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Perpendicular transport in Fe/Ge model heterostructures

P. Weinberger
Center for Computational Materials Science, TU Wien, Getreidemarkt 9/158, A-1060 Wien, Austria

L. Szunyogh
Center for Computational Materials Science, TU Wien, Getreidemarkt 9/158, A-1060 Wien, Austria
and Department of Theoretical Physics, Budapest University for Technology and Economics, Bud@fdié21 Budapest, Hungary

C. Blaas
Center for Computational Materials Science, TU Wien, Getreidemarkt 9/158, A-1060 Wien, Austria

C. Sommers
Laboratoire de Physique des Solides, UnivérsiéeParis-Sud, 91405 Orsay Cedex, France
(Received 7 December 2000; revised manuscript received 12 July 2001; published 22 October 2001

Based on the Kubo-Greenwood equation as formulated for layered systems, an approach is discussed that
allows us to separate the resistance of the current leads from that of the region whose resistance we wish to
calculate for current perpendicular to the plane of the layers. By applying this approach to Fe/Ge/Fe model
structures related to the parent lattice of bcc Fe we find that at least nine layers of the magnetic electrodes
should be considered as being part of the calculation in order to perform such a separation. With different
structures in the Ge spacer, we find that the concentration of vacancies plays a crucial role for the existence of
a sizeable magnetoresistan®@R), while the actual structure in the spacer seems to be of less importance.
Depending on the type of structure and the number of spacer léiyeastypical regime of 6-21 layershe
MR for ordered structure varies between 35% and 45%. Vacancy concentrations of more than 10%, however,
wipe out the MR completely. Interdiffusion at the Fe/Ge interfaces produces very similar effects.
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I. INTRODUCTION wherep(z,z") is the inverse otr(z,z') as defined by

The Kubo formalism has been successfully applied to cal-
culate the magnetotransport properties of magnetic multilay-
ers when the current is in the plane of the laygP); for : . ,
this geometry the electric field is the same throughout th%r:aerzlr;eotnrseswtanaeand resistanc® are then defined by
structure, and one can writé

f o(2,2")p(Z2",2")dZ'=6(z—2"). (4)

pc|p:(7'6|lp, (1) r:AR:chpp:J f p(Z,Z’)dZdi, (5)

where where A is the unit area. In the Caroli formalism one can
1 calculate the resistance for a section of a multilayer across

_= 2.7')dzdZ. 2 which one specifies the potential drop; however, in the Lan-
Ter LJ J o ) @ dauer and Kubo formalisms the electric field must vanish at

. o the layers which bound the sectidn.
Hereo(z,2') is the conductivity that relates the currentzat The Kubo formalism for the conductivity has vertex cor-

when the field is given at’, wherez andz’ are along the rections that come from different sourcee.g., from re-
growth direction of the multilayer, andis the overall length placing the impurity averages over two electron propagators
of the stfucture for which 'Fhe conductivity is cal_culated. Foras the product of impurity averaged one-electron propaga-
perpendicular transport, i.e., current perpendicular to thgors, and from the varying electric fields from layer to layer
plane of the layersCPP), the electric field is not uniform  hat enter when one drives currents across the layers. The
from layer to layer, and there are several ways of proceedinggtter type of vertex corrections are accounted for as follows:
One can use the LandauertBker or Caroli formalisms \ye start by inverting the conductivity relation so as to write
wh_ich_ do not require one to know the eltlectlric fields at eachpe electric fieldE(z) at one point in terms of a two point
point in the multilayer, or as the current is independent of |egistivity functionp(z,z') and the current at another point
in the steady state one can continue to use the Kubo formahzf). For further discussions we refer the reader to, e.g.,
ism by writing the resistivity as* Ref. 4. In the steady state the current is independemt of
and we account for this type of vertex correction by impos-
:EJ j (2,2')dzd? 3) ing current conservation for CPP, i.e., we find the resistance
PcrP™ PLs ’ for perpendicular transport. The remaining vertex corrections
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are similar to those encountered for CIP; while they are dif-
ficult to determine for layered structures they have been es
timated to be quite small in the few cases in which we have| | fo(z, 2")o(2", 2') = 6(z — #)

been able to calculate thei. T
As we have used the Kubo formalism extensively for CIP Lt N9

it is particularly convenient for us to use it for perpendicular Jg: | )= _f_;lpz.j(n)

transport; the complication lies in inverting the two-point 2=

conductivity function. In particular it is unclear over what || #u(%); () fio(z,2) = 0y(n)

region ofz,z’,z" one must perform the calculation to obtain
a reliable estimate of the resistivity. Clearly one has to go far
enough away from the section of a multilayered structure
whose resistance we are trying to calculate for the electric FIG. 1. Mapping of the two-point conductivity onto tlae com-
fields arising from charge and spin accumulation to vanishponent of the conductivity tensor for a layered system.

i.e., we should only splice the sample in whose resistance we , ) L

are interested in regions where the electric field due to thdmes called tunnel junctions, very little is known about the
accumulation vanishes. To achieve this one wants to knov@ctud! structure of thg barrier region. The few studies that
the following: (1) How many layers of lead material have to addressed this questiosee for ex‘?mpl_e Ref.)8 mostly .-
be considered in the self-consistent solution of the electronigtated that an amorphous layer of “semiconductor material
structure to accurately determine the charge and spin rediyvas deposited or produced. Future _theoretlcal investigations
tribution (the Madelung potentiaigarising from the varying My shed some light on the question whether a 10-20 A
electronic properties of the layeré?) How many layers of thick layer of Si, Ge or GaAs re_ally c_jeserves_the label semi-
lead material have to be considered in the calculation ofonductor@nd therefore tunnel junctiolr not, i.e., whether
transport propertieghe size of the conductivity matrix to be there is a(‘local” ) gap between valence and conduction
inverted so as to properly account for the charge and Sp"pands for such thin barners. It should be noteq that as long as
accumulation when the current is driven across the regiof’® actual structure in such spacer materials is unknown, any

with the charge and spin redistribution so as to obtain a re2SSumed crystal structure can only serve as a model: a het-

sistance that is independent of the number of lead |ayergrostructure does not simply consist of a combination of two

chosen. Therefore, we have to determine how many layers fUlk materials.

include in a Kubo calculation to be sure one has included all !N this paper we describe a practical scheme for calculat-
the layers with charge and spin redistribution and current"9 the resistance for perpendicular transport across a metal-

driven accumulations in the section of a multilayer whosellc heterostructurémultilayen that can account for interdif-
fusion at interfaces and alloying in both the electrodes and

resistance we are calculating, so that the electric field van - _
ishes across the layers bounding the outer layers of the selle spacer parts of the structure. In all cases investigated the

tion. We call this the problem of separating or splicing the Ul reIativisti%%siﬁ)in-polarizgd screened Korringa-Kohn-
leads from the “disordered regiorPit is present in any kind 0Stoker methad ™ was applied in the context of tHeho-

of Landauer-Bttiker-type or related approach, just as well asMgeneouscoherent potential approximati¢@PA) for lay-

in supercell approaches that make use of three-dimension&[€d systents _to obtain local-density-approximation
periodicity. effective potentials and effective exchange fields self-

Here we will resolve this question for perpendicular trans-consistently. These in turn were used as input for the electric

port in metallic multilayers, where the problem of Separatingtransport c;alculations, which also are based on a relativistic
larized approathand the CPA. For all transport cal-

the region of interest from the leads enters. For tunnel juncSP!N-PO ( \ rca
tions one immediately knows how to do this separation angulations reported in here the occurring surface Brillouin—
one can calculate the resistance of the bafspacey layer ~ 20N€ (SBZ) integrations were carried out using 1830 k
separately from the electrodes, because the resistance of tRRINtS in the irreducible part of the SBZ.

barrier is overwhelmingly larger than that of the electrodes.

In other words the resistors in series model is applicable for Il. THEORETICAL APPROACH

tunnel junctions, while it should not be appliedpriori to In the following the conductivity tensow(z,z') as de-

metallic multilayers. The spacer we have chosen, Ge, is me;, : ; .
: ) P2 ined in Eq.(2) is mapped {:) onto the ¢z components of
tallic for the thicknesses, the structure, and the lattice CONga a.(2) pped {:) € P

ant h o other struct q la ) conductivity tensor for a layered systéfg;(n),i, ]
stant we use, nowever, for other structures and latlice spac- 1,n, with i andj denoting planes of atoms, such that the

|tngs Gﬁ ;:an t;e Sfm'c,fmdhl.]crt_:n.g' For th'i rgasg;g We use tl;L;ﬂgebraic structure as defined by Ed) is conservedsee in
erm “heterostructure,” which 1S associated wi Semlcon'particular the scheme displayed in Fig. Clearly enough

ductors, rather than “multilayers,” which is associated with the sheet resistangethen serves as measurg: for the

metals. Thus, in addition to the problem of knowing what : : . L
part of the leads to include, there are two additional problem%1 oipalr?eg:,n?elgigl ?ﬁ?(;?é)n g;g E)heergsl;z% (t:)?/nz?\/ii?rﬁnfg Crk')t;
that should be addressed for spacer materials which are pp(n)’ if and only if T

tatively semiconductors, namel®@) the actual structure of
the spacer material, arft) the degree of interdiffusion at the Ir—limr(n)|<A, neN* (6)
interfaces. For metal-semiconductor heterostructures, some- n—oo

S riln)ons(n) = 6 9 () = 1(n)
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or 3.0
—&—5=1mry
[r(n+m)—r(n)|<A, n,meN*, (7) 25] |—e—s-2my -
S —B—3 = 3mry 'l'
whereA is an infinitesimal small number. = 204 ‘._..o-".
. . . . . P
Since for technical reason&-6pace integrations, surface mC} o
Green’s function, etg.the elements of ther;(n) matrix*? o  1.51 ,,M"
can only be calculated using a small imaginary pgato the ht
Fermi energy, the sheet resistance for a given magnetic con- __ 1.0
figurationC is defined by "2.
=~ 0.51
r(C:n)=limr(C;n;é), (8) o
5—0 ~ 0.0 i
(@) 0 10 20 30 40 50
where 3.0
n ® 3=3mry:
che S — (- —_ r,(C;0) = 1.14324
r(C;n;o) iJZ:l pij(C;n;d). 9) T 25| | ionooum
. R =0.9999
In addition to this sheet resistance layer-resolved sheet resis- mO}
tancesr;(n) can be defined o 2.0
n s
r(Cn;8)=2, piy(Cin;d). (10 S 15 = ooy
j=1 c : 1,(C33) = 1.14204
This qualitatively relates the electric field in layeto the o ';;(ff_)g;g%ozzgg
steady state curref€PP which is independent of the layer = 10l . . : :
index . It should be noted, however, that ont¢C;n; ) in 6 10 20 30 40 50
Eq. (9) is well defined. The layer-resolved sheet resistances (b) n, number of Fe layers

are useful illustrative quantities in pursuing the question

from which part of a layered system the main contributions FIG. 2. Top: Variation of the sheet resistandg;n; 8) for fer-

to the sheet resistance of a given magnetic configuratioromagnetic bcc Fe(100)/F&-e with respect ta for three values

arise. of the imaginary parts of the Fermi energy. Bottom: Numerical
As the sheet resistanagC;n;5) depends on both the extrapolation(full line) of the linear regime of the sheet resistance

number of layersy and the imaginary part of the Fermi en- r(C;n;é) for ferromagnetic bcc Fe(100)/FAe. rq(C;6) and

ergy & in the following the properties of(C:n; ) with re-  Ki(C; ) refer to the value of (C;n;6) atn=0 and the slope, re-

spect to these two parameters are first investigated for homgPectively.R is the quality of fitting.

geneous metallic systentthe lead part of a heterostructure

and only then for heterostructures. this part of Fig. 2n, ought to be at least 9 in order to yield
a linear behavior. The rapid falloff far<<n, reflects the fact

A. Homogeneous metallic system@leads that the size of ther;;(C;n; §) matrix to be inverted becomes

1. Layer dependence too small: for n=1 only a diagonal element, namely

o;;(C;n) survives. In the lower part of Fig. 2 the extrapola-
In principle, for a large enough (n=n,) and(because tjon defined in Eq(12) is performed numerically fony<n
of) a given imaginary part of the complex Fermi energy <45 ny=12.
erti6, the corresponding sheet resistam¢€;n; 6) can be In Fig. 3 again the variation af(C;n; §) with n=N—m is
thought to vary linearly wittn, shown—this time, however, by comparing the values ob-

[(C:n+m: 8) = (C:n: ) tained from different starting valued. As can be seen for

ky(C; 8)= . mpneN*, (11) N=N-m>n, one obtains the same linear behavior for
m =45 and 60. The reason for this independence fidoan be
i.e., the following relation can be assumed: read off from the lower part of Fig. 3, where the correspond-
ing layer-resolved sheet resistandsse Eq.(10)], are dis-
r(C;n;8)=ry(C;8)+nky(C;6), (12) played: in the very interior of the systems

_ ) ) ] Fe(100)/Fg/Fe(100) these quantities are virtually constant.
with ro(C; 6) being the value of the linear form defined by | grge variations only occur in the first and last nine layers.
Eqg. (11) atn=0.

In the top part of Fig. 2 the sheet resistam¢é;n; 5) for L )
bee Fe(100)/Fg/Fe(100) is shown for three values fby 2. Dependence on the imaginary part of the Fermi energy
varying n in terms of N—m, N=45, wherebyC trivially Investigating now for a given value of the dependence
refers to the ferromagnetic configuration. As can be seen foof r(C;n;§) with respect tos one can see from the top of
n=9, r(C;n;d) indeed vary linearly withn. According to  Fig. 4 thatr(C;n, d) also varies linearly ins:
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p=2my ] (©n) = 1.25119
—  25- —e—n=45-m 1(Cin) = 1.25
NE —o—n =60 -m Eru.u—“’“'crD 3.0+ k,(C:n) = 0.01011
. — R = 0.9998
;g 2.0 NE. 1
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151 2
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0.00
FIG. 3. Top: Variation of the sheet resistard@;n; 5), where

5=2 mRy, for ferromagnetic bcc Fe(100)/F&e with respect to 05 00 05 1.0 1.5 20 25 3.0 35 40

n=N-m for N=45 and 60. Bottom: Layer-resolved sheet- & [mry]
resistances(C;n; 6) for n=45 and 60.
FIG. 4. Top: Variation ofr(C;n; ) for Fe(100)/Fgs/Fe with
o 1) = 1r(C;n;63)—r(C;n; o1) B respect to3. The linear fit is shown as a full line. Bottom: Variation
2(Cn)= n A » A=8=6, of ky(C; 8) with respect tos for the same systenR refers to the
(13) quality of fitting.
€., be regarded as the numerical error of the applied procedure.
F(CiN: 8)=To(C:N)+NSky(C:N) (14) Furthermore, the slope & (C; ) with respect tod is very

close to the value ok,(C;n). Assuming for a moment that
where as will become clear in a moment the constantp(s5)~0 yields an approximate relation between the two
k,(C;n) is chosen to be normalized per layer. slopesk,(C; 8) andk,(C:n),
Now combining Eqs(12) and(14), one obtains

Fo(C;8)=ro(C:n)+nd( &), (15) Ska(Cin) ~ka(C;9). (19
where 3. Resistivity and boundary condition at-» «
D(8)=5k,(C;n) —K4(C; 5). (16) From Eqgs.(12) and(17) it follows that forn=nq
By taking the limit of —0 it is easy to see that demanding limr(C;n+m;8)=ry(C;n)=ry(C), m,neN*, (20
ro(C;n)=1limry(C; ) (17 o0
6-0 which, however, is nothing but the Cauchy convergence cri-

in turn implies that terion for the sheet resistance demanded in(&g.

limk,(C;8)=0, (18) lim[r(C;n+m;8)—r(C;n;8)]=0, mneN*, n=n,.

6—0 6—0
21
since 5k, (C;n) trivially vanishes for6—0. In the lower part @Y

of Fig. 4,k.(C; 8) is linearly extrapolated té=0. As can be  Quite clearly, sincey(C) is a constant, for a pure metal by
seenk;(C; 8) indeed tends to zero fa¥—0. The very small  performing the limith—c this leads to a correct resistivity
remainder of 0.003.10° Q m? of ky(C;8) at =0 has to  pcpp(C),
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0] re(0) 1 TABLE I. Investigated systems.
pCPP(C): lim L = d mﬁzo! (22)
n—oe n—o System A System B System C
where d is the interplanar distance. For a substitutionally|_|Omogeneous Interdiffusion and Alloying and
disordered alloy (C;n; ) has to vary with respect toin the  5jjoying ordering ordering
following mannerfalso see Eq(12)]:
[(C;n;8)=ro(C;8)+n[ky(C;8) +ke(C;8)],  n=ny, ﬁc" bulk Fe bee bulk Fe bee bulk Fe
(23 Fei Fei,
GeVac, Ge,_Vag Vac
where GeVac, Ge.Vac, GeVac, .
GeVac, . Ge _.Vac, Vac

ki(€) = limky(C; ) (29 Gevag . Gevag, . Gevac, .
6-0 : : :

is simply the resistivity caused by disorder. In general: : :
pcep(C) is therefore given by GeVac, _ GeVac, _ GeVag, .

1 ((C:n: ) GeVac, . Ge _.Vac Vac
pepp(C)==lim! lim ——-1. (25  G&Vat ¢ GeVac, ¢ Ge.Vac
ds o noe GeVac, Ge,_Vag Vac
Fer, Fer, Fer,
bce bulk Fe bce bulk Fe bce bulk Fe

B. Heterostructures

Since the case of pure leads was discussed in quite some
detail, the case of heterostructures, e.g., of the type [ (AP;2ny+5:8)— 1 (P:2no+S; 5)
Fe(100)/FgXsFe,/Fe(100), whereX is the spacer element, R(6)= - - ,
is almost trivial, provided the leads and the spacer share the r(AP:2no+s;9)
same parent lattice. Far=n, and a given value of the  \yhere? and AP refer to the parallel and antiparallel mag-
sheet resistancg(C;2n+s; 6) varies linearly with respect to netic configurations, respectively. Assuming for a moment

(30

n: thatk,(AP;2ng+s)~ky(P;2ng+s) [see Eq(14)], implies
kl(c;é):r(C;Z(n+m)+s;5)—r(C;2n+s;5), that
2m R>R(S). (31)
mn,seN*, n=n, (26)

_ Ill. APPLICATIONS TO Fe /Ge HETEROSTRUCTURES
ie.,
All calculations reported here refer to a bcc parent
r(C;2(n+m)+s;8)=r(C;2n+s; ) +2mky(C; ). lattice™® with a lattice spacing corresponding to that of bcc Fe
(27)  (ap=7.27 a.u.). In Table | we show the composition of

The relevant part of the heterostructure is therefore simpl hr_ee kinds of Fe/Ge heterostructures we have studied by

2
defined by the condition that by using a finddor n=ng the sing the CP_'&'
sheet resistance starts to grow linearlyniri.e., System A12 layers of a homogeneous alloy of Ge and

vacanciegVac), (Ge,Vac,_.), sandwiched between 12 lay-

r(C;2ng+m+s)=limr(C;2ny+s;8), m,n,seN* ers of Fe matched to bcc Fe leads. For the case of a pure Ge
50 spacer we also vary the number of Ge layers.
(28 System Bin this type of system the spacer is 15 layers

remains constant with respect ta It should be noted that thick and consists of alternating (@éc,_c) and

the necessity to use a finite imaginary part of the Fermi en(Gel_cVacc) layers, such that foc=1 pure vacuum layers

ergy, which at the beginning seemed to be like an unwante'e at the inte_rfaces with the Fe electrO(_jes, i.e., only every
complication, turns out to be of practical importance in thesecond plane is a plane of Ge atoms, while every other plane

case of heterostructures since the number of lead layers hgsempty(Vac). By varying the Ge concentration in the inter-

to be increased only until the described linear behavior ié(al.o'5$0§1 one can follow physical properties from a sta-
reached. tistically disordered spacer at=0.5 to the completely or-

The magnetoresistance ratio of the relevant part of théjer(ad case a1=:.L. .
heterostructure is then defined by System CAgain 15 spacer layers are considered, but now
only every other layer is an alloyed plane of Ge and vacan-
r(AP;2ng+s)—r(P;2ny+s) cies, while the remaining spacer layers are en{ptyre va-
= (AP 2no+s) : (29 cancy planes By varying the Ge concentration one can trace
the change in physical properties when the planes containing
and can be approximated by Ge are separated by twice the interlayer distance of bcc Fe.

184429-5



P. WEINBERGER, L. SZUNYOGH, C. BLAAS, AND C. SOMMERS PHYSICAL REVIEW &4 184429

0.05 4.0
_®
0.00{o—0—-0—-0—9-0-—-9-0-9-®
= a 3.51 .o
-0.05 3 £ o®*®
= ©
£ & & o*®
-0.101 o 3.0 ._...
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= 2.5
FIG. 5. Layer-resolved Madelung potentials for the Fe layers 50

next to the Fe/Ge interface in bcc Fe(100)/48s,Fe,/Fe. The 0 2 4 6 8 10 12 14 16 18
bottom figure shows the oscillations of the Madelung potentials int
9 gp nto n, number of Fe layers

the interior of the Fe leads on an enlarged scale.
FIG. 6. Variation of the sheet resistanog’; n; ), 6=2 mRy,
At ¢=0.5 on the average only every second atomic positiorior bcc Fe(100)/FgGeFe,/Fe, 5=2 mRy, s=9, with respect to
is occupied by Ge. Clearly enough for=1 one recovers the n. The upper panel refers to the parallel configuration, and the lower
ordered structure of system B. to the antiferromagnetic configuration. Dashed lines indicate the
extrapolation of the linear regime to=0.

A. Layer dependence of the Madelung potentials introduction. It should be noted that the slopes in Fig. 6

In Fig. 5 we show the layer-dependent Madelung potennormalized per Fe layer are very close to the value for
tials of the first 12 Fe layers neighboring the Ge spacer in thee2 MRy in Fig. 2. This again demonstrates the validity of
heterostructure: F&00)/Fe ,GeyFe;,/Fe. From the enlarged ©OuUr approach.
scale at the bottom of this figure we see that the “Friedel” For the heterostructure correspondingste9 andn=18,
oscillations into the interior of the electrodes extend overn Fig. 7 the layer-resolved sheet resistances corresponding
more than nine Fe layers. It is these Madelung potentialé0 the parallel magnetic configuration are displayed together
which tell us about the redistribution of charge in our hetero-With the corresponding quantities for the pure Fe system,
structure. Therefore in order to include these small variation§€(100)/Fgs/Fe. Here one can see that in the first and last
in the charge density the number of layétg to be deter- nine layers of the heterostructure the layer-resolved sheet
mined self-consistently should be at least nine whenever pogesistances are very close to those in pure Fe. Comparing this
sible. Figure 5 thus answers the first question posed in Sec. figure with the bottom part of Fig. 3 reveals that the origin of
name|y, the question of how many lead |aye|N;OX have to the linear behavior OIf(C;2n+s; 5) with respect taa=ng is
be considered in terms of the underlying electronic structurethe same as for the lead part only. However, since in the Fe-
only system the Madelung potentials are exactly zero in each
layer,ng and Ny (see Sec. Il are in general different and
have to be determined independently.

Figure 6 shows the sheet resistam¢€; 2n+s; 6) for the The layer-resolved sheet resistamg@’;n; 6) in Fig. 7 is
heterostructure Fe(100)/FeeFe,/Fe, 6=2 mRy, s=9, about five times larger in the Ge spacer than in the bulk of
with respect to the number of Fe layeansfor the parallel the Fe layers. We can conclude that while bcc Ge with a
(top) and the antiparallel magnetic configuratidoottom).  lattice constant of Fe is more resistive than a good metal,
As can be seen from this figure for both configurations lineathere is no indication that the conduction is not metallic. The
behavior inn sets in forn=9. In terms of electric transport other notable feature in Fig. 7 is the oscillations of the
the minimum number of lead layers that has to be included is;(C;n; §) about the Fe/Ge interface. While the total resis-
therefore at leashy=9 (the second question raised in the tance must be positive, the negatiyéndicate regions where

B. Layer dependence of the sheet resistance

184429-6
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FIG. 7. Layer-resolved sheet resistamg@;n; 5), =2 mRy, s=15 System C
for bcc Fe(100)/FgpGeyFeg/Fe, =2 mRy. As a comparison, 407
the case for Fe(100)/gg Fe (full line) is shown. — 304
S [ ]
the electric field opposeslows down CPP transport so as = 20+ /
to maintain steady-state current across the entire heterostruc- T 104
ture. In all the cases reported in the following, the number of
Fe lead layers is fixed o= Ny= 12, which definitely meets 0 e—————m—
both requirements,.and an imaginary part of the Fermi en- 05 06 07 08 09 10
ergy of 6=2 mRy is used. ¢, concentration of Ge

C.M ¢ ist in FeGe het truct FIG. 8. Calculated magnetoresistance for the three types of
- vagnetoresistance in € heterostructures spacer considered, see Table I. The number of spacer layers is in-

For all three types of systen{see Fig. 8 one and the dicated,5=2 mRy.

same conclusion can be drawn: a sizaBlg5) can be ex- Ge layers. As can be seen by going from 6 to 21 spacer

pected only very close to the ordered structures, namely, fqfayersR( 6) varies between about 45% and 35%; in the lower

020.9. The reason for this strong dependence prhé) _part of Fig. 10 the variation of theR(3) of

ratio on the vacancy concentration becomes evident by 'nFe/FquJqu/Fe with respect to the number ofFe layers

specting Fig. 9: the sheet resistance for the antiparallel consgnsidered to be part of the electrodes is displagosso

figuration, which is quite a bit larger than that for the parallel ,5qq it can be stated that for a given ordered structure, the

configuration forc=1, immediately drops as soon as vacan-magnetoresistance is rather insensitivetas long as there

cies are present. Below 90% Ge both sheet resistances, pgjre at least 2-3 such layers considered to be part of the

allel and antiparallel, have the same values. This particulageterostructure.

feature applies to all three types of systems we have studied. |n addition to the cases listed in Table I, we also studied
In the upper panel of Fig. 10 we show the variation ofthe effect of interdiffusion at the Fe/Ge interface in terms of

R(6) for Fe/Fg,GeFe,/Fe with respect to the numbsof  the system:

Fe(100)/Fey;/(Fe.Ge )/ (Fe, - G&)/Geyl (Fe - Ge&,)/(Fe.Ge _.)/Fe; /Fe

i.e., by interdiffusing those two layers in the effect of interdiffusion is almost dramatic: only 5% interdif-
Fe(100)/Fe,Ge Fe,/Fe system that form the interfaces. fusion halves the magnetoresistance characteristic for the or-
The top part of Fig. 11 shows the sheet resistam¢€s2n  dered system. As in all other cases shdsee Figs. 8 and)9
+s;6) for these kinds of systems with respect to the inter-the immediate drop of (AP;2n+s;8) in the presence of
diffusion concentratior; in the lower part the corresponding interdiffusion causes this effect.

magnetoresistancéViR) is displayed. As can be seen, the  Finally we want to address the question of where the mag-
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¢, concentration of Ge

FIG. 9. Calculated sheet resistances for the three types of spacer ] L h ) in b
considered, see Table I. Squares and circles refer to the parallel and FIG. 10. Top: Variation of the magnetoresistance in bcc

antiparallel configuration, respectively. The number of spacer Iayerge(loo)/F?ZG%FeﬁlFe with respect to the number of Ge _Iayers
is indicated,5=2 mRy. Bottom:  Variation of the magnetoresistance in bcc

Fe(100)/FgGeyFe, /Fe,N=18, with respect ta. In both entries,
6=2 mRy.

netoresistance comes from. For this purpose one can define
the following layer-resolved magnetoresistanBess) ratio,
subtract the resistance of the leads from the structure itself.
R(8)= There are two different issues one needs to delingabe:
! r(AP;2n+s; ) How many layers of lead material have to be considered in
the self-consistent solution of the electronic structure to ac-
X[ri(AP;2n+s;8) —ri(P;2n+s;6)], (32 curately determine the charge and spin redistributitre

which, of course, summed over the layer indgields R(5). Madelu.ng potentiajs arising from the varying el_ectronic
In Fig. 12 these layer-resolved magnetoresistances are showfPPerties of the layers. As seen from the oscillations of the
for the system Fe(100)/F&SeFe;,/Fe, s=12 and 21. As layer-resolved Madelung potentials into the interior of the
can be seen from this figure the magnetoresistance essdf@ds(see Fig. 4, we showed the necessity to include about
tially arises from the first 3—4 Fe layers next to the spacerNo=9 layers of the electrode material next to the metal-
the contributions from the spacer part of the system aréonmetal interface(2) How many layers, of lead material
rather small. This confinement of the CPP MR to a few Fehave to be considered in the calculation of transport proper-
layers next to the interface is similar to that found for Clp!ies (the size of the conductivity matrix to be inverjesb as
MR; among other things it explains very nicely both parts oft© properly account for the charge and spin accumulation

Fig. 10; i.e., the decrease of the MR as we increase either tphen the current is driven across the region with the charge
number of spacer or electrode layers. and spin redistribution so as to obtain a resistance that is

independent of the number of lead layers chosen.
For a proper splicing of the region of interest from the
leads one has to do it in a region where the electric field due
In this paper we studied perpendicular, or CPP, transpotto the redistribution effects vanishes. This problem is com-
in metallic heterostructures in terms of the Kubo-Greenwoodnon to the Kubo and Landauer approaches when they are
approach for layered systems in a fully relativistic spin-used to describe metallic conduction across interfaces with
polarized mode. We first dealt with a description of how tothe attendant charge and spin accumulation; therefore, we

IV. CONCLUSION
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FIG. 12. Layer-resolved magnetoresistan€®(C;n;éd), &
FIG. 11. Parallel and antiparallel sheet resistar{cen; 5) (top) =2 mRy, for the parallel configuraton of bcc
and R(9) for interdiffused bcc Fe(100)/kgGeFe,/Fe, §  Fe(100)/FgGeFe,/Fe (top) and bcc Fe(100)/E6eyFe,/Fe
=2 mRy. (top). Squares refer to Fe layers, and circles to Ge layers.

now have a prescription for calculating CPP magnetotransthe bcc(100) Ge spacer, we find that the concentration of
port in magnetically layered structures. Our approach of usyacancies plays a crucial role for the existence of a sizable
ing the Kubo formalism for CPP has the advantage over thenagnetoresistance, while the actual structure in the spacer
Landauer-Bttiker formalism, as we can use CPA to deal seems to be of less importance. This was demonstrated in
with defect scattering, in particular interdiffusion at the in- particular in terms of layer-resolved magnetoresistances,
terfaces. While the Kubo formalism entails vertex correc-which proved that the magnetoresistance effect is essentially
tions they are no more importaritvorrisome than those confined to 3—4 Fe layers next to the spacer.
entering CIP. The problem of current driven accumulation  This paper provides a method for calculating the CPP re-
does not present itself in magnetic tunnel junctions as theistances and MR in metallic multilayered structures; it uses
current density is extremely small compared to that in methe results obtained for the conductivity in the direction of
tallic structures; for this reason the Caroli formalism, whichjayer growth, and shows how to properly invert them to ob-
is able to calculate the resistance for any part of a structurgain resistances. For the spacer used and the thicknesses con-
was used in our recent paper on tunneling conductdnce. sidered our results are not very relevant to any experiments
The sheet resistances we calculated for the Fe/Ge heteren “real” tunnel junctions as the conductions seems to re-
structures are in part due to our using a finite imaginary parinain metallic across the spacer layer, at least for spacer
(6) of the Fermi energy. Clearly enough, for a restrictedthicknesses up to 21 ML. Furthermore, since Fig. 12 sug-
number of well-defined systems one can numerically pergests that the magnetoresistance is mainly caused by the in-
form the 5— 0 limit; see, e.g., Fig. 3. For the large number terfaces, the actual structure in the interior of the spacer part
of different systems shown in Figs. 7—10 this is not possibleseems to be perhaps less important than generally believed.
at the present time, and is perhaps also of less interest since

in the first place only characteristaqualitati\_/e) features with ACKNOWLEDGMENTS
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