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Effective pair interactions are examined in the nonstoichiometric as well as the Zn-doped Y-
Ba-Cu-O systems in terms of the real-space-scattering-cluster coherent-potential approximation.
Large negative pair energies are found for the first and second in-chain neighbors if vacancies oc-
cupy the O(1) sublattice, while concomitantly rather small positive pair energies characterize the
interchain neighbors. Negative pair energies are also found for a disordered O(2) sublattice if a
copper atom bridges the two sites. This result is in good agreement with experiment and with
other calculations. For the Zn doped copper sublattices no such clear-cut behavior is observed
with regard to the possible ordering of sites occupied by Cu or Zn atoms.

INTRODUCTION

A large number of experimental studies address the
question of ordering of the oxygen-vacancy subsystem in
the nonstoichiometric ceramic superconductors, particu-
larly in YBa,Cu3;O7—5 (see, e.g., Refs. 1~5). Electron
diffraction as well as x-ray-diffraction studies confirm the
existence of the ortho-II structure, i.e., a double-period
{$,0,0) orthorhombic structure, around §=0.5, with al-
ternating chains occupied by either oxygen atoms or va-
cancies. For lower vacancy content several types of
oxygen-vacancy ordering are observed.? ™3 Some of these
are consistent with the absence of oxygen atoms along the
chain, which then leaves the intermediate monovalent
copper atoms with a twofold coordination along the ¢
direction. ’

It was shown®’ by using a simple Ising model with
nearest- and next-nearest-neighbor interactions that the
experimental phase diagram could be fairly well repro-
duced through the choice of appropriate interaction pa-
rameters. These parameters were computed from first-
principles total energy calculations using the linear
muffin-tin orbitals (LMTO) method for the Og, Og.s, and
O structures.® These calculations show considerable
repulsive O(1)-O(1) interactions along the chain while
the interactions belonging to pairs with no bridging copper
atoms have attractive character. Configurational entropy
calculations by means of the cluster-variation method in
the square-lattice approximation assuming repulsive
nearest-neighbor interactions can also qualitatively de-
scribe the order-disorder phase transition.” In Ref. 10 the
ordering of the oxygen-vacancy subsystem is explained in
terms of long-range Coulomb interactions between the ox-
ygen ions, the ionization potential of copper, and the elec-
tron affinity of oxygen.

THEORY

As was shown by Gonis et al.,'! the configurational free
energy of a binary alloy at zero temperature can be evalu-
ated in terms of effective cluster interactions. For a par-
ticular pair of sites i and j, occupied by atoms of species
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a,3=A or B, these interactions are defined by
V,-‘;M%Imf_”wTran;j/’(E)dE, ()

where u is the chemical potential. Within the coherent-
potential approximation (CPA) QFP(E) is given'? as

QP (E) =1—XP(E)T°(E) . )

In (2), X{(E) is the site-diagonal excess-scattering ma-
trix

” XHE)Y 0
XFE)={Lf(E) ' —1f(E) 1 =25 (BN T, @

and £°(E) is the nondiagonal part of the scattering-path
operator of the CPA medium

0 _‘g;‘j(E)]
H(E) 0 )

where ¢ denotes single-site ¢ matrices and the superscript ¢
labels quantities referring to the coherent potential. Now
the well-known effective pair interaction,

VP =viA+vEE— 2y 48, (6)

can be written in the form,

#(E) = [ (s)

VP =—tm [ Trin [QF4(E) QP (E)]

7

The present calculations were performed by using our
previous results in terms of the real-space-scattering-
cluster coherent-potential approximation!>!* for two
types of disorder, the nonstoichiometric YBa,Cu;O;—;
and the YBay(Cu;—xZn,);0- systems. For example, for
the nonstoichiometric case we obtain

x[Q48(E) QA4 (E)] ~dE .

V,‘&Z) = I/,’?(")'O(n) + V[_S_)(n)-vac _ 2Vi;ac-vac , 8)

where O(n) (n=1,...,4) denotes one type of oxygen
atom with different crystallographic positions.
It should be noted that by characterizing a thermo-
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dynamical system in terms of pair interactions the sign of
V,-f-z) determines the tendency of the rearrangement of A
and B species on a given sublattice with respect to the ful-
ly random distribution: positive or negative signs suggest
ordering or phase separation, respectively.

RESULTS

The effective pair interactions for both the non-
stoichiometric and the Zn-doped systems are listed in
Table I, with the corresponding pairs denoted in each case
by 1-5. With reference to Fig. 1, we label as pair No. 1
those which correspond to first neighbors between O(1)-
or Cu(1)-type sites along a chain, as well as those corre-
sponding to first neighbors in the planes between O(2)- or
Cu(2)-type sites, and along the x direction. Furthermore,
for each geometric arrangement, chains and planes, there
are two types of pairs, corresponding to the disordered
systems considered. For the case of the nonstoichiometric
alloy, we calculate nearest-neighbor interactions between
sites of O(1) type and between O(2)-type sites. Similarly,
for the Cu(1) and Cu(2) sites in the case of the Zn-doped
system. This clearly gives four different nearest-neighbor
interactions with label No. 1, the values of which are list-
ed in Table I. Analogous considerations apply to pairs la-
beled 2, 3, and 4. Interaction No. 5 represents the two in-
teractions that correspond to nearest-neighbors between
planes formed by O(2) sites in the case of the non-
stoichiometric alloy, and by Cu(2) sites in the Zn-doped
system.

Care has to be taken when discussing our results in
terms of the last paragraph in the first section and the
commonly used terminology for oxygen-vacancy ordering
in the Y-Ba-Cu-O system. This is because the lattice in
question is complex and gives rise to interactions that are

FIG. 1. The orthorhombic structure of YBa,;Cu3;O7 with the
notation of inequivalent sites used in the paper.

anisotropic, whereas the ordering tendencies mentioned
above are usually referred to a simple lattice.

The large negative first- and second-neighbor interac-
tions along the chain in the case of the disordered O(1)
sublattice as well as those along the x direction for the
disordered O(2) sublattice support a tendency towards
phase separation of the oxygen atoms and vacancies along
these directions. Even for a small vacancy content
creation of energetically preferred two-coordinated Cu(1)
or four-coordinated Cu(2) ions is probable as also dis-
cussed in Ref. 10. The small positive interchain effective
pair interactions could result in an ordering of the oxygen
atoms and vacancies between chains. For the case §=0.5,
this picture is consistent with the experimentally observed
existence of the ortho-II structure.

Figure 2 shows that the effective pair interaction on the
disordered O(1) sublattice for the nearest neighbors along
the chain varies moderately with respect to the vacancy
content &, while pairs of sites occupied by only vacancies,
oxygen atoms, or both contribute with varying magnitudes

TABLE 1. Effective pair interactions for YBa;Cu307-5 and YBax(Cui-xZn,)307. The column la-
beled by CPA denotes the different types of disordered cases under construction as explained in the text.

V# (mRy/atom)

Pairs®
CPA 1 2 3 4 5
Vacancies )
o(1) 6=0.1 —12.09 —3.59 0.11 0.00
0.3 —11.20 —1.86 0.15 —0.01
0.5 —10.07 —0.75 0.22 0.00
(0103} 5=0.1 —16.02 —0.86 0.41 0.48 8.88
0.3 —15.64 -0.39 0.33 0.29 9.00
0.5 —15.35 —0.08 0.24 0.14 9.22
Zn subst.
Cu(l) x=0.05 —0.34 0.40 0.06 —0.01
0.15 —0.42 0.31 0.02 —0.04
Cu(2) x=0.05 0.23 0.04 0.40 0.21 1.31
0.15 -0.31 —0.30 —0.17 —0.19

0.70

*The labeling of pairs is as follows. For O(1) or Cu(l): pair 1, first neighbor in chain; pair 2, second

neighbor in chain; pair 3, first interchain neighbor; pair 4, second interchain neighbor. For 0(2) or
Cu(2): pair 1, first neighbor in plane in x direction; pair 2, second neighbor in plane in x direction; pair
3, first neighbor in plane in y direction; pair 4, second neighbor in plane in y direction; pair 5, first inter-

plane neighbor.
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FIG. 2. Effective pair interactions, V;?’(E) (solid line) as a
function of energy for the in-chain nearest neighbors of the
disordered O(1) sublattice in YBa;Cu3O7-5 The P10
Vipeve, and V2% contributions to ¥V (E) are displayed as
dashed, dotted, and dash-dotted curves, respectively. The Fermi
energy corresponding to the ordered system is indicated by 0.

to the effective interaction, Eq. (8), as the concentration
varies. Apparently, a small deviation of the Fermi energy
relative to the ordered case (see Refs. 13 and 14) does not
result in qualitative changes in V,-f-z). For small vacancy
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concentrations the creation of vacancy-vacancy pairs is
preferred throughout: oxygen-oxygen pairs have practi-
cally no effect and oxygen-vacancy pairs make merely a
small positive energetic contribution with respect to the
fully disordered state. In YBa,Cu;Os s the oxygen-oxygen
and vacancy-vacancy pairs have negative contributions of
the same order of magnitude, while the effect of the unlike
pairs seems to be negligible.

For the Zn-doped copper sublattices the effective pair
interactions are relatively small and— as can be seen from
Table I in the case of the disordered Cu(2) sublattice
-the sign can change with respect to the concentration.
Because of negative first-neighbor and positive second-
neighbor interactions along the chain for the doped Cu(1)
sublattice the ordering on this sublattice—if any— would
imply a much more complicated (ordered) structure than
that for the oxygen-vacancy system. Therefore the copper
sublattices substituted by Zn seem to remain statistically
disordered. Nevertheless the positive values for the inter-
planar pair interactions for the disordered Cu(2) sublat-
tice suggest a phase separation with respect to the plane
“sandwiches.”

In summary it can be said that the effective cluster in-
teractions are consistent with the onset of ortho-II struc-
ture in the nonstoichiometric Y-Ba-Cu-O system around a
6=0.5 vacancy content. Creation of isolated copper
atoms is also indicated in the low vacancy concentration
limit. For the Zn-doped system, however, a random dis-
tribution of Cu and Zn atoms seems to be more probable.
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