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Abstract
The ground-state and the ® nite-temperature phase diagrams with respect to

magnetic con® gurations are studied systematically for thin magnetic ® lms in
terms of a classical Heisenberg model including magnetic dipole± dipole
interaction and uniaxial anisotropy. Simple relations are derived for the
occurrence of the various phase boundaries between the diŒerent regions of the
magnetic orientations. In particular, the range of the ® rst- and second-order
reorientation phase transitions are determined for bilayers and trilayers.

} 1. Introduction

Recent developments of thin-® lm technologies enable the growth of ultrathin

magnetic ® lms deposited on non-magnetic substrates to be controlled. Because of
their challenging application as high-storage magnetic recording media, much atten-

tion (Gradmann 1986, Allenspach et al. 1990, Pappas et al. 1990, 1992, Allenspach

1994, Li et al. 1994, Berger and Hopster 1996, Garreau et al. 1996, Farle et al. 1997,

Gubiotti et al. 1997) has been devoted to the novel properties of these new structures.

From a technological point of view, the study of the magnetic phase transitions and,
in particular, of reorientations of the magnetization is playing a major role. In

comparison with bulk systems, the presence of surfaces and interfaces leads to an

enhancement of the magnetocrystalline anisotropy due to spin± orbit coupling. The

magnetocrystalline anisotropy often prefers a magnetization perpendicular to the

surface, while the magnetic dipole± dipole interaction and the entropy at ® nite tem-
peratures favour an in-plane magnetization. Consequently, as observed in many Fe-

or Co-based ultrathin ® lms (Gradmann 1986, Allenspach et al. 1990, Pappas et al.

1990, 1992, Allenspach 1994, Li et al. 1994, Berger and Hopster 1996, Garreau et al.

1996), a reorientation from an out-of-plane to an in-plane direction of the magne-

tization occurs by increasing both the thickness of the ® lm and the temperature.

Relativistic ® rst principles calculations using the local-spin-density approximation
turned out to be su� ciently accurate to reproduce the critical thickness of the re-

orientation (Szunyogh et al. 1995, 1997b, Zabloudil et al. 1998).
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In the case of thin Ni ® lms deposited on a Cu(001) surface, the opposite beha-

viour was revealed; the magnetization was found to be in plane for fewer than seven

Ni monolayers; however, it became perpendicular to the surface beyond this thick-
ness. Below the switching thickness near 0 K, even an increase in the temperature

induces a similar reversed reorientation (Farle et al. 1997, Gubiotti et al. 1997). The

main origin of the above reorientation was attributed to the fact that strain-induced

anisotropy of the inner layers prefers a perpendicular magnetization (Hjortstam et

al. 1997, Uiberacker et al. 1999).
Subsequent to the pioneering work of Mills (1989) , who predicted the existence

of a canted non-collinear ground state for a semi-in® nite ferromagnetic system, and

that of Pescia and Pokrovsky (1990) who, by using a renormalization group treat-

ment of a continuum vector ® eld model, for the ® rst time described the temperature

induced (normal) reorientation phase transition, a considerable number of theore-
tical attempts, mostly by means of diŒerent statistical spin models, were suggested in

order to explain the above ® ndings for the thickness- and temperature-driven re-

orientation transitions. In some attempts, classical vector spin models were used

within the mean-® eld approximation (Taylor and GyoÈ rŒy 1993, Hucht and Usadel

1996, 1997, 1999a,b, 2000, Jensen and Bennemann 1998, Hu et al. 1999) or in terms

of Monte Carlo simulations (Taylor and GyoÈ rŒy 1993, Serena et al. 1993, Chui 1995,
Hucht et al. 1995, Hucht and Usadel 1996, MacIsaac et al. 1996). A quantum-spin

description of reorientation transitions has also been provided in terms of spin-wave

theory (Bruno 1991), mean-® eld theory (Moschel and Usadel 1994, 1995) and many-

body Green function techniques (FroÈ brich et al. 2000a,b, Jensen et al. 2000), and by

using Schwinger bosonization (Timm and Jensen 2000). Although, the mean-® eld
theory is not expected to give a su� ciently accurate description of low-dimensional

systems, it turned out that it is a successful tool to study spin reorientation transi-

tions and yields qualitatively correct predictions (Moschel and Usadel 1994, 1995,

Hucht and Usadel 1997, 1999a,b, 2000, Jensen and Bennemann 1998, Hu et al.

1999). It also should be noted that an itinerant-electron Hubbard model revealed
the sensitivity of reorientation transitions with respect to electron correlation eŒects

(Herrmann et al. 1998).

For layered systems, the following simple model Hamiltonian can be used to

study reorientation transitions (for example Taylor and GyoÈ rŒy (1993)):

H ˆ ¡ 1
2

NN

…p;i†;…q; j†

Jspi · sqj ¡
p;i

p…sz
pi†

2

‡ 1
2

…p;i†6ˆ…q; j†
!

spi · sqj

r3
pi;qj

¡ 3
…spi· rpi;qj†…sqj · rpi;qj†

r5
pi;qj

; …1†

where spi…jspi j ˆ 1† is a classical vector spin at lattice position i in layer p and rpi; qj is

a vector pointing from site …p; i† to site …q; j† measured in units of the two-dimen-

sional (2D) lattice constant a of the system. Although our previous calculations of
the Heisenberg exchange parameters in thin Fe, Co and Ni ® lms on Cu(001) showed

some layer-dependence (Szunyogh and Udvardi 1998, 1999), in the ® rst term of

equation (1) we only consider a uniform nearest-neighbour coupling parameter J

(as indicated by the superscript NN) throughout the ® lm. Similarly, as we neglect the

well-known surface and interface-induced enhancement of the spin moments, we use
a single parameter ! ˆ 0

2=4pa3 (with 0 the magnetic permeability and an
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average magnitude of the spin moments), characterizing the magnetic dipole± dipole

interaction strength in the third term of equation (1). As revealed also by ® rst-

principles calculations (see Weinberger and Szunyogh (2000), and references
therein), the uniaxial magnetocrystalline anisotropy depends very sensitively on

the type of surface or interface, the layerwise resolution of which can vary from

system to system. Therefore, the corresponding parameters p in the second term of

equation (1) remain layer dependent; the variety of these anisotropy parameters

leads to rich magnetic phase diagrams covering the experimentally detected features
mentioned above. For example, in a previous study (Udvardi et al. 1998) we pointed

out that, even in the absence of a fourth-order anisotropy term, for a very asym-

metric distribution of p with respect to the layers, the Heisenberg model in equation

(1) can yield a canted (non-collinear) ground state. This feature cannot be obtained

within a phenomenological single-domain picture.
In the following, we ® rst investigate the possible ground states of the

Hamiltonian (1). Then we perform a systematic mean-® eld study of the diŒerent

kinds of temperature-induced reorientation transition, devoting special attention to

the case of bilayers and trilayers. Speci® cally, we de® ne general conditions for the

reversed reorientation. Most researchers in the past focused on proving the existence

of diŒerent reorientations and detected only some parts of the phase diagram, where
® rst- and second-order phase transitions occurred. Here, we describe the full range of

uniaxial anisotropies p, for which ® rst- or second-order reorientation phase transi-

tions can exist. Finally, we attempt to summarize the results and impacts of a mean-

® eld approach.

} 2. Ground state

Con® ning ourselves to spin states in which the spins are parallel in a given layer,

but their orientations may diŒer from layer to layer, that is

spi ˆ sp ˆ …sin … p† cos … p†; sin … p† sin … p†; cos … p††; …2†

where p and p are the usual azimuthal and polar angles with the z axis normal to

the planes, the energy of N layers per 2D unit cell can be written as

EN… 1; 2; . . . ; N ; 1; 2; . . . ; N† ˆ ¡ 1
2

N

p;qˆ1

…Jnpq ¡ Apq!† cos … p† cos … q†

¡ 1
2

N

p;qˆ1

…Jnpq ‡ 1
2
Apq!† sin … p† sin … q†

cos … p ¡ q† ¡
N

pˆ1

p cos2 … p†; …3†

with npq being the number of nearest neighbours in layer q of a site in layer p, and Apq

the magnetic dipole± dipole coupling constants (see the appendix in the paper by

Szunyogh et al. (1995)):

j

0 1

r3
p0;qj

I ¡ 3
rp0;qj rp0;qj

r2
p0;qj

ˆ Apq

¡ 1
2

0 0

0 ¡ 1
2

0

0 0 1

; …4†
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which is valid for square and hexagonal 2D lattices, such as the (100) and (111)

surfaces of cubic systems (I is the three-dimensional (3D) unit matrix, while stands
for the tensorial product of two vectors). For 3D translational invariant underlying

parent lattices (Weinberger 1997), Apq depends only on jp ¡ qj, that is the distance

between layers p and q. In table 1 we summarize these constants for the ® rst few

layers of the most common cubic structures. As the magnetic dipole± dipole interac-

tion is clearly dominated by the positive ® rst-layer (and second-layer) couplings, for
ferromagnetic systems (J > 0), a minimum of the energy in equation (3) corresponds

to the case when all polar angles p are identical. Therefore, the -dependence in

equation (3) disappears and the expression

EN… 1; 2; . . . ; N† ˆ ¡ 1
2

N

p;qˆ1

…Jnpq ¡ Apq!† cos … p† cos … q†

¡ 1
2

N

p;qˆ1

…Jnpq ‡ 1
2
Apq!† sin … p† sin … q† ¡

N

pˆ1

p cos2 … p†; …5†

has to be minimized with respect to p. The corresponding Euler± Lagrange equa-

tions are then

qEN… 1; 2; . . . ; N†
q p

ˆ
N

qˆ1

…Jnpq ¡ Apq!† sin … p† cos … q†

¡
N

qˆ1

…Jnpq ‡ 1
2
Apq!† cos … p† sin … q†

‡ 2 p sin … p† cos … p†

ˆ 0: …6†

Obviously, a uniform in-plane f p ˆ p=2g and a normal-to-plane f p ˆ 0g orienta-

tion satisfy equation (6). The energies of these two particular spin-states coincide if

N

pˆ1

p

!
ˆ 3

4

N

p;qˆ1

Apq; …7†

which de® nes an …N ¡ 1†-dimensional hyperplane in the N ± dimensional space of

parameters f p=!g. If the magnetization changes continuously across this plane,

in its vicinity there should exist solutions with canted magnetization. Moreover,
the saddle points of the energy functional in equation (5),
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Table 1. Dipole± dipole coupling constants as de® ned in equation (4) for the surfaces of cubic
structures.

Structure A11 A12 A13 A14

Sc (100) 9.0336 ¡0.3275 ¡0.000 55 < 10¡5

Sc (111) 11.0342 5.9676 0.405 6 0.014 6
Bcc (100) 9.0336 4.1764 ¡0.327 46 0.012 38
Bcc (111) 11.0342 15.8147 5.967 6 ¡4.066 2
Fcc (100) 9.0336 1.4294 ¡0.022 6 0.000 26
Fcc (111) 11.0342 0.4056 0.001 13 < 10¡5



det
qEN

q pq q f pˆ0;p=2g

ˆ 0; …8†

de® ne the boundaries of the canted zone,

det
N

rˆ1

J

!
npr ‡ 1

2 Apr ¡ 2
p

! pq ¡
J

!
npq ¡ Apq ˆ 0; …9†

and

det
N

rˆ1

J

!
npr ¡ Apr ‡ 2

p

!
pq ¡

J

!
npq ‡ 1

2
Apq ˆ 0; …10†

for the uniform in-plane and normal-to-plane magnetizations, respectively. For a

bilayer we derived the explicit expressions of equations (9) and (10) (Udvardi et al.
1998).

In order to study the canted region, instead of solving the Euler± Lagrange equa-

tions (6) directly, we ® xed a con® guration *1; *2; . . . ; *N and determined

1; 2; . . . ; N by demanding that equation (6) must be satis® ed, that is

p ˆ 1
2

N

qˆ1

…Jnpq ‡ 1
2
Apq!†

sin … *q†
sin … *

q†
¡ 1

2

N

qˆ1

…Jnpq ¡ Apq!†
cos … *q†
cos … *

p†
: …11†

Substituting these parameters into equation (5), one easily can express the diŒerence

of the energies between the corresponding con® gurations as

EN… 1 ˆ 2 ˆ ˆ N ˆ 0† ¡ EN… *1; *2; . . . ; *
N†

ˆ 1
2

N

pq

…npqJ ¡ Apq!†
cos … *p†
cos … *q†

‡
cos … *q†
cos … *p†

¡ 2 …12†

and

EN 1 ˆ 2 ˆ ˆ N ˆ
p
2

¡ EN … *1; *2; . . . ; *
N †

ˆ 1
2

N

p;q

…npqJ ‡ 1
2
Apq!†

sin … *p†
sin … *

q†
‡

sin … *q†
sin … *

p†
¡ 2 : …13†

Note that the position of the minimum f *
pg as well as the minimum energy

EN…f *
pg† are functions of the parameters J , ! and f pg. Obviously, whenever the

parameters fall into the region between the two hyperplanes de® ned by equations (9)

and (10), the energy of non-collinear states is always below or equal to the energy of

the collinear in-plane or normal-to-plane solutions.

We showed that, for a bilayer, 1 ˆ 2 ˆ 3…A11 ‡ A12†!=4 implies a collinear
ground state spin con® guration (Udvardi et al. 1998). This state is, however, con-

tinuously degenerate, that is the energy is independent of the orientation of the

magnetization. Such a critical point in the phase diagram also exists for multilayers

(N 5 3). That is, from equations (12) and (13) it follows that for
*1 ˆ *2 ˆ ˆ *N ˆ *, EN…f *pg† is independent of *. In terms of equation

(11), the corresponding point in the parameter space f p=!g is given by
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p

!
ˆ 3

4

N

qˆ1

Apq: …14†

Evidently, the hyperplanes given by equations (9) and (10) touch the hyperplane,

separating the in-plane and normal-to-plane regions (equation (7)), at the point

de® ned by equation (14). It is worthwhile to mention that this is the only point
where canted collinear solutions can exist. This critical point was also found by

Hucht and Usadel (1996) for a monolayer, but they did not prove its existence for

multilayers.

} 3. Finite temperature

Introducing the coupling constants

cx
pq ˆ npqJ ‡ 1

2 !Apq; cz
pq ˆ npqJ ¡ !Apq; …15†

the molecular ® eld corresponding to the Hamiltonian (1) at layer p can be written as

Hp… ; † ˆ ¡
N

qˆ1

cx
pq‰mx

p sin … † cos … † ‡ my
p sin … † sin … †Š

¡
N

qˆ1

cz
pqmz

q cos … † ¡ p cos2 … †; …16†

where mp ˆ hsp i … ˆ x; y; z). Similar to the ground state (see } 2), because of the in-

plane rotational symmetry of the above eŒective Hamiltonian, the in-plane projec-

tions of all the average magnetic moments mp are aligned. Therefore, by choosing an

appropriate coordinate system, my
p can be taken to be zero in equation (16). The

partition function is then de® ned by

Z ˆ
N

pˆ1

Zp; …17†

Zp ˆ 2p
p=2

¡p=2

exp f ‰bz
p cos … † ‡ p cos2 … †Šg J0‰¡i bx

p sin … †Š sin … † d ; …18†

where

bx…z†
p ˆ

N

qˆ1

cx…z†
pq mx…z†

q ; …19†

ˆ 1=kBT , kB is the Boltzmann constant and T is the temperature. The minimiza-

tion of the free-energy with respect to the average magnetizations leads to the fol-
lowing set of nonlinear equations

mx
p ˆ

2ip
Zp

p=2

¡p=2

sin … † exp f ‰bz
p cos … † ‡ p cos2 … †Šg J1‰¡i bx

p sin … †Š sin … † d

…20†
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and

mz
p ˆ

2p
Zp

p=2

¡p=2

cos … † exp f ‰bz
p cos … † ‡ p cos2 … †Šg J0‰¡i bx

p sin … †Š sin … † d :

…21†

In equations (17), (20) and (21), J0 and J1 denote Bessel functions of zero and ® rst

order respectively (Abramowitz and Stegun 1972).

By using a high-temperature expansion, equations (20) and (21) become

decoupled (see appendix A). Consequently, the magnetization can go to zero either
via an in-plane or via a normal-to-plane direction at temperatures Tx and Tz respec-

tively, and the higher of these temperatures can be associated with the Curie

temperature TC. Clearly, an out-of-plane to in-plane reorientation phase transition

can occur only when the ground-state magnetization is out of plane and

Tz < Tx ˆ TC. In the case of a reversed reorientation transition, the ground state

magnetization has to be in-plane (or canted) and Tx < Tz ˆ TC.
Expanding Tx and Tz up to ® rst order in the anisotropy parameters p, leads to

the following expressions (see appendix A):

Tx ˆ
1

3kB

n11J ‡ 1
2
A11! ‡ 2…n12J ‡ 1

2
A12!† cos

p
N ‡ 1

¡
4

15…N ‡ 1†

N

pˆ1

p sin2 pp
N ‡ 1

; …22†

and

Tz ˆ
1

3kB

n11J ¡ A11! ‡ 2…n12J ¡ A12!† cos
p

N ‡ 1

‡
8

15…N ‡ 1†

N

pˆ1

p sin2 pp
N ‡ 1

: …23†

The above expressions imply that, if the anisotropy parameters p are small, Tx is

larger than Tz. As the anisotropy parameters are increasing, the diŒerence between

Tz and Tx decreases. The two temperatures coincide, if the following condition is
ful® lled:

N

pˆ1

p

!
sin2 pp

N ‡ 1
ˆ

5…N ‡ 1†
8

A11 ‡ 2A12 cos
p

N ‡ 1
: …24†

Above the hyperplane determined by equation (24), that is for Tx < Tz, the uniaxial

anisotropy is large enough to keep the magnetization normal to the surface as long

as the temperature reaches TC.

First-principles calculations on (Fe, Co, Ni)/Cu(001) overlayers revealed
(UÂ jfalussy et al. 1996, Szunyogh et al. 1997a, Szunyogh and Udvardi 1998, 1999,

Uiberacker et al. 1999), that the uniaxial magnetic anisotropy energy and the mag-

netic dipole± dipole interaction are two to three orders of magnitude smaller than the

exchange coupling. Thus, for physically relevant parameters, the boundaries of the

canted ground state ® xed by equations (9) and (10) are close to the hyperplane
de® ned by equation (7). Apart from this tiny range of canted ground states, tem-
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perature-induced out-of-plane to in-plane reorientation can occur in the parameter

space f p=!g between the two hyperplanes given by equations (7) and (24). It is

worthwhile to mention that the positions of these hyperplanes are determined only
by the magnetic dipole± dipole constants Apq.

An example for an out-of-plane to in-plane reorientation transition in a ® lm ® ve

layers thick is shown in ® gure 1. Neglecting the fourth-order anisotropy terms, the

parameters of the system have been chosen to be identical with those characteristic to

a Co5/Au(111) overlayer (Udvardi et al. 1998). Because of the highly asymmetric
distribution of p with respect to the layers, the system has a non-collinear canted

ground state. As the temperature increases, the magnetization in each layer turns

into the plane of the ® lm. The system keeps its non-collinear con® guration up to the

reorientation transition temperature (about 0.9 J/kB), above which it is uniformly

magnetized in plane up to the Curie temperature (about 3:8J=kB).
The temperature-induced reversed reorientation transition, found experimentally

in Nin/Cu(001) ® lms for n < 7, has successfully been described by Hucht and Usadel

(1997), who used a perturbative mean-® eld approach to the model given in equation

(1). Using the same parameters, we solved the mean-® eld equations (20) and (21) and

reproduced the reversed reorientation transition without any perturbative treatment.

The results for a four-layer ® lm are shown in ® gures 2 and 3. Although the distribu-
tion of the anisotropy parameters is asymmetric, the calculation resulted in identical

magnetizations in the ® rst and fourth layers as well as in the second and third layers.

Moreover, the angles of the magnetizations in the diŒerent layers are almost iden-
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(a)

(b)

Figure 1. Out-of-plane to in-plane reorientation transition in a ® ve-layer system
( 1=J ˆ 0:26, 2;. . .;5 ˆ 0, !=J ˆ 0:0056). The z and the x components of (a) the
average magnetization and (b) the angles of magnetization with respect to the normal
of the surface are shown.



tical; in the whole temperature range the largest deviation is smaller than
6 10¡4 rad.

For a bilayer (N ˆ 2) the hyperplanes (7) and (24) reduce to the lines

1

!
‡ 2

!
ˆ

3

2
…A11 ‡ A12† and 1

!
‡ 2

!
ˆ

5

2
…A11 ‡ A12†; …25†

respectively. Apparently, the two lines do not intersect. As a consequence, a reversed

reorientation can occur only if the number of layers in the ® lm exceeds two. The

same conclusion has been drawn by Hucht and Usadel (1997) using a perturbative
treatment of the anisotropy parameters. Nevertheless, it is interesting to note that the

Reorientation phase transitions in magnetic ® lms 621

Figure 2. Normal-to-plane and in-plane components of the layer resolved magnetization for
a ® lm of four atomic layers exhibiting a reversed reorientation transition. The para-
meters, representative of Ni were taken from the paper by Hucht and Usadel (1997):
J ˆ 1, 1=J ˆ ¡3:5 10¡3

, i=J ˆ 1:5 10¡3…i > 1†, !=J ˆ 5 10¡5
. The inset

shows the vicinity of the reorientation transition on an enlarged scale.

Figure 3. Variation in the angle of average magnetization for the system in ® gure 2.



region in the parameter space f p=!g of canted ground states, bounded by the lines

de® ned by equations (9) and (10), always overlaps the region, where the magnetiza-

tion goes to zero via in-plane orientation. Thus, in this overlapping region an out-of-
plane (canted) to in-plane transition, that is reversed reorientation transition can

indeed occur. The corresponding parameters ! and f pg, are, however, most likely

beyond the physically relevant regime.

For a bilayer, in ® gure 4 the diŒerent regions of phase transitions in the respec-

tive parameter space are shown. In regions I and V there is no temperature-driven
reorientation transition and the magnetization remains in plane and normal to plane

respectively, until TC is reached. In regions II and III, the magnetization turns into

the plane from a canted or a normal-to-plane ground state, respectively. As discussed

above, in region IV, a reversed reorientation can occur from a canted ground state to

a normal-to-plane direction.
The order of the reorientation transition at ® nite temperatures has been studied

in the literature by the mean-® eld and Monte Carlo methods. Most workers con-

cluded (Hucht et al. 1995, Hucht and Usadel 1996, MacIsaac et al. 1996) that the

reorientation transition in a monolayer is of ® rst order. For a bilayer, within the

mean-® eld approach, a relatively small range in the vicinity of 1 ˆ 2 was found,

where the system underwent a ® rst order reorientation transition (Hucht and Usadel
1996). In the following, we establish a simple general criterion for the order of the

reorientation transition. Suppose that the ground-state magnetization is in plane and

its normal-to-plane component appears at the temperature Trz. Since near Trz the z

component of the magnetization is small, the exponential function in equation (21)

can be expanded up to ® rst order in mz
p, leading to the homogeneous linear equations

N

qˆ1

Cz
pqmz

q ˆ 0; …26†
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Figure 4. Phase diagram of the magnetic ground states and the reorientation phase transi-
tions for a bilayer, where the magnetic dipole± dipole coupling strength ! ˆ 0:01J:
region I, in-plane magnetization up to TC; region II, canted ground state with reor-
ientation transition to in-plane orientation; region III, normal-to-plane ground state
with reorientation transition to in-plane orientation; region IV, canted ground state
with reversed reorientation transition; region V, normal-to-plane magnetization up to
TC.



where

Cz
pq pq ¡ rzc

z
pqZ p; …27†

Z p ˆ
2p
Zp

cos2 … † exp ‰ rz p cos … †2Š J0‰¡i rzb
x
p sin … †Š sin … † d …28†

and rz 1=kBTrz. Note that the Cz
pq depend only on the in-plane component of the

magnetizations mx
q , which has to satisfy equation (20) for the case when mz

q ˆ 0.

Equation (26) has a non-trivial solution only if the determinant of the matrix
Cz ˆ fCz

pqg is zero. Evidently, this is the condition which determines Trz.

Similarly, one can easily ® nd the corresponding equation for Trx, where the

in-plane component of the magnetization appears in a normal-to-plane spin

con® guration,

N

qˆ1

Cx
pqmx

q ˆ 0; …29†

with

Cx
pq ˆ pq ¡ rxcx

pqX p; …30†

X p ˆ
p

Zp

sin3 … † exp ‰ rx p cos2 … †ŠfJ0‰¡i rxbx
p sin … †Š ¡ J2‰¡i rxbx

p sin … †Šg d

…31†

and rx 1=kBTrx. It is easy to show that equations (26) and (29) directly follow

from a stability analysis of the mean-® eld free energy in the vicinity, where the

corresponding components of the magnetizations vanish.

The mean-® eld equations (20) and (21) always have an in-plane and a normal-to-
plane solution with magnetizations mq

x 6ˆ 0, mq
z ˆ 0, and mq

z 6ˆ 0, mq
x ˆ 0, respec-

tively. Between Trx and Trz, a canted solution can exist with mq
x 6ˆ 0 and mq

z 6ˆ 0.

Of the above three phases, the physical phase is that which has the lowest free energy.

In ® gure 5 (a) the free energy of a system possessing a second-order normal-to-plane

to in-plane reorientation transition is schematically shown. The ground-state

magnetization is perpendicular to the surface of the substrate. At Trx an in-plane
component appears in the magnetization. The normal-to-plane component of the
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Figure 5. Schematic picture of the free energy in the case of a (a) a second-order and (b) and
a ® rst-order reorientation phase transition. As indicated by arrows, the solid, broken
and dotted curves refer to the in-plane, normal-to-plane and canted mean-® eld
solutions respectively.



magnetization vanishes at the temperature Trz…> Trx†. A similar picture for a ® rst-

order transition is shown in ® gure 5 (b). Obviously, one can conclude that, if

Trx < Trz, a second-order normal-to-plane to in-plane reorientation phase transition
occurs whereas, if Trz < Trx, the reorientation transition is of ® rst order. In the case

of a reversed reorientation, the relation between Trx and Trz is just the opposite to

that described above; a second-order transition occurs if Trz < Trx, while for

Trx < Trz the transition is of ® rst order. At the boundary of the regions, where

second-order and ® rst-order phase transitions occur, the two temperatures Trx and
Trz, must evidently coincide.

In ® gure 6, the region of ® rst-order reorientations (III F) and that of second-

order reorientations (III S) are shown in the phase diagram for a bilayer. Note that

® gure 6 in fact represents ® gure 4 on an enlarged scale for the parameters

0 < 1;2=! < 18. This picture is consistent with the observation of Hucht and
Usadel (1996) for the range of the ® rst-order reorientation phase transitions, as

they performed investigations very close to the critical point only. In that case, by

keeping 1 ‡ 2 ® xed, ® gure 6 implies a very narrow range for the ® rst-order transi-

tions.

The phase diagram of the trilayer case (N ˆ 3) is shown in ® gure 7. Apparently,

the same regimes exist as in the case of a bilayer. The region of ® rst-order reorienta-
tion transition forms now a s̀ack’ , touching the plane de® ned by equation (7) at the

critical point given by equation (14). The s̀ack’ is covered by the plane separating the

area where normal-to-plane to in-plane reorientation occur and the area, where the

magnetization remains normal to plane up to the Curie temperature (see equation

(24)). The regime of reversed reorientation transitions, part of the region of second-
order transitions, is, however, out of the segment of the parameter space depicted in

® gure 7.

Numerical calculations using diŒerent magnetic dipole± dipole coupling strengths

! (see, in particular, ® gure 6) yield almost the same boundaries in the f p=!g para-
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Figure 6. Phase diagram of reorientation transitions for a bilayer (N ˆ 2). Regions I, II, III
and V denote the same regions as in ® gure 4; regime III, however, is partitioned into
regions referring to ® rst-order (III F) and second-order (III S) normal reorientation
phase transitions. The corresponding boundary lines are shown for diŒerent values of
the magnetic dipole± dipole interaction strength !, measured in units of J.



meter space of the phase diagrams for both the bilayer and the trilayer cases. The

only exception is the region of the canted ground states, which rapidly opens up with
increasing !. The established universality of the phase boundaries nicely con® rms

that the reorientation phase transitions, as long as ! becomes comparable with J , are

a consequence of the competition between the uniaxial anisotropy and the magnetic

dipole± dipole interaction.

} 4. Conclusions

In the present paper we provided a full account of the ground states and of the

® nite-temperature behaviour of a ferromagnetic ® lm with a ® nite number of layers,

as described by the classical vector spin Hamiltonian (1), including exchange cou-

pling interaction, uniaxial magnetocrystalline anisotropies and magnetic dipole±
dipole interaction. We derived explicit expressions for the boundaries of the regions

related to normal-to-plane, canted and in-plane ground states in the corresponding

parameter space. We concluded that within the model, de® ned by equation (1),

canted ground states are ultimately connected to non-collinear spin con® gurations.

In addition, as established so far for monolayers only (Hucht and Usadel 1996), for

any thickness of the ® lm we proved the existence of a critical point, where the
ground-state energy of the system is independent of the uniform orientation of the

magnetization.

We also investigated intensively the ® nite-temperature behaviour of the system in

terms of a mean-® eld theory. By using a high temperature expansion technique, we

showed that the Curie temperature of a ferromagnetic ® lm can be calculated by
solving an eigenvalue problem, which, for the case of a bulk system and by neglecting

anisotropy eŒects, leads to the well-known expression for TC. The main part of the

present study has been devoted to the reorientation phase transitions, which play a

central role for applications of thin-® lm and multilayer systems as high-storage

magnetic recording devices. Both the normal-to-plane to in-plane and the in-plane
to normal-to-plane (reversed) temperature-induced reorientation transitions have
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Figure 7. Mean-® eld phase diagram of reorientation transitions for a trilayer (N ˆ 3): region
I, in-plane magnetization up to TC; region III S, second-order normal-to-plane to in-
plane reorientation; region III F, ® rst-order normal-to-plane to in-plane reorientation;
region V, normal-to-plane magnetization up to TC.



been discussed and the corresponding regions in parameter space have been explicitly

determined. In accordance with previous studies (Hucht and Usadel 1997), we

showed that, for physically relevant parameters, reversed reorientation can occur
only for ® lms containing three or more atomic layers. By investigating the order of

reorientation phase transitions, we found well-de® ned conditions for the ® rst- and

the second-order phase transitions and presented the corresponding regions for

bilayers and trilayers in the respective parameter spaces.

In conclusion, we have shown that a mean-® eld treatment of a classical vector
spin model recovers most of the important phenomena observed in magnetic thin

® lm measurements at ® nite temperatures. Without any doubt, owing to the lack of

mean ® eld theories for low-dimensional systems, some of them have to be re® ned by

using more sophisticated methods of statistical physics (see } 1). In particular, for

very thin ® lms (monolayers), the mean-® eld theory predicts a TC much higher than
the random-phase approximation. However, by rescaling the temperature, the orien-

tations of the magnetization become fairly similar in both approaches (FroÈ brich et

al. 2000a,b). As far as the ® rst principles attempts (Szunyogh et al. 1995, 1997b,

Szunyogh and Udvardi 1998, 1999, Uiberacker et al. 1999, Pajda et al. 2000) are

concerned, which are currently able to calculate realistic parameters for a model such

as equation (1), the technique presented and applied here provides a simple and
quick tool to study the ® nite temperature behaviour of thin magnetic ® lms. As the

measurements are performed at ® nite temperatures, while ® rst principles calculations

usually refer to the ground state, such a procedure would improve the predictive

power of ab-initio theories. It should also be mentioned that ® rst attempts at an ab-

initio type of description of thin magnetic ® lms at ® nite temperatures, that is taking
into account the coupling of the itinerant nature of the electrons and the spin degree

of freedom, are currently in progress (Razee et al. 2001).
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APPENDIX A

DERIVATION OF THE CURIE TEMPERATURE

In the high-temperature limit ( ! 0, bx…z†
p ! 0) the partition function as given

by equation (17) can be written up to the ® rst order of the magnetization as

Zp ˆ 2p
1

¡1

…1 ‡ bz
pz† exp … pz2† dz ˆ 2p

1

¡1

exp … pz
2† dz: …A 1†

Similarly, for the magnetization in equation (21) the following approach can be used:
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mz
p ˆ

2p
Zp

1

¡1

z‰1 ‡ …bz
p ‡ H†zŠ exp … pz

2† dz

ˆ
1

p

…bz
p ‡ H†

exp … p†
1

¡1

exp … pz2† dz

¡
1

2
; …A 2†

where an external magnetic ® eld H has been added to the Hamiltonian in equation

(16). By substituting the expansion

exp … p†
1

¡1

exp … pz2† dz

ˆ 1
2 ‡ 1

3 p ‡ 4
45 … p†2 ‡ O… 2

p† …A 3†

into equation (A 3), it follows that

mz
p ˆ …bz

p ‡ H†…1
3 ‡ 4

45 p†: …A 4†

Requiring non-vanishing magnetization at zero external ® eld results in the following

eigenvalue problem

N

qˆ1

cz
pq…1 ‡ 4

15 p†mz
q ˆ 3kBTmz

p: …A 5†

Let Tz denote the highest value of T , for which equation (A 5) is satis® ed, that above

which no spontaneous normal-to-plane magnetization can exist. A similar procedure
can be applied in order to determine Tx, that is the temperature at which the in-plane

magnetization vanishes. Quite obviously, by neglecting anisotropy eŒects, for a bulk

system the Curie temperature TC ˆ Tx ˆ Tz is given by the well-known formula

TC ˆ
nJ

3kB

; …A 6†

where n denotes the number of nearest neighbours in the bulk.

With the exception of very open surfaces such as the bcc (111) surface (see table

1), the magnetic dipole± dipole coupling constants Apq fall oŒexponentially with

increasing distance between layer p and layer q. Therefore, as an approximation
we neglect all Apq for jp ¡ qj > 1, which, by recalling the nearest-neighbour approx-

imation for the exchange coupling, implies that the matrix formed by the elements

cz
pq is tridiagonal. The non-vanishing elements are then written as

cz
pp ˆ n11J ¡ A11!; cz

p;p¡1 ˆ cz
p¡1;p ˆ n12J ¡ A12!: …A 7†

Setting p ˆ 0, the solution of the eigenvalue problem (A 5) yields

T …0†
z ˆ

1

kB

n11J ¡ A11! ‡ 2…n12J ¡ A12!† cos
p

N ‡ 1
; …A 8†

with the components of the corresponding normalized eigenvector up ˆ
‰2=…N ‡ 1†Š1=2 sin ‰pp=…N ‡ 1†Š. Substituting T …0†

z into equation (A 5) and using

® rst-order perturbation theory with respect to p, one obtains equation (23) for
Tz. Again, a similar procedure applies for deriving Tx in equation (22).
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