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Perpendicular transport in FeÕGe model heterostructures
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Based on the Kubo-Greenwood equation as formulated for layered systems, an approach is discussed that
allows us to separate the resistance of the current leads from that of the region whose resistance we wish to
calculate for current perpendicular to the plane of the layers. By applying this approach to Fe/Ge/Fe model
structures related to the parent lattice of bcc Fe we find that at least nine layers of the magnetic electrodes
should be considered as being part of the calculation in order to perform such a separation. With different
structures in the Ge spacer, we find that the concentration of vacancies plays a crucial role for the existence of
a sizeable magnetoresistance~MR!, while the actual structure in the spacer seems to be of less importance.
Depending on the type of structure and the number of spacer layers~in a typical regime of 6–21 layers! the
MR for ordered structure varies between 35% and 45%. Vacancy concentrations of more than 10%, however,
wipe out the MR completely. Interdiffusion at the Fe/Ge interfaces produces very similar effects.
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a
la

th

t

o
th

in

c
f
a

n
oss
an-

at

r-

tors
ga-
er
The

ws:
ite
t
t

.g.,

s-
nce
ns
I. INTRODUCTION

The Kubo formalism has been successfully applied to c
culate the magnetotransport properties of magnetic multi
ers when the current is in the plane of the layers~CIP!; for
this geometry the electric field is the same throughout
structure, and one can write1,2

rCIP5sCIP
21 , ~1!

where

sCIP5
1

LE E s~z,z8!dzdz8. ~2!

Heres(z,z8) is the conductivity that relates the current az
when the field is given atz8, wherez and z8 are along the
growth direction of the multilayer, andL is the overall length
of the structure for which the conductivity is calculated. F
perpendicular transport, i.e., current perpendicular to
plane of the layers~CPP!, the electric field is not uniform
from layer to layer, and there are several ways of proceed
One can use the Landauer-Bu¨ttiker or Caroli formalisms
which do not require one to know the electric fields at ea
point in the multilayer, or as the current is independent oz
in the steady state one can continue to use the Kubo form
ism by writing the resistivity as1,2,4

rCPP5
1

LE E r~z,z8!dzdz8, ~3!
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wherer(z,z8) is the inverse ofs(z,z8) as defined by

E s~z,z9!r~z9,z8!dz95d~z2z8!. ~4!

The sheet resistancer and resistanceR are then defined by
the relations

r 5AR5LrCPP5E E r~z,z8!dzdz8, ~5!

where A is the unit area. In the Caroli formalism one ca
calculate the resistance for a section of a multilayer acr
which one specifies the potential drop; however, in the L
dauer and Kubo formalisms the electric field must vanish
the layers which bound the section.5

The Kubo formalism for the conductivity has vertex co
rections that come from different sources,1,4 e.g., from re-
placing the impurity averages over two electron propaga
as the product of impurity averaged one-electron propa
tors, and from the varying electric fields from layer to lay
that enter when one drives currents across the layers.
latter type of vertex corrections are accounted for as follo
we start by inverting the conductivity relation so as to wr
the electric fieldE(z) at one point in terms of a two poin
resistivity functionr(z,z8) and the current at another poin
j (z8). For further discussions we refer the reader to, e
Ref. 4. In the steady state the current is independent ofz8,
and we account for this type of vertex correction by impo
ing current conservation for CPP, i.e., we find the resista
for perpendicular transport. The remaining vertex correctio
©2001 The American Physical Society29-1
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are similar to those encountered for CIP; while they are
ficult to determine for layered structures they have been
timated to be quite small in the few cases in which we ha
been able to calculate them.6,7

As we have used the Kubo formalism extensively for C
it is particularly convenient for us to use it for perpendicu
transport; the complication lies in inverting the two-poi
conductivity function. In particular it is unclear over wh
region ofz,z8,z9 one must perform the calculation to obta
a reliable estimate of the resistivity. Clearly one has to go
enough away from the section of a multilayered struct
whose resistance we are trying to calculate for the elec
fields arising from charge and spin accumulation to van
i.e., we should only splice the sample in whose resistance
are interested in regions where the electric field due to
accumulation vanishes. To achieve this one wants to kn
the following: ~1! How many layers of lead material have
be considered in the self-consistent solution of the electro
structure to accurately determine the charge and spin re
tribution ~the Madelung potentials! arising from the varying
electronic properties of the layers?~2! How many layers of
lead material have to be considered in the calculation
transport properties~the size of the conductivity matrix to b
inverted! so as to properly account for the charge and s
accumulation when the current is driven across the reg
with the charge and spin redistribution so as to obtain a
sistance that is independent of the number of lead lay
chosen. Therefore, we have to determine how many laye
include in a Kubo calculation to be sure one has included
the layers with charge and spin redistribution and curr
driven accumulations in the section of a multilayer who
resistance we are calculating, so that the electric field v
ishes across the layers bounding the outer layers of the
tion. We call this the problem of separating or splicing t
leads from the ‘‘disordered region’’;5 it is present in any kind
of Landauer-Bu¨ttiker-type or related approach, just as well
in supercell approaches that make use of three-dimensi
periodicity.

Here we will resolve this question for perpendicular tran
port in metallic multilayers, where the problem of separat
the region of interest from the leads enters. For tunnel ju
tions one immediately knows how to do this separation a
one can calculate the resistance of the barrier~spacer! layer
separately from the electrodes, because the resistance o
barrier is overwhelmingly larger than that of the electrod
In other words the resistors in series model is applicable
tunnel junctions, while it should not be applieda priori to
metallic multilayers. The spacer we have chosen, Ge, is
tallic for the thicknesses, the structure, and the lattice c
stant we use; however, for other structures and lattice s
ings Ge can be semiconducting. For this reason we use
term ‘‘heterostructure,’’ which is associated with semico
ductors, rather than ‘‘multilayers,’’ which is associated w
metals. Thus, in addition to the problem of knowing wh
part of the leads to include, there are two additional proble
that should be addressed for spacer materials which are
tatively semiconductors, namely~a! the actual structure o
the spacer material, and~b! the degree of interdiffusion at th
interfaces. For metal-semiconductor heterostructures, so
18442
-
s-
e

r

r
e
ic
,
e
e
w

ic
is-

f

n
n
-

rs
to
ll
t

e
n-
c-

al

-
g
c-
d

the
.
r

e-
-
c-
he
-

t
s
u-

e-

times called tunnel junctions, very little is known about t
actual structure of the barrier region. The few studies t
addressed this question~see for example Ref. 8!, mostly
stated that an amorphous layer of ‘‘semiconductor mater
was deposited or produced. Future theoretical investigat
may shed some light on the question whether a 10–20
thick layer of Si, Ge or GaAs really deserves the label se
conductor~and therefore tunnel junction! or not, i.e., whether
there is a~‘‘local’’ ! gap between valence and conducti
bands for such thin barriers. It should be noted that as lon
the actual structure in such spacer materials is unknown,
assumed crystal structure can only serve as a model: a
erostructure does not simply consist of a combination of t
bulk materials.

In this paper we describe a practical scheme for calcu
ing the resistance for perpendicular transport across a m
lic heterostructure~multilayer! that can account for interdif-
fusion at interfaces and alloying in both the electrodes a
the spacer parts of the structure. In all cases investigated
fully relativistic spin-polarized screened Korringa-Koh
Rostoker method9–11 was applied in the context of the~inho-
mogeneous! coherent potential approximation~CPA! for lay-
ered systems12 to obtain local-density-approximatio
effective potentials and effective exchange fields se
consistently. These in turn were used as input for the elec
transport calculations, which also are based on a relativi
spin-polarized approach13 and the CPA. For all transport ca
culations reported in here the occurring surface Brilloui
zone ~SBZ! integrations were carried out using 1830i
points in the irreducible part of the SBZ.14

II. THEORETICAL APPROACH

In the following the conductivity tensors(z,z8) as de-
fined in Eq.~2! is mapped (f :) onto the (zz components of
the! conductivity tensor for a layered system,12 s i j (n),i , j
51,n, with i and j denoting planes of atoms, such that t
algebraic structure as defined by Eq.~4! is conserved~see in
particular the scheme displayed in Fig. 1!. Clearly enough
the sheet resistancer then serves as measure (g:) for the
mappingf, since according to the Cauchy convergence cr
rion, the integral in Eq.~5! can be replaced by a sum, i.e., b
r (n), if and only if

ur 2 lim
n→`

r ~n!u,D, nPN1 ~6!

FIG. 1. Mapping of the two-point conductivity onto thezzcom-
ponent of the conductivity tensor for a layered system.
9-2
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or

ur ~n1m!2r ~n!u,D, n,mPN1, ~7!

whereD is an infinitesimal small number.
Since for technical reasons (k-space integrations, surfac

Green’s function, etc.! the elements of thes i j (n) matrix12

can only be calculated using a small imaginary partd to the
Fermi energy, the sheet resistance for a given magnetic
figurationC is defined by

r ~C;n!5 lim
d→0

r ~C;n;d!, ~8!

where

r ~C;n;d!5 (
i , j 51

n

r i j ~C;n;d!. ~9!

In addition to this sheet resistance layer-resolved sheet r
tancesr i(n) can be defined

r i~C;n;d!5(
j 51

n

r i j ~C;n;d!. ~10!

This qualitatively relates the electric field in layeri to the
steady state current~CPP! which is independent of the laye
index j. It should be noted, however, that onlyr (C;n;d) in
Eq. ~9! is well defined. The layer-resolved sheet resistan
are useful illustrative quantities in pursuing the quest
from which part of a layered system the main contributio
to the sheet resistance of a given magnetic configura
arise.

As the sheet resistancer (C;n;d) depends on both the
number of layersn and the imaginary part of the Fermi en
ergy d in the following the properties ofr (C;n;d) with re-
spect to these two parameters are first investigated for ho
geneous metallic systems~the lead part of a heterostructur!
and only then for heterostructures.

A. Homogeneous metallic systems„leads…

1. Layer dependence

In principle, for a large enoughn (n>n0) and ~because
of! a given imaginary partd of the complex Fermi energy
eF1 id, the corresponding sheet resistancer (C;n;d) can be
thought to vary linearly withn,

k1~C;d!5
r ~C;n1m;d!2r ~C;n;d!

m
, m,nPN1, ~11!

i.e., the following relation can be assumed:

r ~C;n;d!5r 0~C;d!1nk1~C;d!, ~12!

with r 0(C;d) being the value of the linear form defined b
Eq. ~11! at n50.

In the top part of Fig. 2 the sheet resistancer (C;n;d) for
bcc Fe(100)/Fen /Fe(100) is shown for three values ofd by
varying n in terms of N2m, N545, wherebyC trivially
refers to the ferromagnetic configuration. As can be seen
n>9, r (C;n;d) indeed vary linearly withn. According to
18442
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this part of Fig. 2,n0 ought to be at least 9 in order to yiel
a linear behavior. The rapid falloff forn,n0 reflects the fact
that the size of thes i j (C;n;d) matrix to be inverted become
too small: for n51 only a diagonal element, namel
s i i (C;n) survives. In the lower part of Fig. 2 the extrapol
tion defined in Eq.~12! is performed numerically forn0<n
<45, n0512.

In Fig. 3 again the variation ofr (C;n;d) with n5N2m is
shown—this time, however, by comparing the values o
tained from different starting valuesN. As can be seen for
n5N2m.n0 one obtains the same linear behavior forN
545 and 60. The reason for this independence fromN can be
read off from the lower part of Fig. 3, where the correspon
ing layer-resolved sheet resistances@see Eq.~10!#, are dis-
played: in the very interior of the system
Fe(100)/FeN /Fe(100) these quantities are virtually consta
Large variations only occur in the first and last nine layer

2. Dependence on the imaginary part of the Fermi energy

Investigating now for a given value ofn the dependence
of r (C;n;d) with respect tod one can see from the top o
Fig. 4 thatr (C;n,d) also varies linearly ind:

FIG. 2. Top: Variation of the sheet resistancer (C;n;d) for fer-
romagnetic bcc Fe(100)/Fen /Fe with respect ton for three values
of the imaginary partd of the Fermi energy. Bottom: Numerica
extrapolation~full line! of the linear regime of the sheet resistan
r (C;n;d) for ferromagnetic bcc Fe(100)/Fen /Fe. r 0(C;d) and
k1(C;d) refer to the value ofr (C;n;d) at n50 and the slope, re-
spectively.R is the quality of fitting.
9-3
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k2~C;n!5
1

n

r ~C;n;d2!2r ~C;n;d1!

D
, D5d22d1 ,

~13!

i.e.,

r ~C;n;d!5r 0~C;n!1ndk2~C;n!, ~14!

where as will become clear in a moment the const
k2(C;n) is chosen to be normalized per layer.

Now combining Eqs.~12! and ~14!, one obtains

r 0~C;d!5r 0~C;n!1nF~d!, ~15!

where

F~d!5dk2~C;n!2k1~C;d!. ~16!

By taking the limit ofd→0 it is easy to see that demandin

r 0~C;n!5 lim
d→0

r 0~C;d! ~17!

in turn implies that

lim
d→0

k1~C;d!50, ~18!

sincedk2(C;n) trivially vanishes ford→0. In the lower part
of Fig. 4,k1(C;d) is linearly extrapolated tod50. As can be
seen,k1(C;d) indeed tends to zero ford→0. The very small
remainder of 0.003.10215 V m2 of k1(C;d) at d50 has to

FIG. 3. Top: Variation of the sheet resistancer (C;n;d), where
d52 m Ry, for ferromagnetic bcc Fe(100)/Fen /Fe with respect to
n5N2m for N545 and 60. Bottom: Layer-resolved shee
resistancesr (C;n;d) for n545 and 60.
18442
t

be regarded as the numerical error of the applied proced
Furthermore, the slope ofk1(C;d) with respect tod is very
close to the value ofk2(C;n). Assuming for a moment tha
F(d);0 yields an approximate relation between the tw
slopesk1(C;d) andk2(C;n),

dk2~C;n!;k1~C;d!. ~19!

3. Resistivity and boundary condition at n\`

From Eqs.~12! and ~17! it follows that for n>n0

lim
d→0

r ~C;n1m;d!5r 0~C;n![r 0~C!, m,nPN1, ~20!

which, however, is nothing but the Cauchy convergence
terion for the sheet resistance demanded in Eq.~7!:

lim
d→0

@r ~C;n1m;d!2r ~C;n;d!#50, m,nPN1, n>n0 .

~21!

Quite clearly, sincer 0(C) is a constant, for a pure metal b
performing the limitn→` this leads to a correct resistivit
rCPP(C),

FIG. 4. Top: Variation ofr (C;n;d) for Fe(100)/Fe45/Fe with
respect tod. The linear fit is shown as a full line. Bottom: Variatio
of k1(C;d) with respect tod for the same system.R refers to the
quality of fitting.
9-4
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rCPP~C!5 lim
n→`

F r 0~C!

L G5
r 0~C!

d
lim
n→`

1

n
50, ~22!

where d is the interplanar distance. For a substitutiona
disordered alloyr (C;n;d) has to vary with respect ton in the
following manner@also see Eq.~12!#:

r ~C;n;d!5r 0~C;d!1n@k1~C;d!1 k̄1~C;d!#, n>n0 ,
~23!

where

k̄1~C!5 lim
d→0

k̄1~C;d! ~24!

is simply the resistivity caused by disorder. In gene
rCPP(C) is therefore given by

rCPP~C!5
1

d
lim
d→0

H lim
n→`

r ~C;n;d!

n J . ~25!

B. Heterostructures

Since the case of pure leads was discussed in quite s
detail, the case of heterostructures, e.g., of the t
Fe(100)/FenXsFen /Fe(100), whereX is the spacer elemen
is almost trivial, provided the leads and the spacer share
same parent lattice. Forn>n0 and a given value ofd the
sheet resistancer (C;2n1s;d) varies linearly with respect to
n:

k1~C;d!5
r „C;2~n1m!1s;d…2r ~C;2n1s;d!

2m
,

m,n,sPN1, n>n0 , ~26!

i.e.,

r „C;2~n1m!1s;d…5r ~C;2n1s;d!12mk1~C;d!.
~27!

The relevant part of the heterostructure is therefore sim
defined by the condition that by using a finited for n>n0 the
sheet resistance starts to grow linearly inn, i.e.,

r ~C;2n01m1s!5 lim
d→0

r ~C;2n01s;d!, m,n,sPN1

~28!

remains constant with respect tom. It should be noted tha
the necessity to use a finite imaginary part of the Fermi
ergy, which at the beginning seemed to be like an unwan
complication, turns out to be of practical importance in t
case of heterostructures since the number of lead layers
to be increased only until the described linear behavio
reached.

The magnetoresistance ratio of the relevant part of
heterostructure is then defined by

R5
r ~AP;2n01s!2r ~P;2n01s!

r ~AP;2n01s!
, ~29!

and can be approximated by
18442
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R~d!5
r ~AP;2n01s;d!2r ~P;2n01s;d!

r ~AP;2n01s;d!
, ~30!

whereP andAP refer to the parallel and antiparallel mag
netic configurations, respectively. Assuming for a mom
that k2(AP;2n01s);k2(P;2n01s) @see Eq.~14!#, implies
that

R.R~d!. ~31!

III. APPLICATIONS TO Fe ÕGe HETEROSTRUCTURES

All calculations reported here refer to a bcc pare
lattice15 with a lattice spacing corresponding to that of bcc
(a057.27 a.u.). In Table I we show the composition
three kinds of Fe/Ge heterostructures we have studied
using the CPA.12

System A:12 layers of a homogeneous alloy of Ge a
vacancies~Vac!, (GecVac12c), sandwiched between 12 lay
ers of Fe matched to bcc Fe leads. For the case of a pur
spacer we also vary the number of Ge layers.

System B:In this type of system the spacer is 15 laye
thick and consists of alternating (GecVac12c) and
(Ge12cVacc) layers, such that forc51 pure vacuum layers
are at the interfaces with the Fe electrodes, i.e., only ev
second plane is a plane of Ge atoms, while every other p
is empty~Vac!. By varying the Ge concentration in the inte
val 0.5<c<1 one can follow physical properties from a st
tistically disordered spacer atc50.5 to the completely or-
dered case atc51.

System C:Again 15 spacer layers are considered, but n
only every other layer is an alloyed plane of Ge and vac
cies, while the remaining spacer layers are empty~pure va-
cancy planes!. By varying the Ge concentration one can tra
the change in physical properties when the planes contai
Ge are separated by twice the interlayer distance of bcc

TABLE I. Investigated systems.

System A System B System C

Homogeneous Interdiffusion and Alloying an
alloying ordering ordering

bcc bulk Fe bcc bulk Fe bcc bulk Fe
Fe12 Fe12 Fe12

GecVac12c Ge12cVacc Vac
GecVac12c GecVac12c GecVac12c

GecVac12c Ge12cVacc Vac
GecVac12c GecVac12c GecVac12c

A A A
A A A
GecVac12c GecVac12c GecVac12c

GecVac12c Ge12cVacc Vac
GecVac12c GecVac12c GecVac12c

GecVac12c Ge12cVacc Vac
Fe12 Fe12 Fe12

bcc bulk Fe bcc bulk Fe bcc bulk Fe
9-5



io

en
th

el
ve
ia
ro
on

po
c

r

ea
t
d
e

6
r
of

ding
her
m,

ast
eet
this

of

Fe-
ach

of
a

tal,
he
he
is-

er

int

wer
the

P. WEINBERGER, L. SZUNYOGH, C. BLAAS, AND C. SOMMERS PHYSICAL REVIEW B64 184429
At c50.5 on the average only every second atomic posit
is occupied by Ge. Clearly enough forc51 one recovers the
ordered structure of system B.

A. Layer dependence of the Madelung potentials

In Fig. 5 we show the layer-dependent Madelung pot
tials of the first 12 Fe layers neighboring the Ge spacer in
heterostructure: Fe~100!/Fe12Ge9Fe12/Fe. From the enlarged
scale at the bottom of this figure we see that the ‘‘Fried
oscillations into the interior of the electrodes extend o
more than nine Fe layers. It is these Madelung potent
which tell us about the redistribution of charge in our hete
structure. Therefore in order to include these small variati
in the charge density the number of layersN0 to be deter-
mined self-consistently should be at least nine whenever
sible. Figure 5 thus answers the first question posed in Se
namely, the question of how many lead layers (N0) have to
be considered in terms of the underlying electronic structu

B. Layer dependence of the sheet resistance

Figure 6 shows the sheet resistancer (C;2n1s;d) for the
heterostructure Fe(100)/FenGesFen /Fe, d52 m Ry, s59,
with respect to the number of Fe layersn for the parallel
~top! and the antiparallel magnetic configuration~bottom!.
As can be seen from this figure for both configurations lin
behavior inn sets in forn>9. In terms of electric transpor
the minimum number of lead layers that has to be include
therefore at leastn059 ~the second question raised in th

FIG. 5. Layer-resolved Madelung potentials for the Fe lay
next to the Fe/Ge interface in bcc Fe(100)/Fe12Ge9Fe12/Fe. The
bottom figure shows the oscillations of the Madelung potentials
the interior of the Fe leads on an enlarged scale.
18442
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introduction!. It should be noted that the slopes in Fig.
normalized per Fe layer are very close to the value fod
52 m Ry in Fig. 2. This again demonstrates the validity
our approach.

For the heterostructure corresponding tos59 andn518,
in Fig. 7 the layer-resolved sheet resistances correspon
to the parallel magnetic configuration are displayed toget
with the corresponding quantities for the pure Fe syste
Fe(100)/Fe45/Fe. Here one can see that in the first and l
nine layers of the heterostructure the layer-resolved sh
resistances are very close to those in pure Fe. Comparing
figure with the bottom part of Fig. 3 reveals that the origin
the linear behavior ofr (C;2n1s;d) with respect ton>n0 is
the same as for the lead part only. However, since in the
only system the Madelung potentials are exactly zero in e
layer, n0 and N0 ~see Sec. III! are in general different and
have to be determined independently.

The layer-resolved sheet resistancer i(C;n;d) in Fig. 7 is
about five times larger in the Ge spacer than in the bulk
the Fe layers. We can conclude that while bcc Ge with
lattice constant of Fe is more resistive than a good me
there is no indication that the conduction is not metallic. T
other notable feature in Fig. 7 is the oscillations of t
r i(C;n;d) about the Fe/Ge interface. While the total res
tance must be positive, the negativer i indicate regions where

s

o

FIG. 6. Variation of the sheet resistancer (C;n;d), d52 m Ry,
for bcc Fe(100)/FenGesFen /Fe, d52 m Ry, s59, with respect to
n. The upper panel refers to the parallel configuration, and the lo
to the antiferromagnetic configuration. Dashed lines indicate
extrapolation of the linear regime ton50.
9-6



s
tr
r o

en

, f

i
o
le
n
p

ul
ie
o

cer
er

the

the

ied
of

,

of
is in-

PERPENDICULAR TRANSPORT IN Fe/Ge MODEL . . . PHYSICAL REVIEW B 64 184429
the electric field opposes~slows down! CPP transport so a
to maintain steady-state current across the entire heteros
ture. In all the cases reported in the following, the numbe
Fe lead layers is fixed ton05N0512, which definitely meets
both requirements, and an imaginary part of the Fermi
ergy of d52 m Ry is used.

C. Magnetoresistance in FeÕGe heterostructures

For all three types of systems~see Fig. 8!, one and the
same conclusion can be drawn: a sizableR(d) can be ex-
pected only very close to the ordered structures, namely
c>0.9. The reason for this strong dependence of theR(d)
ratio on the vacancy concentration becomes evident by
specting Fig. 9: the sheet resistance for the antiparallel c
figuration, which is quite a bit larger than that for the paral
configuration forc51, immediately drops as soon as vaca
cies are present. Below 90% Ge both sheet resistances,
allel and antiparallel, have the same values. This partic
feature applies to all three types of systems we have stud

In the upper panel of Fig. 10 we show the variation
R(d) for Fe/Fe12GesFe12/Fe with respect to the numbers of

FIG. 7. Layer-resolved sheet resistancer i(C;n;d), d52 m Ry,
for bcc Fe(100)/Fe18Ge9Fe18/Fe, d52 m Ry. As a comparison
the case for Fe(100)/Fe45/Fe ~full line! is shown.
e
s.

er
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e
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f

Ge layers. As can be seen by going from 6 to 21 spa
layersR(d) varies between about 45% and 35%; in the low
part of Fig. 10 the variation of the R(d) of
Fe/FenGe9Fen /Fe with respect to the number ofn Fe layers
considered to be part of the electrodes is displayed.Grosso
modo, it can be stated that for a given ordered structure,
magnetoresistance is rather insensitive ton as long as there
are at least 2–3 such layers considered to be part of
heterostructure.

In addition to the cases listed in Table I, we also stud
the effect of interdiffusion at the Fe/Ge interface in terms
the system:

FIG. 8. Calculated magnetoresistance for the three types
spacer considered, see Table I. The number of spacer layers
dicated,d52 m Ry.
Fe~100!/Fe11/~FecGe12c!/~Fe12cGec!/Ge10/~Fe12cGec!/~FecGe12c!/Fe11/Fe
f-
or-

ag-
i.e., by interdiffusing those two layers in th
Fe(100)/Fe12Ge12Fe12/Fe system that form the interface
The top part of Fig. 11 shows the sheet resistancesr (C;2n
1s;d) for these kinds of systems with respect to the int
diffusion concentrationc; in the lower part the correspondin
magnetoresistance~MR! is displayed. As can be seen, th
-

effect of interdiffusion is almost dramatic: only 5% interdi
fusion halves the magnetoresistance characteristic for the
dered system. As in all other cases shown~see Figs. 8 and 9!,
the immediate drop ofr (AP;2n1s;d) in the presence of
interdiffusion causes this effect.

Finally we want to address the question of where the m
9-7
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netoresistance comes from. For this purpose one can d
the following layer-resolved magnetoresistancesRi(d) ratio,

Ri~d!5
1

r ~AP;2n1s;d!

3@r i~AP;2n1s;d!2r i~P;2n1s;d!#, ~32!

which, of course, summed over the layer indexi yieldsR(d).
In Fig. 12 these layer-resolved magnetoresistances are sh
for the system Fe(100)/Fe12GesFe12/Fe, s512 and 21. As
can be seen from this figure the magnetoresistance es
tially arises from the first 3–4 Fe layers next to the spac
the contributions from the spacer part of the system
rather small. This confinement of the CPP MR to a few
layers next to the interface is similar to that found for C
MR; among other things it explains very nicely both parts
Fig. 10; i.e., the decrease of the MR as we increase eithe
number of spacer or electrode layers.

IV. CONCLUSION

In this paper we studied perpendicular, or CPP, trans
in metallic heterostructures in terms of the Kubo-Greenwo
approach for layered systems in a fully relativistic sp
polarized mode. We first dealt with a description of how

FIG. 9. Calculated sheet resistances for the three types of sp
considered, see Table I. Squares and circles refer to the paralle
antiparallel configuration, respectively. The number of spacer la
is indicated,d52 m Ry.
18442
ne

wn

en-
r,
e
e
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d
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subtract the resistance of the leads from the structure its
There are two different issues one needs to delineate:~1!
How many layers of lead material have to be considered
the self-consistent solution of the electronic structure to
curately determine the charge and spin redistribution~the
Madelung potentials! arising from the varying electronic
properties of the layers. As seen from the oscillations of
layer-resolved Madelung potentials into the interior of t
leads~see Fig. 4!, we showed the necessity to include abo
N059 layers of the electrode material next to the met
nonmetal interface.~2! How many layersn0 of lead material
have to be considered in the calculation of transport prop
ties ~the size of the conductivity matrix to be inverted! so as
to properly account for the charge and spin accumulat
when the current is driven across the region with the cha
and spin redistribution so as to obtain a resistance tha
independent of the number of lead layers chosen.

For a proper splicing of the region of interest from th
leads one has to do it in a region where the electric field
to the redistribution effects vanishes. This problem is co
mon to the Kubo and Landauer approaches when they
used to describe metallic conduction across interfaces w
the attendant charge and spin accumulation; therefore,

cer
nd
rs

FIG. 10. Top: Variation of the magnetoresistance in b
Fe(100)/Fe12GesFe12/Fe with respect to the number of Ge layerss.
Bottom: Variation of the magnetoresistance in b
Fe(100)/FenGe9Fen /Fe, N518, with respect ton. In both entries,
d52 m Ry.
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now have a prescription for calculating CPP magnetotra
port in magnetically layered structures. Our approach of
ing the Kubo formalism for CPP has the advantage over
Landauer-Bu¨ttiker formalism, as we can use CPA to de
with defect scattering, in particular interdiffusion at the i
terfaces. While the Kubo formalism entails vertex corre
tions they are no more important~worrisome! than those
entering CIP. The problem of current driven accumulat
does not present itself in magnetic tunnel junctions as
current density is extremely small compared to that in m
tallic structures; for this reason the Caroli formalism, whi
is able to calculate the resistance for any part of a struct
was used in our recent paper on tunneling conductance.3

The sheet resistances we calculated for the Fe/Ge he
structures are in part due to our using a finite imaginary p
(d) of the Fermi energy. Clearly enough, for a restrict
number of well-defined systems one can numerically p
form thed→0 limit; see, e.g., Fig. 3. For the large numb
of different systems shown in Figs. 7–10 this is not possi
at the present time, and is perhaps also of less interest s
in the first place only characteristic~qualitative! features with
respect to system parameters such as thickness depende
interdiffusion, interlayer distances, etc., matter.

For the three types of Fe/Ge heterostructures we stud
existence of a sizable MR; as few as 5% vacancies cause
MR ratio to plummet. This corresponds also to the interd
fusion study shown in Fig. 10. With different structures

FIG. 11. Parallel and antiparallel sheet resistancer (C;n;d) ~top!
and R(d) for interdiffused bcc Fe(100)/Fe12Ge12Fe12/Fe, d
52 m Ry.
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the bcc~100! Ge spacer, we find that the concentration
vacancies plays a crucial role for the existence of a siza
magnetoresistance, while the actual structure in the sp
seems to be of less importance. This was demonstrate
particular in terms of layer-resolved magnetoresistanc
which proved that the magnetoresistance effect is essent
confined to 3–4 Fe layers next to the spacer.

This paper provides a method for calculating the CPP
sistances and MR in metallic multilayered structures; it u
the results obtained for the conductivity in the direction
layer growth, and shows how to properly invert them to o
tain resistances. For the spacer used and the thicknesses
sidered our results are not very relevant to any experime
on ‘‘real’’ tunnel junctions as the conductions seems to
main metallic across the spacer layer, at least for spa
thicknesses up to 21 ML. Furthermore, since Fig. 12 s
gests that the magnetoresistance is mainly caused by th
terfaces, the actual structure in the interior of the spacer
seems to be perhaps less important than generally belie
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