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Interatomic electron transport by semiempirical and ab initio tight-binding approaches
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A unified approach to interatomic electron transport within Kubo linear-response theory is sketched that is
applicable both in semiempirical~matrix-element-based! and ab initio ~wave-function-based! tight-binding
~TB! techniques. This approach is based on a systematic neglect of the electron motion inside the atomic
~Wigner-Seitz! cells leading thus to velocity operators describing pure intersite hopping. This is achieved by
using piecewise constant coordinates, i.e., coordinates that are constant inside the cells. The formalism is
presented within the simple semiempirical TB method, the TB linear muffin-tin orbital~LMTO! method, and
the screened Korringa-Kohn-Rostoker~KKR! method with emphasis on the formal analogy of the derived
formulas. The results provide a justification of current assumptions used in semiempirical TB schemes, an
assessment of properties of recent TB-LMTO approaches, and an alternative formulation of electron transport
within the screened KKR method. The formalism is illustrated by a calculation of residual resistivity of
substitutionally disordered fcc Ag-Pd alloys.
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I. INTRODUCTION

During the last few decades, the tight-binding~TB! pic-
ture proved to be indispensable in modern solid-state phy
as it provides transparent theoretical concepts and lead
numerical problems featured by relatively small matrix
mensions, typically of the order of ten orbitals per latti
site.1 The semiempirical scheme, originally based on a
rametrization of matrix elements of a TB Hamiltonian,2 was
recently recast intoab initio–type schemes based on loc
orbitals corresponding to an effective one-electron Ham
tonian defined within the local-density approximation of t
density-functional formalism.3 The optimized linear combi-
nation of atomic orbitals~LCAO! method4 and the TB linear
muffin-tin orbital ~LMTO! method5 are just two examples o
such schemes which can be derived in terms of a variatio
principle. In addition, the Korringa-Kohn-Rostoker~KKR!
method,6 which relies on multiple-scattering theory, has r
cently been reformulated as a TB~screened! KKR scheme7

representing thus an alternative to more traditional TB te
niques. Despite the very different formulations of the abo
TB approaches, a number of clear links between them is w
established, such as phase shifts, TB parameters, etc.8 For
example, the KKR method is closely related to the LMT
method9 while the simplest TB-LMTO Hamiltonian bears
two-center form usually encountered in semiempirical
schemes.5

For an obvious reason, the situation is much less satis
tory regarding transport properties: while wave-functio
based techniques naturally start from a continuous chang
the electron position in real space, matrix-element-based
proaches can describe essentially only an intersite elec
hopping from one local~and possibly localized! orbital to
another. It is the aim of the present paper to sketch an a
ogy between the semiempirical and theab initio–type de-
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scriptions of interatomic electron transport. This analogy
derived by a systematic neglect of intra-atomic motion
wave-function-based methods. Our results justify some
sumptions often used in semiempirical TB theories, sh
some light on the accuracy of recent TB-LMTO results, a
provide an alternative formulation of intersite electron tran
port within the screened KKR method. As an illustrating e
ample, the developed formalism is applied to the resid
resistivity of substitutionally disordered Ag-Pd bulk alloys

In the following use will be made of Kubo’s linear
response theory,10 which is a good starting point for proper
ties such as the residual resistivity of disordered bulk me
and bulk alloys,11–15 the conductivity of disordered layere
systems,16,17 as well as the conductance of quasi-on
dimensional systems.18,19 In the simplest case~i.e., zero tem-
perature, zero frequency, and neglect of electron-elec
correlations and of any inelastic processes!, transport prop-
erties such as the conductivity or the conductance reduc
expressions of the form

C~E!}Tr$d~E2H !Jd~E2H !J%, ~1!

where the energy variableE refers to the Fermi level of the
system,H is the effective one-electron Hamiltonian, andJ is
a velocity ~current! operator. The latter is defined by
quantum-mechanical relation (e5\51)

J52 i @X,H#, ~2!

whereX is a coordinate~position! operator and@A,B#5AB
2BA denotes a commutator. In the following,X(r ) is sup-
posed to describe not only Cartesian coordinates but also
other real function of the position vectorr . In particular, the
operatorX can also correspond to a projector onto a giv
subset of the real space in which case the functionX(r )
acquires only two values: zero and unity. Consequently,
©2002 The American Physical Society01-1
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I. TUREK et al. PHYSICAL REVIEW B 65 125101
operatorJ in Eq. ~2! represents a generalized velocity d
pending on the definition ofX.

In terms of a complex energy variablez and the one-
electron Green function~resolvent!

G~z!5~z2H !21, ~3!

the spectral density operator in Eq.~1! can be written as

d~E2H !52
1

p
Im G~E1 i0!, ~4!

where ImA5(A2A1)/(2i ) denotes the anti-Hermitean pa
of an operatorA. The resulting response coefficient is give
then by

C~E!52Tr$Im G~E1 i0!@X,H#Im G~E1 i0!@X,H#%.
~5!

The use of Eq.~5! within the semiempirical TB, the TB-
LMTO, and the TB-KKR approaches will be discussed
Secs. II–IV, respectively.

II. SEMIEMPIRICAL TIGHT-BINDING APPROACHES

In a semiempirical TB scheme a matrix representation
the operators in Eq.~5! is used. Most applications assum
that the corresponding local orbitalsuRL& are orthonormal,
^RLuR8L8&5dRL,R8L8 , whereR denotes a site index andL
5( l ,m) is the orbital momentum index~the spin index is
ignored here as it is irrelevant for our purposes!. In addition
to that, two important assumptions are made: the Ham
tonian matrixH5$HRL,R8L8% is short range and the coord
nate operatorX can be represented by a diagonal matrix

XRL,R8L85XRdRL,R8L8 ~6!

specified by a set of constants$XR%. Consequently, the ve
locity matrix is short range with vanishing on-site elemen

JRL,R8L852 i ~XR2XR8!HRL,R8L8 ~7!

describing explicitly intersite electron hopping.
Using the above assumptions, a number of techniq

were introduced in order to handle Eq.~5!, such as, e.g., the
recursion method for topologically disordered systems,14 the
coherent-potential approximation~CPA! for substitutionally
disordered systems,11,12,16 a surface Green-function tech
nique for layered systems with semi-infinite leads,19,20 etc.
They are well documented in the literature and need no
described here.

As mentioned in Sec. I, the generalized coordinate op
tor X and the underlying constants$XR% can be chosen in
various ways. IfXR denotes a Cartesian coordinate (x,y,z)
of the Rth lattice site, such a choice is suitable, e.g., for
residual resistivity of disordered bulk systems14 or for the
electrical conductivity of layered systems with the curre
parallel to the layers.16 If X is a projector on a subspace, i.e
if XR equals either 0 or 1, the velocity operatorJ gives the
total current flowing out of the subspace and the formali
can be applied to describe tunneling between two electro
or layered systems with electric currents perpendicular to
12510
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layers.19,20 In all cases, however, the diagonal shape of
matrix representation of the coordinate operatorX, Eq. ~6!,
remains merely an assumption, sometimes loosely justi
by a small overlap of the local orbitalsuRL& on neighboring
atoms.14

III. TIGHT-BINDING LMTO METHOD

The LMTO method is routinely used for first-principle
electronic structure calculations with sophistications rang
from full-potential implementations to the atomic sphere a
proximation ~ASA!. However, transport properties of sy
tems without three-dimensional translational symmetry w
formulated and calculated only using the least accurate
sion, namely, the first-order TB-LMTO-ASA method. Below
we first repeat briefly the basic expressions and then pre
a less intuitive formulation in terms of a more accura
second-order Hamiltonian.

A. First-order accuracy

The first-order TB-LMTO-ASA Hamiltonian is of two-
center form similar to the semiempirical TB Hamiltonian a
can be written in two equivalent ways,5

HRL,R8L8
(1,a)

5CRl
a dRL,R8L81~DRl

a !1/2SRL,R8L8
a

~DR8 l 8
a

!1/2

5En,RldRL,R8L81hRL,R8L8
a . ~8!

The superscripta in Eq. ~8! denotes the LMTO representa
tion, defined unambiguously by a set$aRl% of screening con-
stants, and the quantitiesCRl

a and DRl
a are the potential pa-

rameters related to thel th-channel scattering properties o
the Rth atom near an energyEn,Rl . The matrix Sa

5$SRL,R8L8
a % is the matrix of screened structure constants

representationa while the matrixha5$hRL,R8L8
a % is related

to Sa by a diagonal rescaling and shift, see Eq.~8!. The
matrix Sa is given explicitly by the following matrix equa
tion:

Sa5S0~12aS0!21, ~9!

where S05$SRL,R8L8
0 % is the matrix of canonical structur

constants anda5$aRldRL,R8L8% denotes a diagonal matri
of the screening constants. With a suitable choice of the
ter, the spatial range of the screened structure constant m
Sa can be reduced typically to the second-nearest neigh
for close-packed lattices.5 Consequently, the matricesH (1,a)

andha become short range with obvious advantages in
merical applications. However, the eigenvalues of the Ham
tonian ~8! are correct only up to first order in the parame
«5E2En . Moreover, the Hamiltonian as well as its spe
trum depend explicitly on the representation, i.e., on the c
sen set of screening constants$aRl%.

Using the first-order Hamiltonian~8! and assuming again
the diagonal character of the coordinateX, Eq. ~6!, the ve-
locity operatorJ and the resolventG(z) can be written as

J52 i ~Da!1/2@X,Sa#~Da!1/2 ~10!

and
1-2
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INTERATOMIC ELECTRON TRANSPORT BY . . . PHYSICAL REVIEW B65 125101
G~z!5~Da!21/2@~z2Ca!~Da!212Sa#21~Da!21/2.
~11!

Here we used an obvious matrix notation with the symb
Ca, Da denoting diagonal matrices of the formA
5$ARldRL,R8L8% (A5Ca,Da). Now let us introduce the so
called auxiliary Green functionga(z)5$gRL,R8L8

a (z)% in the
a representation as

ga~z!5@Pa~z!2Sa#21, ~12!

where Pa(z)5$PRl
a (z)dRL,R8L8% is a diagonal matrix of

screened potential functions in thea representation, given
explicitly in first order as

PRl
a ~z!5~z2CRl

a !~DRl
a !21[PRl

(1,a)~z!. ~13!

The response coefficientC(E) in Eq. ~5! can then be rewrit-
ten as

C~E!52Tr$Im ga~E1 i0!@X,Sa#Im ga~E1 i0!@X,Sa#%.
~14!

It is clear that this expression is a trivial modification of t
original equation, see Eq.~5!, used in the semiempirical ap
proach:Sa andga(z) substitute the TB HamiltonianH and
its resolventG(z), respectively. However, keeping in min
parameter-free applications of the TB-LMTO method, a f
concerns related to Eq.~14! emerge:~i! the validity of the
diagonal character of the coordinateX, Eq. ~6!, and ~ii ! the
accuracy of Eq.~14!. These two items were addressed in
recent paper on electrical conductivity of liquid metals.15 An-
other important concern refers to the sensitivity of Eq.~14!
with respect to the LMTO representationa: the most local-
ized representation, advantageous for the numerical tr
ment, need not be the best one from a physical point of vi

B. Second-order accuracy

Quite clearly, a more profound treatment than that p
sented in Secs. II and III A must be based on orbitals. T
basic blocks of the linear muffin-tin orbitals~LMTO’s!
~Refs. 5 and 9! are functions defined inside each atom
~Wigner-Seitz! sphere centered at a lattice siteR, namely,

fRL~r !5fRl~r !YL~ r̂ !,

ḟRL~r !5ḟRl~r !YL~ r̂ !, ~15!

where the radial amplitudesfRl(r ) andḟRl(r ) are the regu-
lar solution of the radial Schro¨dinger equation inside the
sphere at an energyEn,Rl and its first energy derivative, re
spectively. The functionsYL( r̂ ) in Eq. ~15! are real spherica
harmonics andr̂5r /r . The radial amplitudes in Eq.~15! sat-
isfy standard normalization conditions and orthogona
relations,5,9 namely,

E
0

sR
fRl

2 ~r !r 2dr 51,
12510
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sR
fRl~r !ḟRl~r !r 2dr 50, ~16!

where sR denotes the radius of theRth sphere. Using the
abbreviationrR5r2R and the ASA, the LMTO’s in thea
representation are defined as

xRL
a ~r !5 (

R8L8
fR8L8~rR8!~11oaha!R8L8,RL

1 (
R8L8

ḟR8L8~rR8!hR8L8,RL
a , ~17!

where the interstitial part of the orbital is omitted and t
functionsfRL(rR) and ḟRL(rR) are set to zero outside th
Rth atomic sphere. In Eq.~17!, the diagonal matrixoa

5$oRl
a dRL,R8L8% contains potential parameters neglected

the first-order approximation in Sec. III A.
Within the Rth Wigner-Seitz cell, the position vector ca

be decomposed asr5R1rR , where the first term on the
right-hand side specifies the center of the cell, i.e., it is c
stant throughout the cell, and the second one vanishes fr
5R. Let us now consider the following analogous decomp
sition of the generalized coordinateX(r ) based on the con
cept of nonoverlapping cells:

X~r !5(
R

XRQR~r !1(
R

jR~r !. ~18!

In Eq. ~18!, valid throughout the whole space, theXR are
some constants, and the functionsQR(r ) andjR(r ) are non-
zero only in theRth Wigner-Seitz cell: the former function i
constant throughout the cell,QR(r )51, while the latter one
vanishes at the cell center,jR(R)50. It is clear that any
functionX(r ) can be decomposed according to Eq.~18! with
XR5X(R). The two terms on the right-hand side of Eq.~18!
represent the ‘‘integer’’ and ‘‘fractional’’ parts ofX(r ), re-
spectively.

Within the ASA, the matrix elements of the function
QR(r ) with respect to the LMTO’s defined in Eq.~17! are
given by

^xR8L8
a uQRuxR9L9

a &5(
L

~11haoa!R8L8,RL

3~11oaha!RL,R9L9 , ~19!

where we used the normalization and orthogonality con
tions for the spherical harmonicsYL( r̂ ) as well as for the
radial amplitudes, Eq.~16!, but neglected the normalizatio
integral of ḟRl(r ). This is fully compatible with the presen
second-order accuracy of the LMTO-ASA method.5 From
the corresponding overlap matrix

^xRL
a uxR8L8

a &5$~11haoa!~11oaha!%RL,R8L8 ~20!

an orthonormal basis of LMTO’s$x̃RL(r )% can be defined by
1-3
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I. TUREK et al. PHYSICAL REVIEW B 65 125101
x̃RL~r !5 (
R8L8

xR8L8
a

~r !$~11oaha!21%R8L8,RL

5fRL~rR!1 (
R8L8

ḟR8L8~rR8!

3$ha~11oaha!21%R8L8,RL . ~21!

In this orthonormal basis, the matrix elements ofQR(r ) are
given by

^x̃R8L8uQRux̃R9L9&5dR8RdR9RdL8L9 , ~22!

and therefore the matrix elements ofX(r ) by

XR8L8,R9L95XR8dR8L8,R9L91(
R

^x̃R8L8ujRux̃R9L9&.

~23!

A comparison of Eq.~6! with Eq. ~23! shows that the simple
diagonal form ofX is equivalent to neglecting the ‘‘frac
tional’’ part of the functionX(r ). In other words, Eq.~6! can
be justified for piecewise constant functions

X~r !5(
R

XRQR~r ! ~24!

using standard approximations of the second-order LMT
ASA method.

Let us emphasize that we have proved the diagonal c
acter of the matrix representation ofX for piecewise constan
functions, Eq.~24!, but without any assumptions about th
spatial localization of the orthonormal LMTO’s, Eq.~21!.
Our proof of Eq.~6! differs from those found usually in th
literature in which the electric dipole contributions to th
matrix elements of the position operator are neglected.15,21

The magnitude of the dipole contributions is difficult to e
timate quantitatively, in contrast to the approximations us
in our proof of Eq.~6! in which the error cannot be greate
than the neglected ‘‘fractional’’ part ofX(r ).

Piecewise constant coordinatesX, Eq. ~24!, need not be
considered merely as approximations to the ‘‘true’’ coor
nates, Eq.~18!, but can be viewed as quantities appropria
for a pure interatomic~intersite! electron transport. The ve
locity operators, Eq.~2!, describe then only the electron ho
ping between two different Wigner-Seitz cells and do n
take into account the electron motion inside the individ
cells. Such an approach is undoubtedly useful, e.g., for
scribing systems consisting~really or virtually! of two sub-
systems~tunneling between two electrodes!.

The second-order LMTO-ASA Hamiltonian in the orth
normal basis~21! can be written as5

H (2)5En1ha~11oaha!215En1ha2haoaha1•••,
~25!

which yields eigenvalues correct up to second order in«
5E2En . A comparison with the first-order Hamiltonian
Eq. ~8!, reveals that it is the terms containingoa that distin-
guish these two levels of accuracy. For our purposes, a
native forms ofH (2) will be used, namely,
12510
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H (2)5C1D1/2SgD1/2 ~26!

and

H (2)5C1D1/2Sa@11~a2g!Sa#21D1/2

5C1D1/2@11Sa~a2g!#21SaD1/2, ~27!

whereC,D,g are diagonal matrices of standard potential p
rametersCRl , DRl , andgRl anda is the diagonal matrix of
the screening constantsaRl defining a particular LMTO rep-
resentation. As follows from Eq.~26!, the Hamiltonian ma-
trix H (2) is representation invariant despite its explicita de-
pendence in Eqs.~25! and ~27!.

The velocity operator for a diagonal coordinateX follows
now from Eqs.~2!, ~6!, and~27! and is equal to

J52 i D1/2$11Sa~a2g!%21@X,Sa#$11~a2g!Sa%21D1/2,
~28!

where we employed the fact that@A,B#50 for any pair of
diagonal matricesA, B. Using Eq.~28!, the response coeffi
cient C(E), Eq. ~5!, can be recast into the form

C~E!52Tr$Im M ~E1 i0!@X,Sa#Im M ~E1 i0!@X,Sa#%,
~29!

where

M ~z!5@11~a2g!Sa#21D1/2~z2H (2)!21D1/2

3@11Sa~a2g!#21. ~30!

Using the explicit form ofH (2), Eq. ~27!, this matrix can be
rewritten as

M ~z!5@11~a2g!Sa#21$~z2C!D21

1Sa@~a2g!~z2C!D2121#%21

5$~z2C!@D1~g2a!~z2C!#212Sa%21

1@11~a2g!Sa#21~a2g!. ~31!

By introducing the second-order screened poten
functions5

PRl
a ~z!5~z2CRl !@DRl1~gRl2aRl !~z2CRl !#

21

[PRl
(2,a)~z!, ~32!

using the definition of the auxiliary Green functionga(z),
Eq. ~12!, and by taking into account that the last term in E
~31! is a Hermitean matrix, we finally get

Im M ~z!5Im ga~z!. ~33!

This relation can now be inserted into Eq.~29! such that the
resultingC(E) is again of the form given by Eq.~14!.

The present analysis based on the LMTO’s proves that
previous expression for the response coefficient, Eq.~14!, is
correct up to second order in«5E2En . Even more impor-
tant, we have shown that the result is invariant with resp
to the LMTO representation, despite the fact that the rig
hand side of Eq.~14! containsa-dependent quantities. Th
last property implies that by using the most localized rep
1-4
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sentationa, one can treat numerically the full second-ord
Hamiltonian, Eqs.~25! and~27!, again in terms of the short
range structure constantsSa. As a consequence, the recen
developed first-order TB-LMTO formalism for conductanc
of layered systems with currents perpendicular to the ato
planes22 yields results accurate up to second order. Simila
the existing approach to the electrical resistivity of topolo
cally disordered metals,15 based on the recursion method a
a truncated series in Eq.~25!, can easily be improved~with-
out additional numerical effort! by taking all energiesEn,Rl
equal to the Fermi energy, recalculating all potential para
eters at this energy, and performing the recursion calc
tions with the short-range first-order Hamiltonian~8!. This
improvement was suggested in Ref. 15 and the above an
sis shows that such a procedure is equivalent to using
complete second-order Hamiltonian~25!. The last statemen
follows from Eq. ~14! and from the fact that at a particula
energyE ~the Fermi level! Im ga(E1 i0) depends only on
the potential functionsPRl

a (z) and their first derivatives a
z5E. Both parametrizations, Eqs.~13! and ~32!, reproduce
the values and the first derivatives of the screened pote
functions at the energiesEn,Rl exactly.

IV. SCREENED KKR METHOD

The proved properties of the TB-LMTO approach bas
on the piecewise constant coordinatesX indicate a possibility
to obtain an analogous formulation of the intersite transp
in the TB-KKR method. In order to achieve this, one has
start from Eq.~5! and replace the local velocity operator d
to the kinetic energy by a nonlocal operator describing
intersite hopping. Finally, the general operator formulas h
to be transformed into the matrix ones.

A. Formal theory

In the KKR theory, both the conventional6 and the
screened,7,23 the system HamiltonianH is defined with re-
spect to the HamiltonianH (r) of a reference system as

H5H (r)1U, ~34!

where U denotes the corresponding perturbation. T
kinetic-energy term is contained inH (r) while the perturba-
tion U is a local potential,̂ r uUur 8&5U(r )d(r2r 8). Let us
assume that the coordinate operatorX in Eq. ~2! represents as
well a local function,̂ r uXur 8&5X(r )d(r2r 8), then

@X,U#50,

@X,H#5@X,H (r)#, ~35!

which means that the velocity operator is entirely due to
reference Hamiltonian. The response coefficient in Eq.~5!
can then be written as

C~E!52Tr$Im G~E1 i0!@X,H (r)#Im G~E1 i0!@X,H (r)#%.
~36!

In practical calculations with the screened KKR metho7

the reference HamiltonianH (r) is chosen in such a way tha
12510
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its spectrum is located above the Fermi energy of the stud
solid. Consequently, the corresponding Green function

G(r)~z!5~z2H (r)!21 ~37!

is uniquely defined also for real energies of interest includ
the Fermi energy. Starting thus from the definition~37! for
z5E, one can easily prove a relation

@X,H (r)#5~E2H (r)!@X,G(r)~E!#~E2H (r)!, ~38!

which can be used in Eq.~36! to obtain

C~E!52Tr$~E2H (r)!Im G~E1 i0!~E2H (r)!@X,G(r)~E!#

3~E2H (r)!Im G~E1 i0!~E2H (r)!@X,G(r)~E!#%.

~39!

The physical meaning of Eqs.~35! and~38! is clear: the local
velocity operator~2! is expressed in terms of a nonlocal o
eratorG(r)(E). The latter plays then a role of a TB Hami
tonian of the semiempirical approach.

The last expression for the response coefficient, Eq.~39!,
can be written in equivalent forms. A well-known property
the delta function, namely,x d(x)50,24 leads to the follow-
ing identity for the spectral density~4!:

~E2H !Im G~E1 i0!50. ~40!

By inserting the decomposition~34!, one gets immediately

~E2H (r)!Im G~E1 i0!5U Im G~E1 i0!. ~41!

This identity and its conjugate counterpart can be now u
in Eq. ~39! which yields

C~E!52Tr$U Im G~E1 i0!U@X,G(r)~E!#

3U Im G~E1 i0!U@X,G(r)~E!#%. ~42!

This relation shows that the spatial integrations involved
the evaluation of the trace extend only over the region of
nonzero local perturbationU. One can further introduce th
T matrix corresponding to the perturbationU, namely,

T~z!5U1UG~z!U, ~43!

which leads to a more compact form ofC(E):

C~E!52Tr$Im T~E1 i0!@X,G(r)~E!#Im T~E1 i0!

3@X,G(r)~E!#%. ~44!

The last two expressions, Eqs.~42! and~44!, will be used in
the next section.

B. Muffin-tin model

Let us now reduce the general operator form of the eq
tions in Sec. IV A into a matrix form. As in Sec. III B we
will consider the coordinateX as a piecewise constant func
tion, Eq. ~24!, which in an operator form can be written a

^r1RuXur 81R8&5XRdRR8d~r2r 8!. ~45!
1-5
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Here we introduced the usual notation7,23 in which a vector
inside the Wigner-Seitz cell centered at theRth lattice site is
denoted asr1R. The HamiltoniansH andH (r) of the system
and the reference system will be chosen in the simp
muffin-tin form, i.e.,

H5H01(
R

VR , H (r)5H01(
R

VR
(r) , ~46!

where H052D is the kinetic-energy part~in Rydberg
atomic units! while the individual site contributions are loca
spherically symmetric potentialsVR(r ) andVR

(r)(r ), the latter
being nonzero only inside the nonoverlapping muffin-
spheres centered atR. Consequently, the perturbationU is a
sum of spherically symmetric muffin-tin contribution
UR(r )5VR(r )2VR

(r)(r ).
As follows from Eq.~42!, one has to specify the Gree

functionsG(z) andG(r)(z) only for vectors in the range o
the nonzero perturbationU, i.e., inside the muffin-tin
spheres. In this case, the Green function of the system ca
written as7,23

^r1RuG~z!ur 81R8&5dRR8Az(
L

RRL~r,,z!SRL~r.,z!

1(
LL8

RRL~r ,z!GRL,R8L8~z!

3RR8L8~r 8,z!, ~47!

whereRRL(r ,z) andSRL(r ,z) denote, respectively, the regu
lar and singular scattering solutions of the Schro¨dinger equa-
tion corresponding to the spherically symmetric poten
VR(r ), the symbolr, (r.) refers to that of the vectorsr ,r 8
with the smaller ~greater! modulus, and the quantitie
GRL,R8L8(z) are elements of the Green-function matrixG(z)
containing all multiple-scattering effects. With restriction
the most frequent case in which the Fermi energy is loca
above the muffin-tin zero, the value ofAz in Eq. ~47! for
Rez.0, Imz>0 is unambiguously specified by ReAz.0,
ImAz>0. The functionsRRL(r ,z) andSRL(r ,z) are written
in terms of their radial amplitudes and the real spherical h
monics as

RRL~r ,z!5RRl~r ,z!YL~ r̂ !,

SRL~r ,z!5SRl~r ,z!YL~ r̂ !. ~48!

The normalization of the radial amplitudes for the pres
purposes is given by the following conditions of smoo
matching at the muffin-tin radius (r 5aR):

RRl~r ,z!→cos@dRl~z!# j l~rAz!2sin@dRl~z!#nl~rAz!,

SRl~r ,z!→sin@dRl~z!# j l~rAz!1cos@dRl~z!#nl~rAz!,
~49!

where j l(x) andnl(x) denote the spherical Bessel and Ne
mann functions, respectively, while the quantitiesdRl(z) are
the phase shifts corresponding to the spherically symme
potentialVR(r ) and the orbital quantum numberl. It should
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be noted that the adopted normalization of the radial am
tudes differs from more traditional ones7 but it is quite ad-
vantageous for taking the anti-Hermitean part ofG(z) in Eq.
~42! since the functionsRRL(r ,z) andSRL(r ,z) are analytic
functions ofz near the real energy axis and they are real
real energies.23

The Green-function matrixG(z)5$GRL,R8L8(z)% in Eq.
~47! is given by7,23

G~z!5Azcot@d~z!#1
Az

sin@d~z!#
t~z!

Az

sin@d~z!#
, ~50!

where d(z) denotes a diagonal matrix of the phase shif
d(z)5$dRl(z)dRL,R8L8%, and where the matrix t(z)
5$tRL,R8L8(z)% refers to the scattering path operators. T
latter is given by

t~z!5@ t21~z!2G 0~z!#21, ~51!

where t(z)5$tRl(z)dRL,R8L8% is a diagonal matrix of the
single-sitet matrices

tRl~z!52
sin@dRl~z!#exp@ i dRl~z!#

Az
~52!

and the symbolG 0(z)5$G RL,R8L8
0 (z)% refers to the standard

matrix of the bare KKR structure constants. The linear re
tion betweenG(z) andt(z), Eq. ~50!, differs from analogous
relations of other authors7 due to different normalizations o
the radial amplitudes, cf. the text after Eq.~49!. The Green
function G(r)(z) of the reference system as well as the
lated quantities@denoted systematically by the superscript (
below# satisfy the same relations as Eqs.~47!–~52! which are
omitted here for brevity.

For the individual operators appearing in Eq.~42! and for
vectors inside the muffin-tin spheres, we get from Eq.~47!

^r1RuU Im G~E1 i0!Uur 81R8&

5(
LL8

UR~r !RRL~r ,E!Im GRL,R8L8~E1 i0!

3RR8L8~r 8,E!UR8~r 8!, ~53!

and

^r1Ru@X,G(r)~E!#ur 81R8&

5(
LL8

R RL
(r) ~r ,E!@X,G (r)~E!#RL,R8L8

3R R8L8
(r)

~r 8,E!, ~54!

where the symbolX on the right-hand side of Eq.~54! de-
notes a diagonal matrixX5$XRdRL,R8L8%, cf. Eq. ~6!. Using
Eqs. ~53! and ~54! in the expression forC(E), Eq. ~42!, we
obtain a formula with matrix quantities instead of operato

C~E!52Tr$W̃~E!Im G~E1 i0!W~E!@X,G (r)~E!#

3W̃~E!Im G~E1 i0!W~E!@X,G (r)~E!#%. ~55!
1-6
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Here we introduced a site-diagonal matrixW(E)
5$WR,LL8(E)dRR8% together with its transposeW̃(E), the
elements of which are given by single-sphere integrals

WR,LL8~E!5E
(R)

RRL~r ,E!UR~r !R RL8
(r)

~r ,E!d3r . ~56!

These integrals can be simplified using the fact that the s
tering solutionsRRL(r ,E) andR RL

(r) (r ,E) refer to the poten-
tials VR(r ) and VR

(r)(r ), respectively, and thatUR(r )
5VR(r )2VR

(r)(r ). We get

WR,LL8~E!5E
(R)

@R RL8
(r)

~r ,E!DRRL~r ,E!

2RRL~r ,E!DR RL8
(r)

~r ,E!#d3r

5E
](R)

FR RL8
(r)

~r ,E!
]

]n
RRL~r ,E!

2RRL~r ,E!
]

]n
R RL8

(r)
~r ,E!GdF

5dLL8r
2FR Rl

(r)~r ,E!
]

]r
RRl~r ,E!

2RRl~r ,E!
]

]r
R Rl

(r)~r ,E!GU
r 5aR

, ~57!

where we used the Green theorem to transform the volu
integral into a surface one and took into account the ortho
nality conditions for the spherical harmonics. The last e
pression represents a Wronskian of two radial amplitu
evaluated at the muffin-tin radius. It can be calculated us
the matching conditions~49! and the well-known Wronskian
relation for the spherical Bessel and Neumann functions.
result is

WR,LL8~E!5dLL8

1

AE
sin@dRl

(r)~E!2dRl~E!#, ~58!

which has to be inserted into the matrix formula~55!.
In order to obtain a complete analogy to the results

Secs. II and III, let us express explicitly the Green-functi
matrix of the system,G(z), in terms of that of the referenc
system,G (r)(z). This can be accomplished in two steps. Fir
we exclude the bare structure constant matrixG 0(z) from
Eq. ~51! and from the same equation for the reference s
tem. We get a Dyson equation for the scattering path oper
matrices:

t~z!5t (r)~z!$11@ t21~z!2t (r)21~z!#t (r)~z!%21. ~59!

Second, we replace the matricest(z) andt (r)(z) by the cor-
responding Green-function matricesG(z) and G (r)(z) ac-
cording to Eq.~50!. After longer but straightforward alge
braic manipulations, we get the result again in the form
Eqs.~50! and ~51!, namely,
12510
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G~z!5Azcot@w~z!#1
Az

sin@w~z!#
T~z!

Az

sin@w~z!#
, ~60!

where we introduced a diagonal matrixw(z)
5$wRl(z)dRL,R8L8% with elements

wRl~z!5dRl~z!2dRl
(r)~z! ~61!

and a nondiagonal matrixT(z)5$TRL,R8L8(z)% defined as

T~z!5$2Azcot@w~z!#2G (r)~z!%21. ~62!

The interpretation of Eqs.~60!-~62! is obvious: the Green-
function matrix of the system is obtained by a diagonal r
caling and shift of the scattering path operator matrixT(z)
defined with respect to the reference system. The slight
mal difference between Eq.~62! and Eq.~51! is again due to
different normalizations of the corresponding radial amp
tudes.

Let us now substitute the relations~58!, ~60!, and ~61!
into the matrix expression forC(E), Eq. ~55!. Using the fact
that the phase shifts are real quantities for real energies
can write the final TB-KKR formula for the response coef
cient:

C~E!52Tr$Im T~E1 i0!@X,G (r)~E!#Im T~E1 i0!

3@X,G (r)~E!#%. ~63!

This relation is a matrix counterpart of the previous opera
formula in Eq.~44!.

The analogy between the TB-KKR and the TB-LMT
results is now evident, cf. Eqs.~62! and ~63! and Eqs.~12!
and ~14!. The cotangents of the phase shiftswRl(z) with
respect to the reference system, Eq.~61!, correspond to the
screened potential functionsPRl

a (z), Eqs.~13! and ~32!, the
Green-function matrix of the reference systemG (r)(E), being
a short-range Hermitean matrix, corresponds to the scree
structure constant matrixSa, and the scattering path operat
matrix T(z) with respect to the reference system, Eq.~62!,
corresponds to the auxiliary Green-function matrixga(z),
Eq. ~12!. This correspondence was established in a num
of papers from the point of view of one-electro
quantities;9,25,26here we rederived it on the basis of the Kub
response coefficient for the interatomic electron transpor

V. EXAMPLE: RESISTIVITY OF BULK
RANDOM ALLOYS

Let us illustrate the developed formalism by an applic
tion to the static residual resistivity of a substitutionally d
ordered bulk alloy. Using the notation and results of Sec.
the diagonal elements of the conductivity tensor according
the Kubo-Greenwood formula10,27 can be written~in mksa
units! as

smm52
e2

p\V0N
Tr^Im ga~E1 i0!@Xm,Sa#

3Im ga~E1 i0!@Xm,Sa#&, ~64!
1-7
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wherem5x,y,z is the Euclidean index,V0 is the volume of
the primitive cell,N is the number of cells in a large bu
finite solid with three-dimensional periodic boundary con
tions, the trace operation includes the spin indexs (s
5↑,↓), and ^•••& denotes the configurational averagin
Within the CPA and neglecting vertex corrections,11,13 Eq.
~64! can be rewritten as

smm52
e2

p\V0N
Tr$Imḡa~E1 i0!@Xm,Sa#

3Imḡa~E1 i0!@Xm,Sa#%, ~65!

where

ḡa~z!5^ga~z!&5@P a~z!2Sa#21 ~66!

is the configurationally averaged auxiliary Green functi
~12! defined in terms of a site-diagonal matrix of th
coherent-potential functionsP a(z)5$P R,Ls,L8s8

a (z)dRR8%
satisfying the CPA self-consistency conditions.26,28 The nu-
merical evaluation of Eq.~65! is then based on lattice Fourie
transforms of the corresponding matrix quantities

smm52
e2

p\V0

1

N (
k

tr$Im ḡa~k,E1 i0!@Xm,Sa#~k!

3Im ḡa~k,E1 i0!@Xm,Sa#~k!%, ~67!

where the summation is performed overN k points sampling
the first Brillouin zone and the trace is evaluated in gene
over a composed matrix indexBLs, whereB denotes the
basis vectors~nonprimitive translations! of the configura-
tionally averaged system. Thek-dependent matrices in Eq
~67! are given explicitly by

ḡBLs,B8L8s8
a

~k,z!5$@P a~z!2Sa~k!#21%BLs,B8L8s8 ,
~68!

SBLs,B8L8s8
a

~k!5dss8(T
SBL,(B81T)L8

a exp~ i k•T!,

~69!

@Xm,Sa#BLs,B8L8s8~k!

5dss8(T
~XB

m2XB81T
m

!SBL,(B81T)L8
a exp~ i k•T!,

~70!

where T denote the translation vectors~primitive transla-
tions! while XB

m and XB81T
m are themth components of the

vectorsB andB81T, respectively.
The calculations were carried out for random f

AgxPd12x alloys in the whole concentration range. The se
consistent one-electron potentials in the local-density
proximation with the exchange-correlation potential of R
29 were obtained using the all-electron scalar-relativistic T
LMTO-CPA method in the ASA with an angular momentu
cutoff l max52 (spd basis! and l max53 (spd f basis!. Fur-
ther details of the numerical implementation can be fou
12510
-
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-
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-

d

elsewhere.26 The values of the coherent-potential functions
the Fermi energy were obtained first by solving the C
self-consistency condition in the upper complex energy h
plane and then by a numerical analytic continuation to
real axis.30 The Brillouin-zone average in Eq.~67! was
evaluated by usingN5107 k points whereby its convergenc
with respect toN was checked carefully. The results for th
resistivity r51/smm are presented in Fig. 1 together wit
experimental values31 and with results of the standard KKR
method.32 The latter—based on usual concepts and conti
ous coordinates13—were obtained in the muffin-tin mode
and the scalar-relativistic approximation and with inclusi
of the vertex corrections. A comparison of all data sets sho
a good overall agreement in magnitude of the resistivity
well as in its concentration dependence which exhibits
typical asymmetric shape. This means that the net effect
to a different description of the electron motion inherent
the two approaches—interatomic~TB-LMTO! and intra-
atomic ~KKR!—is quite small. Moreover, both approach
show similar sensitivity with respect to the angular mome
tum cutoff l max: inclusion off states decreases the resistiv
typically by 10%. A part of the deviations between the T
LMTO and KKR resistivities can be surely ascribed to d
ferent technical details of the calculations. Equally importa
might be the role of the vertex corrections, omitted in t
TB-LMTO conductivity formula, Eq.~67!, but included in
the KKR results plotted in Fig. 1. It should be noted that t
vertex corrections to the resistivity of the Ag-Pd alloys a
rather small, changing from about 30% for Ag-rich alloys
less than 5% for Pd-rich systems.32,33 A systematic TB-
LMTO study of this and related items, analogous to Ref.
for the KKR case, has to be left to future investigations.

FIG. 1. The residual resistivity of disordered fcc Ag-Pd allo
calculated by the present TB-LMTO approach~full symbols! and
the standard KKR method in Ref. 32~open symbols!. Results for
angular momentum cutoffl max52 (spd basis, triangles up! and
l max53 (spd f basis, triangles down! are given. The dotted curve
denotes experimental results of Ref. 31.
1-8
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VI. DISCUSSION

It is now obvious that the semiempirical TB approach
the response coefficient~5! with diagonal coordinate opera
tors ~6! has its TB-LMTO and TB-KKR counterparts give
by Eqs. ~14! and ~63!. The latter are based on coordinat
X(r ) that are constant within a given Wigner-Seitz cell, E
~24! and ~45!, leading thus to velocity operators which d
scribe the pure intersite hopping. The role of the coordin
operatorX in Kubo formalism is twofold:10 it is related both
to the current operator and to the applied external field
brings the system out of equilibrium. Consequently,
present formulation neglects the variation of applied elec
static potentials inside individual atomic cells. While this
certainly an approximation, the validity of which is to b
checked in each particular case, it should be noted that
detailed microscopic behavior of the effective electrosta
field inside the cells due to an applied voltage is in gene
unknown.

The effective velocity operators in the present TB-LMT
and TB-KKR formalisms are represented by short-range
trices with vanishing on-site blocks in clear contrast to
site-diagonal matrices representing the local velocity ope
tors in usual KKR approaches.13,17,32 Another pronounced
difference appears in the context of substitutionally dis
dered systems where an evaluation of the response co
cient requires configuration averaging. Within self-consist
mean-field theories such as the CPA, this leads inevitabl
the problem of vertex corrections. While the origin
formulation11 assumes nonrandom ~configuration-
independent! velocity operators as encountered in sem
empirical TB schemes, the standard KKR theory of elect
transport becomes more complicated due to the rand
~configuration-dependent! site-diagonal velocity matrices.13

Since the structure constant matrixSa of the TB-LMTO ap-
proach as well as the reference system of the screened
method are usually taken independent of the configurat
the effective velocity operators in Eqs.~14! and ~63! are
nonrandom and the configuration averaging reduces c
pletely to the original version11 which might be of advantage
in calculating the vertex corrections.
c-

d
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VII. CONCLUSIONS

We have shown that a systematic use of piecewise c
stant coordinates for transport properties leads to a comp
analogy between TB schemes based only on Hamilton
matrix elements and those based on orbitals~wave func-
tions!. This link allows a direct translation of existing tech
niques between the semiempirical and first-principles me
ods. This can simplify, e.g., the evaluation of the vert
corrections in the coherent-potential approximation co
bined withab initio methods. We have presented a detai
derivation within the TB-LMTO method that clarified som
properties~accuracy, representation invariance! of recent cal-
culations and gave arguments in favor of some assumpt
made in semiempirical schemes~diagonality of matrix rep-
resentation of the position operator!. An analogous formal-
ism worked out within the screened KKR method can se
as an alternative to the existing KKR formulations, both f
bulk13 and layered systems.17,35

The full assessment of the applicability of the sugges
scheme to various physical situations remains to be do
Nevertheless, the results shown here for substitutionally
ordered alloys as well as existing results of other autho
e.g., for the residual resistivity15 and the Hall conductivity36

of topologically disordered metals or for the conductance
layered systems with perfect and imperfect interfaces,22,37

obtained by the parameter-free TB-LMTO method, indica
that the most important ingredients of the interatomic el
tron transport are within the range of the present approa
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