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Perpendicular transport in Fe/InP/Fe heterostructures
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Abstract

Perpendicular electric transport in Fe/InP/Fe heterostructures with different terminations is investigated within the
relativistic spin-polarized version of the screened Korringa–Kohn–Rostoker method and the Kubo–Greenwood
formula, and compared to a Landauer-like approach. Both methods show that the magnetoresistance becomes constant

with increasing spacer thickness. r 2002 Elsevier Science B.V. All rights reserved.
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In view of spin transport, quantum computers, etc.,
electric transport properties of metal/semiconductor/

metal heterostructures became of quite some technolo-
gical interest, especially, structures with a reasonable
large magnetoresistance (MR) are very much in demand.

A systematic search for possible systems, however, is still
at the very beginning. In the present work Fe=ðInPÞt=Fe;
where t is the number of repetitions of the spacer

material, serves as a model for such a heterostructure.
The electronic properties of the system are determined
within the fully relativistic spin-polarized screened
Korringa–Kohn–Rostoker (SKKR) method for layered

systems [1,2] and the local density approximation. The
actually investigated systems are of the form
Feð1 0 0Þ=Fes=ðABÞtA=Feðs�1Þ71=Feð1 0 0Þ; with A and

B being either In or P, and s ¼ 12: The number of Fe
layers in the right lead varies for technical reasons [2].
We assume a BCC-like structure (lattice constant

a ¼ 5:27 a:u:) instead of the zinc-blende structure of
bulk InP. This is a simplification, however, it should be
sufficient for small spacer thicknesses. The limitations

will be discussed later on.
At present, three different kinds of methods are

applied in order to calculate the current perpendicular
to the planes, namely in terms of a linearized Boltzmann

equation [3], the so-called ‘‘Kubo–Landauer’’ approach
[4,5] and the Kubo–Greenwood equation [6]. Here, we

adopt the Kubo–Greenwood formalism and compare
the results with a Landauer-like approach [7]. Suppose C
denotes the magnetic configuration of the leads, which

can be either parallel (P) or antiparallel (AP) and d is
the imaginary part of the complex Fermi energy then
rðC; n; dÞ describes the sheet resistance of a layered
system with n ¼ 2ðsþ tÞ71 atomic layers. A finite
imaginary part of the Fermi energy has to be taken
into account because of convergence properties of the k-
space integration of the conductivity tensor elements [8].

Therefore, the actual sheet resistance is given by
rðC; nÞ ¼ limd-0rðC; n; dÞ [9]. Using the Kubo–Green-
wood (KG) equation, the sheet resistance is defined as

rKGðC; n; dÞ ¼
Xn

i;j

rijðC; n; dÞ

¼
Xn

i;j

½sðC; n; dÞ��1ij ; ð1Þ

where rij is the inverse of the layer-dependent con-
ductivities sij [8]. In a Landauer like description, the
conductance can be viewed in terms of a two-point
conductivity with endpoints situated in the leads [4,5].

The sheet resistance is then given by

rLðC; n; dÞ ¼ r1nðC; n; dÞ ¼
1

s1nðC; n; dÞ
: ð2Þ
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In both cases the MR is of the form

RðmÞ ¼
rðAP;mÞ � rðP;mÞ

rðAP;mÞ
ð3Þ

with m ¼ 2ðn0 þ tÞ þ 1 being the sum of all spacer layers
considered including n0 ¼ 10 Fe lead layers. While the
sheet resistance in the Kubo–Greenwood formula scans

every layer and consequently includes, therefore, the
influence of the interior system, the Landauer approach
describes the system indirectly as viewed from the leads

[4,5]. Therefore, the MR obtained by a Landauer like
approach can be understood as an upper limit of the
MR.

First of all we will focus on some electronic aspects of
the system, especially the charge distribution, which tells
us how many layers of the Fe leads do not show bulk-
like behavior and have therefore to be included in the

actual heterostructure, see Eq. (3). In order to check this
layer-resolved Madelung potentials can be used [9],
which are shown for a heterostructure with 21 repeti-

tions in Fig. 1. The Madelung potentials for In layers are
small and positive, whereas P layers are characterized by
much larger but negative Madelung potentials. At the

two interfaces, the potentials are disturbed such that P
terminated spacers show reduced Madelung potentials
and In terminated systems have enhanced Madelung

potentials. This is accompanied by strong changes of the
Fe Madelung potentials. It is obvious from Fig. 1 that

these variations are limited to the region near the
interface and vanish rapidly in the leads. Already after

six lead layers the Madelung potentials reach the bulk
value (Vmad ¼ 0). Therefore, the choice of n0 ¼ 10 Fe
lead layers is sufficient for the calculation of the sheet

resistances and, therefore, for the MR.
The MR (3) is obtained from the calculated sheet

resistances as continued to the real axis [10]. The results
are presented in Fig. 2. It is found that the product of

the number of repetitions t and the sheet resistance
varies linearly with t in the Kubo–Greenwood method
and quadratic in the Landauer-like approach such as

defined in Eq. (2). The MR obtained from this fit
reproduces the calculated values quite well (see Fig. 2).
Both, the Kubo–Greenwood and Landauer-like method

show more or less the same trend for the MR. Only the
variation of the data points is smaller in the Landauer
like formalism, since only a single matrix element s1n has
to be taken into account, whereas the Kubo–Greenwood
equation considers a large number of such elements, see
Eqs. (1) and (2). With increasing number of spacer
layers, the MR becomes constant for both types of

termination. From the Kubo–Greenwood equation (1),
a MR of 37% is obtained for the In and 46% for the P
terminated spacer. The corresponding values from the

Landauer-like approach are 75% (In) and 82% (P),
respectively. However, the differences of the MR
between an In and a P terminated spacer amount only

Fig. 1. Layer-resolved Madelung potentials of Fe10=ðInPÞ21=
Fe10 for different spacer terminations.

Fig. 2. Magnetoresistance RðsÞ versus the spacer thickness s for
a Landauer-like and the Kubo–Greenwood approach. Lines

refer to the fitted sheet resistances, where dashed lines indicate a

P termination and full lines mark an In termination of the

spacer.
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up to 7% or 9% depending on the method. This is
obviously much smaller than the asymptotic difference,

which we have found in a similar system with a ZnSe
spacer [10]. This may be an indication that InP is less
suitable as a spacer material in technical devices.

In order to pin-point the origin of the small MR in
more detail, it is useful to focus on the difference of the
sheet resistances for the P and theAP alignment of the
leads

Drðn; dÞ ¼ rðAP; n; dÞ � rðP; n; dÞ ð4Þ

which can be partioned into three characteristic parts,
namely into contributions from the leads DrL; from the
interface DrI; and last but not least from the spacer DrS

Dr ¼ DrLl þ DrIl þ DrS þ DrIr þ DrLr; ð5Þ

where the indices l and r indicate the left and right side
of the system. The interface region is chosen to consist of
the actual interface, three lead layers and three layers
from the spacer, i.e., is of the form Fe3=FeA=BAB; with
A and B being either In or P. In Fig. 3, this partioning is
presented for a heterostructure with t ¼ 21ðd ¼ 2mRyÞ:
In contrast to former investigations of a ZnSe spacer [10]

the results do not depend significantly on the termina-
tion. Both systems show nearly the same kind of
contribution to Dr: That underlines what we have
already seen in the MR (Fig. 2), where the differences
between an In and a P termination are small. The largest

contribution to Dr corresponds to the interface region,
however, even more interestingly is the fact that the

spacer also gives a large, but negative contribution. The
jDrSj amounts to 65% of the interface value, which
implies that the spacer material strongly reduces the MR

of the system. This in turn explains the relatively small
magnetoresistances, which are obtained for the present
system as compared with a Fe=ðZnSeÞt=Fe heterostruc-
ture.

Summarizing, we have investigated the MR of
Fe=InPt=Fe heterostructures on the basis of SKKR
calculations. We were able to show that both methods

give the same trend for the MR, the values from the
Landauer-like method being a factor of 2 larger than
the Kubo–Greenwood results. It has been found that the

type of termination is of minor influence and that the
InP spacer strongly reduces the MR. Finally, it should
be mentioned that all spacer materials show metallic

behavior. This is due to the fact that we have used a
BCC structure with the lattice constant of BCC Fe,
which is not true for thick spacers. In order to improve
our results, we will expand our calculations to complex

structures.
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Sommers, Phys. Rev. B 64 (2001), in press.Fig. 3. Normalized fractions of the sheet resistance difference

Drp=Dr; see Eq. (5), for a heterostructure with 21 repetitions
with an In (top) and a P termination (bottom).
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