg in correct up to second order y=E—E, . Even more impor-
=E—E,. A comparison with the first-order Hamiltonian, tant, we have shown that the result is invariant with respect
Eq. (8), reveals that it is the terms containing that distin-  to the LMTO representation, despite the fact that the right-
guish these two levels of accuracy. For our purposes, altehand side of Eq(14) containsa-dependent quantities. The
native forms ofH®) will be used, namely, last property implies that by using the most localized repre-
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sentationa, one can treat numerically the full second-orderits spectrum is located above the Fermi energy of the studied

Hamiltonian, Eqs(25) and(27), again in terms of the short- solid. Consequently, the corresponding Green function

range structure constans. As a consequence, the recently

developed first-order TB-LMTO formalism for conductances GO(z)=(z-H")™* (37

of layered systems with currents perpendicular to the atomic_ . , . : . .
o e I5 uniquely defined also for real energies of interest including

plane£? yields results accurate up to second order. S|m|larly,[h Fermi Starting thus f the definiti f

the existing approach to the electrical resistivity of topologi- _e ermi energy. Starting thus from the detini ) for

cally disordered metafS,based on the recursion method and®” E, one can easily prove a relation

a truncated series in EQR5), can easily be improveg@vith- N —(E (0 0) ERTI0)

out additional numerical effortby taking all energie€, g X HPI=(E-HIIXGHENE-HT), (38

equal to the Fermi energy, recalculating all potential paramwhich can be used in E¢36) to obtain

eters at this energy, and performing the recursion calcula-

tions with the short-range first-order Hamiltonié®). This ~ C(E)=—Tr{(E—H®)ImG(E+i0)(E—H)[X,G"(E)]

improvement was suggested in Ref. 15 and the above analy- .

sis shows that such a procedure is equivalent to using the X (E=HO)Im G(E+i0)(E~HM)[X,GO(E)]}.

complete second-order Hamiltoni@®5). The last statement (39

follows from Eq.(14) and from the fact that at a particular

energyE (the Fermi level Img*(E+i0) depends only on velocity operator(2) is expressed in terms of a nonlocal op-
the potential functiondg,(z) and their first derivatives at erator G (E). The latter plays then a role of a TB Hamil-

z=E. Both parametrizations, Eq§l3) and (32), reproduce tonian of the semiempirical approach
the values and the first derivatives of the screened potentiaiJ mp pp ' -
The last expression for the response coefficient,(B§),

functions at the energies, 7 exactly. can be written in equivalent forms. A well-known property of
the delta function, namely 8(x)=0,2* leads to the follow-
IV. SCREENED KKR METHOD ing identity for the spectral densityl):

The proved properties of the TB-LMTO approach based .
on the piecewise constant coordinaXemdicate a possibility (E=H)ImG(E+i0)=0. (40
to obtain an analogous formulation of the intersite transporBy inserting the decompositiof84), one gets immediately
in the TB-KKR method. In order to achieve this, one has to
start from Eq.(5) and replace the local velocity operator due (E-HMIMG(E+i0)=U ImG(E+i0). (41)
to the kinetic energy by a nonlocal operator describing the ) ) .
intersite hopping. Finally, the general operator formulas havd his identity and its conjugate counterpart can be now used
to be transformed into the matrix ones. in Eqg. (39) which yields

= — i (n
A. Formal theory C(E) Tr{U ImG(E+i0)U[X,G'"(E)]

In the KKR theory, both the conventiofalnd the XU ImG(E+i0)U[X,GU(E)]}. (42
screened;?® the system Hram”tor"a“h'I is defined with re-  This relation shows that the spatial integrations involved in
spect to the Hamiltoniafi” of a reference system as the evaluation of the trace extend only over the region of the

H=HO+U (34) nonzero local perturbatiod. One can further introduce the
’ T matrix corresponding to the perturbatith namely,
where U denotes the corresponding perturbation. The
kinetic-energy term is contained i while the perturba- T(2)=U+UG(2)U, (43

tion U is a local potential{r|U[r")=U(r)8(r—r'). Let us \\hich leads to a more compact form @(E):
assume that the coordinate operatan Eq. (2) represents as

The physical meaning of Eq&35) and(38) is clear: the local

well a local function(r|X|r")y=X(r)8(r—r"), then C(E)=—Tr{Im T(E+i0)[X,GO(E)]ImT(E+i0)
[X,U]=0, X[X,GO(E)]}. (44)
[X,H]=[X,H"7, (35) The last two expressions, Eqg2) and(44), will be used in

the next section.
which means that the velocity operator is entirely due to the
reference Hamiltonian. The response coefficient in 4. B. Muffin-tin model

can then be written as
Let us now reduce the general operator form of the equa-

C(E)=—Tr{ImG(E+i0)[X,HOIm G(E+i0)[X,H"]}. tions in Sec. IV A into a matrix form. As in Sec. Ill B we
(36) will consider the coordinatX as a piecewise constant func-
tion, Eq.(24), which in an operator form can be written as
In practical calculations with the screened KKR metfod,
the reference HamiltoniaH " is chosen in such a way that (r+RIX|r"+R"y=Xggr' (r—r"). (45
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Here we introduced the usual notatiéiin which a vector  be noted that the adopted normalization of the radial ampli-
inside the Wigner-Seitz cell centered at fReh lattice site is  tudes differs from more traditional orfebut it is quite ad-
denoted as+ R. The Hamiltoniangd andH (" of the system vantageous for taking the anti-Hermitean parGdgf) in Eq.
and the reference system will be chosen in the simplest4?2) since the function®g, (r,z) andSg, (r,z) are analytic

muffin-tin form, i.e., functions ofz near the real energy axis and they are real for
real energie$®
—HO4 (N—HOt " The Green-function matrixg(z)={Gr_r'L/(2)} in Eq.
H=H ; Ve, HT=H ZR Vi (46 (47) is given by%
where H?=—A is the kinetic-energy par{in Rydberg z Vz
atomic unit$ while the individual site contributions are local G(z)=zcof 8(2)]+ So2)] 7(2) SN2’ (50)

spherically symmetric potentialéz(r) andV¥(r), the latter
being nonzero only inside the nonoverlapping muffin-tinwhere 5(z) denotes a diagonal matrix of the phase shifts,
spheres centered Bt Consequently, the perturbatithis a  §(z)={8g/(2) Sr_ r'L’}, and where the matrix 7(2)

sum of spherically symmetric muffin-tin contributions ={7rLr'L/(2)} refers to the scattering path operators. The

Ur(r)=Vg(r)=V(r). latter is given by
As follows from Eq.(42), one has to specify the Green
functionsG(z) and G(”(z) only for vectors in the range of n2)=[t " 2)-G%=2)] (52)

the nonzero perturbatior, i.e., inside the muffin-tin
spheres. In this case, the Green function of the system can
written ag®

here t(z) ={tr|(2) 5r_r'L'} IS a diagonal matrix of the
Single-sitet matrices

in & i O
(T+RIG@IF +R") = S V23 Re (=, 2)Sm (17,2 (2= — R'(Z)]j;q' w(2)] (52)

and the symbogo(z)z{ggL’R,L,(z)} refers to the standard
matrix of the bare KKR structure constants. The linear rela-
tion betweerg(z) and7(z), Eq.(50), differs from analogous
XRe(r',2), (47)  relations of other authofslue to different normalizations of

whereRg, (r,2) andSg, (r,Z) denote, respectively, the regu- the rgdlal 3)mphtudes, cf. the text after E49). The Green
lar and singular scattering solutions of the Scfinger equa- fUnction G%(z) of the reference system as well as the re-
tion corresponding to the spherically symmetric potential@ted quantitiedenoted systematically by the superscript (r)
Vr(r), the symbolr = (r>) refers to that of the vectonsr’ beI(_)w] satisfy the same relations as E¢&7)—(52) which are
with the smaller (greatey modulus, and the quantities OMitted here for brevity. o

GrL rrL/(2) are elements of the Green-function matgite) For the |_nd|V|duaI op'era.tors appearing in E42) and for
containing all multiple-scattering effects. With restriction to Vectors inside the muffin-tin spheres, we get from &)

the most frequent case in which the Fermi energy is located
above the muffin-tin zero, the value gz in Eq. (47) for
Rez>0, Imz=0 is unambiguously specified by Re>0,

+> ReL(r,2)Gr gL (2)
L

(r+R|JUImG(E+i0)U|r' +R")

Im\/z=0. The functionsRg (r,z) andSg, (r,z) are written :2, Ur(NReL(r,E)IMGg rrL/(E+10)
in terms of their radial amplitudes and the real spherical har- L
monics as XRer(r'E)Uri(r’), (53
Reu(1,2)=Rei(r,2)YL(1), and
-~ (n ' ’
Sal(r,2)=Sa (1, 2)YL(F). @9 (HRIXGEEN+R)
The normalization of the radial amplitudes for the present => RO (r,E)[X,G(E)]rLrrLr
purposes is given by the following conditions of smooth L

matching at the muffin-tin radiug €aR):

Rei(r,2)—cog 8r(2)1j1(r v2) = sin 8gi(2)Iny (1 2),

xR (' E), (54)

where the symboK on the right-hand side of Eq54) de-
notes a diagonal matriX={Xgrdg_ gL'}, cf. Eq.(6). Using
Egs.(53) and (54) in the expression fo€(E), Eq. (42), we
obtain a formula with matrix quantities instead of operators:

Sm(r,z)asir[aR.(z)]j'(rﬁ>+co$6m<z>]n|<rﬁ>,(4g)

wherej,(x) andn,(x) denote the spherical Bessel and Neu-

mann functions, respectively, while the quantitigg(z) are C(E)= —Tr{\7V(E)Im G(E+i0)W(E)[X,GM(E)]
the phase shifts corresponding to the spherically symmetric 5
potential Vg(r) and the orbital quantum numbkrlt should XW(E)ImG(E+i0O)W(E)[X,GV(E)]}. (55
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Here we introduced a site-diagonal matrixV(E) Jz Jz
—{We, . /(E) Suge} together ith its transpos@/(E), the 62 = zeote D1 G2 Siggry 0
elements of which are given by single-sphere integrals

where we introduced a diagonal matrixe(2)

= 2) 6, .+ with elements
WR,LL,(E)zf(R)RRL(r,E)UR(r)Rg{,(r,E)dSr. (56) ler(@) driprir

ori(2)=0ri(2)— 8(2) (61)
These integrals can be simplified using the fact that the scat- ) ) )
tering solutionsRe, (r,E) andR &) (r,E) refer to the poten- and & nondiagonal matriX(z) ={Zr, ' /(2)} defined as

tials Vg(r) and V¥(r), respectively, and thatUg(r)

={— —cW -1
— V() VO(r). We get N2)={~zeo{ ¢(2)] -G (2)} ™. (62)
The interpretation of Eqs60)-(62) is obvious: the Green-
_ n function matrix of the system is obtained by a diagonal res-
WeLL/(B) J'(R)[RRL’”’E)ARRL“’E) caling and shift of the scattering path operator maff{x)
0 defined with respect to the reference system. The slight for-
—Re(r,E)AR 5 ,(r,E)]d%r mal difference between E¢62) and Eq.(51) is again due to
different normalizations of the corresponding radial ampli-
:f R(") ,(r,E)iRRL(r,E) tudes. . .
R Rt an Let us now substitute the relatior{s8), (60), and (61)
5 into the matrix expression fat(E), Eq. (55). Using the fact
_ 750 that the phase shifts are real quantities for real energies, we
Reu(r.E) anR RL’(r’E)}dF can write the final TB-KKR formula for the response coeffi-
cient:
=5 LA RO(r E)iR (r,E)
LL RV =g PRIAD C(E)=—Tr{ImT(E+i0)[X,G(E)]Im Z(E+i0)
J X[X,G(E)]}. (63)
~Ru(rE)RETE) . (67 }
r=ag This relation is a matrix counterpart of the previous operator

formula in Eq.(44).
where we used the Green theorem to transform the volum a.(44)

. . . € The analogy between the TB-KKR and the TB-LMTO
integral into a surface one and took into account the orthogoz,q jits is now evident. cf Eq¢62) and (63 and Eqgs.(12)
nality conditions for the spherical harmonics. The last ex- e :

. ) . ; and (14). The cotangents of the phase shiftg(z) with
pression represents a Wronskian of two radial ampl|tude§espect to the reference system, Egfl), correspond to the
evaluated at the muffin-tin radius. It can be calculated usin ' '

%creened potential functior®g,(z), Egs.(13) and (32), the
. " _ . | 1 q . l
the matching condition&19) and the well-known Wronskian Green-function matrix of the reference systgf(E), being

relation for the spherical Bessel and Neumann functions. The , .
result is a short-range Hermitean matrix, corresponds to the screened

structure constant matri®®, and the scattering path operator
1 matrix 7(z) with respect to the reference system, E&pR),
_ e sy corresponds to the auxiliary Green-function matg%(z),
WeL(B)=du \/ESIrigR'(E) rI(B)]. 58 Eqg. (12). This correspondence was established in a number
of papers from the point of view of one-electron
which has to be inserted into the matrix formb). quantities>?>?®here we rederived it on the basis of the Kubo
In order to obtain a complete analogy to the results ofresponse coefficient for the interatomic electron transport.
Secs. Il and 11, let us express explicitly the Green-function
matrix of the system@(z), in terms of that of the reference
systemgG V(). This can be accomplished in two steps. First,
we exclude the bare structure constant magfy(z) from
Eg. (51) and from the same equation for the reference sys- Let us illustrate the developed formalism by an applica-
tem. We get a Dyson equation for the scattering path operatdion to the static residual resistivity of a substitutionally dis-
matrices: ordered bulk alloy. Using the notation and results of Sec. lll,
the diagonal elements of the conductivity tensor according to
7(2)=(2){1+[t " Y2)—t""L(2)]7(z)} L. (599 the Kubo-Greenwood formuld®’ can be written(in mksa

V. EXAMPLE: RESISTIVITY OF BULK
RANDOM ALLOYS

units) as
Second, we replace the matricgg) and 7("(z) by the cor-
responding Green-function matricg¥z) and G(7(z) ac- e? _
cording to Eq.(50). After longer but straightforward alge- ott=— N Im gt (E+i0)[X*, 5]
braic manipulations, we get the result again in the form of 0
Egs.(50) and(51), namely, XImg“(E+i0)[ X*,S*]), (64)
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whereu=x,y,z is the Euclidean index/, is the volume of 50 — T T T
the primitive cell,N is the number of cells in a large but i foc AgPd |
finite solid with three-dimensional periodic boundary condi-
tions, the trace operation includes the spin index(o 40 + aagpd
=1,l), and (---) denotes the configurational averaging. —- R v v spdf
Within the CPA and neglecting vertex correctidhg?® Eq. 5 - 1
(64) can be rewritten as g 20 '
> ; Y
ez — g 3
ot = — 7Tﬁvol\lTr{lmg“(E+iO)[X“,S“] % " : i
_ < 20+ 1
X Img*(E+i0)[ X*,S*]}, (65 3
a L _
where =
10 | /; .
9%(2)=(g%(2))=[P*(2)-S"]"* (66) /7 N -
is the configurationally averaged auxiliary Green function o
(12) defined in terms of a site-diagonal matrix of the 00 02 04 06 08 1
coherent-potential functionsP“(z) = {'P;’LU‘L,U,(Z) Srr} Ag concentration

satisfying the CPA self-consistency conditigiis® The nu- _ o _
merical evaluation of Ec('65) is then based on lattice Fourier FIG. 1. The residual reS|St|V|ty of disordered fcc Ag'Pd a||OyS

transforms of the corresponding matrix quantities calculated by the present TB-LMTO approaghll symbolg and
the standard KKR method in Ref. 3dpen symbols Results for
e 1 _ _ angular momentum cutoff,,,,=2 (spd basis, triangles upand

oht=— Vg N ; tr{img*(k,E+i0)[ X*,S*](k) Imax=3 (spdf basis, triangles dowrare given. The dotted curve

denotes experimental results of Ref. 31.
X Im g¥(k,E+i0)[ X*,5*](k)}, (67)

where the summation is performed oWk points sampling
the first Brillouin zone and the trace is evaluated in gener
over a composed matrix indeBL o, whereB denotes the
basis vectors(nonprimitive translationsof the configura-
tionally averaged system. THedependent matrices in Eq.
(67) are given explicitly by

elsewheré&® The values of the coherent-potential functions at
he Fermi energy were obtained first by solving the CPA
elf-consistency condition in the upper complex energy half-
plane and then by a numerical analytic continuation to the
real axis®® The Brillouin-zone average in Eq67) was
evaluated by usindl=10" k points whereby its convergence
with respect tdN was checked carefully. The results for the
— N o resistivity p=1/c#* are presented in Fig. 1 together with
8LoprLr o (K2 ={[P4(2) =S (K)] YeLosrLiors experimgne[al valués andrz/vith results of 'gﬁe star?dard KKR
(68) method®? The latter—based on usual concepts and continu-
ous coordinatés—were obtained in the muffin-tin model
a =5, @ i k. and the scalar-relativistic approximation and with inclusion
SaLoeriro(K)= 000 Z St o+ SXRTKCT), of the vertex corrections. A comparison of all data sets shows
(69 a good overall agreement in magnitude of the resistivity as
well as in its concentration dependence which exhibits a

[X*,S"]gLoBrLr o (K) typical asymmetric shape. This means that the net effect due
to a different description of the electron motion inherent to
:500,2 (xg_xg/”)ggL (B/”)L,exm k-T), the two approaches—interatomid@B-LMTO) and intra-
< ,

atomic (KKR)—is quite small. Moreover, both approaches

(70) show similar sensitivity with respect to the angular momen-

tum cutoffl ,,«: inclusion off states decreases the resistivity

where T denote the translation vectofprimitive transla- typically by 10%. A part of the deviations between the TB-

tions) while X§ and X, , ; are theuth components of the LMTO and KKR resistivities can be surely ascribed to dif-

vectorsB andB’ + T, respectively. ferent technical details of the calculations. Equally important

The calculations were carried out for random fccmight be the role of the vertex corrections, omitted in the
Ag,Pd, _, alloys in the whole concentration range. The self-TB-LMTO conductivity formula, Eq.(67), but included in

consistent one-electron potentials in the local-density apthe KKR results plotted in Fig. 1. It should be noted that the

proximation with the exchange-correlation potential of Ref.vertex corrections to the resistivity of the Ag-Pd alloys are

29 were obtained using the all-electron scalar-relativistic TBrather small, changing from about 30% for Ag-rich alloys to
LMTO-CPA method in the ASA with an angular momentum less than 5% for Pd-rich systerffs>> A systematic TB-

cutoff | ,.x=2 (spd basis andl,,,=3 (spdfbasig. Fur- LMTO study of this and related items, analogous to Ref. 34
ther details of the numerical implementation can be foundor the KKR case, has to be left to future investigations.
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VI. DISCUSSION VII. CONCLUSIONS

It is now obvious that the semiempirical TB approach to We have shown that a systematic use of piecewise con-
the response coefficieri) with diagonal coordinate opera- stant coordinates for transport properties leads to a complete
tors (6) has its TB-LMTO and TB-KKR counterparts given analogy between TB schemes based only on Hamiltonian
by Egs.(14) and (63). The latter are based on coordinatesMatrix elements and those based on orbitasve func-
X(r) that are constant within a given Wigner-Seitz cell, Egs.ions. This link allows a direct translation of existing tech-
(24) and (45), leading thus to velocity operators which de- Niques between the semiempirical and first-principles meth-
scribe the pure intersite hopping. The role of the coordinat@ds- This can simplify, e.g., the evaluation of the vertex
operatorX in Kubo formalism is twofold' it is related both ~ cOrrections in the coherent-potential approximation com-

to the current operator and to the applied external field thali’Ined withab initio methods. We have presented a detailed

- - derivation within the TB-LMTO method that clarified some
brings the system out of equilibrium. Consequently, the . L ;

; o . propertieaccuracy, representation invarianoé recent cal-
present formulation neglects the variation of applied elea.roculations and gave arguments in favor of some assumptions

static_ potentials insi_de ir_1dividua| atc_Jmic cells. Whil_e this is made in semiempirical schemégiagonality of matrix rep-
certainly an approximation, the validity of which is t0 be \oqentation of the position operatoAn analogous formal-
checked in each particular case, it should be noted that them, \orked out within the screened KKR method can serve
detailed microscopic behavior of the effective electrostatic;s g alternative to the existing KKR formulations, both for
field inside the cells due to an applied voltage is in generahy k3 and layered systemé:®
unknown. The full assessment of the applicability of the suggested
The effective velocity operators in the present TB-LMTO scheme to various physical situations remains to be done.
and TB-KKR formalisms are represented by short-range maNevertheless, the results shown here for substitutionally dis-
trices with vanishing on-site blocks in clear contrast to theordered alloys as well as existing results of other authors,
site-diagonal matrices representing the local velocity operae.g., for the residual resistivityand the Hall conductivitif
tors in usual KKR approachés!’>? Another pronounced of topologically disordered metals or for the conductance of
difference appears in the context of substitutionally disordayered systems with perfect and imperfect interf@es,
dered systems where an evaluation of the response coeffibtained by the parameter-free TB-LMTO method, indicate
cient requires configuration averaging. Within self-consistenthat the most important ingredients of the interatomic elec-
mean-field theories such as the CPA, this leads inevitably t§on transport are within the range of the present approach.
the problem of vertex corrections. While the original
formulation!  assumes  nonrandom (configuration-
independent velocity operators as encountered in semi-  The authors acknowledge fruitful discussions with Profes-
empirical TB schemes, the standard KKR theory of electrorsor P.H. Dederichs. Financial support for this work was pro-
transport becomes more complicated due to the randowided by the grant agency of the Czech RepubBcant No.
(configuration-dependensite-diagonal velocity matricds.  202/00/0122, the Academy of Sciences of the Czech Repub-
Since the structure constant mat8% of the TB-LMTO ap- lic (Grant Nos. A1010829, S2041105, and Z2041)9QHe
proach as well as the reference system of the screened KK8zech Ministry of Education, Youth, and Spo(@rant Nos.
method are usually taken independent of the configurationQC P3.40 and OC P3.7the Center for Computational Ma-
the effective velocity operators in Eq§l4) and (63) are  terials Science in VienngGrant No. GZ 45.504 and the
nonrandom and the configuration averaging reduces conResearch Training Network “Computational Magnetoelec-
pletely to the original versidh which might be of advantage tronics” (Contract No. HPRN-CT-2000-001%8f the Euro-
in calculating the vertex corrections. pean Commission.
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