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Electronic theory of Bloch walls in ferromagnets
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Bloch walls are treated on the basis of the relativistic spin-density functional theory in the local density
approximation. We implement the proposed theory and determine the Bloch wall thickness in bcc Fe. More-
over, we study the features of the electronic structure, such as the variations of the density of states and of the
magnetic moments, which arise due to the presence of the Bloch wall.
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I. INTRODUCTION

Domains of different magnetic orientations spontaneou
nucleate in all magnetic materials in order to minimize t
magnetostatic energy~dipolar interaction! of the system.
These domains are separated by domain or Bloch w
where the magnetization is changing over, rapidly, from o
orientation to an other. In this paper we shall develop a t
oretical account of these transition regions in terms of mo
electrons and their spins, that is to say from first principl

The understanding and control of the domain structu
magnetic morphology, is central to the effective use of m
netic materials in many technologies.1 Moreover, the nature
shape, and motion of Bloch walls have always attracted f
damental scientific interest.2–8 Nevertheless, all the theoret
cal discussions so far, of the entire subject, have been str
phenomenological. In the present paper we wish to lay
foundation of a first-principles approach to the problem.

To start with a tractable problem, henceforth, we sh
focus on that of a single Bloch wall. Note that while i
width, l BW;10– 1000 nm, is much larger than the latti
spacinga, it is the smallest of all the other length scales su
as the sizes of the domains, 1 – 1000mm, and the magnetic
texture,.0.1 mm, etc. in the problem. Thus, by deployin
our first-principles methodology, designed to treat variatio
in properties on the length-scalea, to Bloch wall problems,
we are making the natural choice of crossing the smal
scale gap first.

The established theory of Bloch walls is a topic
micromagnetics7 and it is wholly phenomenological. It con
sists of the equations of Landau and Lifshitz4 as generalized
by Brown.8 For clarity and easy future reference, we su
marize here the part of this theoretical framework relevan
our present concern. In short, the magnetization densit
described by the vector fieldMW (rW,t), which evolves in time
according to the Landau-Lifshitz equation,

]MW

]t
5

2mB

\
MW 3

dF @MW #

dMW
, ~1!

wheremB is the Bohr magneton,\ is the Planck constant an
F @MW # is a generalized free-energy functional ofMW (rW,t).
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For our present purposes it will be sufficient to take t
F @MW # to be given by the usual Ginzburg-Landau expansi

F @MW #'E drWHA(
i 51

3

u¹W Mi u21 (
i , j 51

3

Bi j M iM j

1 (
i , j ,k,l 51

3

Bi jkl M iM jMkMl1 . . . J , ~2!

where i and j refer to Cartesian axesx,y, and z, and the
coefficientsA, Bi j , and Bi jkl are material specific param
eters which depend on such thermodynamic variables
temperature,T, and pressure,p. Evidently, the equilibrium
magnetization,MW eq , which minimizesF @MW # is a stationary
solution of Eq.~1!. The simplest Bloch wall like solution o
these equations follow from parametrizing the Cartes
componentsMi in terms of spherical coordinatesu and f
~see Fig. 1!

M x5M0 cosf sinu, M y5M0 sinf sinu,
~3!

M z5M0 cosu,

whereM0 is a constant equal to the saturation magnetizati
and stopping the expansion in Eq.~2! at the 4th order. For a
cubic system @Bi j 50 and Bi jkl 5d i j dkl(B1(12d ik)
1B2d ik)] this means

F~u,f!5E $a@„¹W u~rW !…21sin2u~rW !„¹W f~rW !…2#

1b@sin2u~rW !cos2u~rW !

1sin4u~rW !sin2f~rW !cos2f~rW !#%drW, ~4!

where the coefficients are defined asa5AM0
2 and b

52(B12B2)M0
4, respectively, and a trivial constant ter

has been dropped. Takingu5p/2 andf a function of thez
coordinate only, Eq.~4! reduces to

F~f!5E $a@¹W f~rW !#21b sin2f~rW !cos2f~rW !%drW. ~5!
©2001 The American Physical Society23-1
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It can be readily shown9 that, subject to the boundary cond
tions f(2`)50 andf(`)5p/2, the function

f~z!5arctan eA
b
az ~6!

minimizesF(f) in Eq. ~5!. In what follows we shall study
this simple example of a 90° Bloch wall from the point
view of mobile electron whose spin gives rise to such m
netic configuration.

Given the success and the general satisfaction with
established phenomenological theory outlined above
may, at this stage, protest that such microscopic consi
ations are not needed. To answer this objection we shall
pause briefly to argue the case to the contrary. In the inte
of economy we present our arguments as a list of brief st
ments:

~a! Firstly, the phenomenological theory assumes t
MW (z) rotates asz goes from2` to ` without a change in
magnitude. A first-principles theory should tell us if an
when this is true.

~b! Because, as yet, experiments cannot tell
otherwise,10 the phenomenological theory accepts the fo
of f(z) in Eq. ~6! as immutable. By contrast, the micro
scopic theory could discover situations~materials! where this
is not so. The same thing can be said about deviationsu
from p/2 as a function ofz or, indeed, thexy dependence o
both u andf.

~c! Of course, first-principles calculations not only yie
MW (rW) but also the changes in the electronic structure du
the deviation ofMW (rW) from its saturation value, namely th
presence of a Bloch wall. In other words, they describe
electronic structure which supports, consistent with, a Blo
wall. This information becomes available in the calculatio
we shall report.

~d! The change in the electronic states due to the prese
of a Bloch wall is, or can be viewed as a description of t
electron–Bloch wall interaction. Clearly, a study of this i
teraction will make an important contribution to understan

FIG. 1. Sketch of the spherical coordinates,u and f, as used
throughout in the paper.
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ing the widely observed magneto-transport phenomena a
ciated with electrons scattering off Bloch walls.11–14

~e! Inevitably, a magnetic inhomogeneity will distort th
underlying lattice and such distortions give rise to Blo
wall-Bloch wall interactions and pinning of Bloch walls b
lattice defects like impurities vacancies or grain boundarie1

Although we do not deal with the appropriate generalizat
of our first-principles approach, we wish to stress that it c
be readily adopted to address these issues and this possi
is an important part of the motivation for perusing it.

Finally, we comment on our choice of bcc iron as the h
to the Bloch wall in our calculations. As is well known th
saturation magnetic moment per atomms at T50 and the
effective momentmeff deduced from the Curie constant
measured atT.TC, for metallic ferromagnets are usuall
not the same. In fact, the deviation ofms/meff from 1 can be
taken as a good measure of how independent the local m
netic moments are from their relative orientation. Since b
iron is a famously good moment system, namelyms.meff ,
we expect the first-principles calculations to map optima
onto the phenomenological theory summarized by Eqs.~5!
and~6!. This is indeed what we find and we take this fact
a validation of our conceptual framework as well as our n
merical procedures for implementing it. The prize to pay
having done this ‘‘easy’’ case is that the importance of
the features listed above~a!–~e! are minimized. Thus, if we
disregard these interesting but small effects, our calculati
reduce to a different, if complicated, way of computing t
material dependent parameters, e.g., the spin-wave stiff
constanta and the anisotropy parameterb. As these are also
available from other types of first-principle
calculations,15–18the comparison of our results with those
others in the field is a useful exercise in its own right.

In the next section we shall describe the first-princip
theoretical framework, based on a relativistic, spin-polariz
density-functional theory, for our calculations. This is fo
lowed by a section describing the computational procedu
We shall present and discuss our results in Sec. IV, whe
in Sec. V. we shall evaluate the progress we have been
to make and the prospects of the microscopic approach
have advocated.

II. A FIRST-PRINCIPLES THEORY OF BLOCH WALLS

A fully relativistic density functional theory~DFT!,19,20

which includes the dipolar interaction between electro
would, presumably, yield an inhomogeneous ground s
with the domain structure determined by the size and sh
of the sample. Clearly, the corresponding calculations are
of the question and we shall follow the logic of the pheno
enological theory. Namely, we neglect the dipolar interact
and study a single Bloch wall engendered by the constr
that the magnetizationMW (rW) is oriented along two differen
easy axes atz→6`. This problem is readily encompasse
by the spin-polarized relativistic density functional theory
the local density approximation~LDA ! as usually applied in
solid-state physics.19,20 There are only two features of th
way we shall proceed which deserve further general co
ment. Firstly, we note that we shall not be looking for
3-2



st
m
v

o
on
lf-
y,
n
ow
o
s-

y

th
rs

se
th

ng
n

gy
,
t

op

rs

ig

-

o

ly

is

ill-
ch

ed
u-

a-

e-

ing
ula-

ELECTRONIC THEORY OF BLOCH WALLS IN FERROMAGNETS PHYSICAL REVIEW B63 104423
ground state, as usual, but a lowest-energy state consi
with a constraint which prescribes a symmetry different fro
the ground state. Fortunately, as it is well known, DFT co
ers this eventuality.19,20 Secondly, we shall not attempt t
address the vexing conceptual difficulties that arise in c
nection with imposing constraints while solving se
consistently the Kohn-Sham-Dirac equation of the theor21

but in this preliminary exploration of the subject impleme
our strategy in the simplest possible way as outlined bel

There is no reason to doubt that the established phen
enological theory9 in the introduction gets the essential phy
ics of the Bloch wall formation right. From the point of view
of formulating a first-principles version of this theory it ma
be summarized as follows: the changing orientation ofMW (z),
namely the variation off(z) in Eq. ~6!, across the Bloch
wall implies an exchange energy cost which is lower
slower the variation, whereas the anisotropy energy favo
rapid change from one easy direction,f50, to the other,
f5p/2, and the width of the transition region off(z) in
Eq. ~6!, l BW5pAa/b, is determined by the balance of the
two tendencies. Indeed, we can bypass the solution of
Euler-Lagrange equation, which in the case of minimizi
the free-energyF(f) in Eq. ~5! is the famous Sine-Gordo
equation whose solution isf(z) in Eq. ~6!, and takef(z) to
be a simple function,f0(z/L), which goes from 0 top/2 in
a distance ofL and minimize the corresponding free-ener
F(L) with respect to the widthL. As can be readily shown
by substitutingf0(z/L) into Eq.~5!, the free-energy per uni
cell yields

F~L !5aI 1A
1

L
1bI 2AL, ~7!

whereA is the area of the two-dimensional~2D! unit cell,
and

I 15E f08~j!2dj and I 25E sin2f0~j!cos2f0~j!dj.

~8!

Clearly, the first term in Eq.~7!, proportional to 1/L, is due
to the exchange interaction measured bya and the second
term, which is proportional toL and the constantb, repre-
sents the contribution of the magneto-crystalline anisotr
energy for cubic systems. Furthermore,F(L) reaches its
minimum at

Lmin[ l BW5AaI 1

bI 2
. ~9!

Given that I 1 and I 2 are simple dimensionless numbe
which parametrize the profilef0(z/L), this result agrees
well with the exact soliton solution forI 1 /I 2.p2.

Evidently, the above discussion suggests a rather stra
forward strategy for first-principles calculations:~a! assume
a profilef0(z/L), ~b! carry out a density functional calcula
tion for the magnetizationMW (z) constrained to follow the
profile f0(z/L) and calculate the total energy or grand p
tential V(L), ~c! and minimizeV(L) with respect toL.
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For the profile we shall always take the particular
simple choice

f0~j!5H 0 j,0

jp/2 0<j<1

p/2 j>1

, ~10!

which is compared to the soliton solution in Fig. 2. For th
function I 15p2/4 andI 251/8 and hence ifV(L) is given by
Eq. ~7!

V~L !5
Ap2

4
a

1

L
1

A

8
bL, ~11!

which implies l BW5A2pAa/b. Note that this Bloch wall
thickness isA2 times larger than that deduced from Eq.~6!.
Thus the Bloch wall thickness is to some extent an
defined concept in the present ‘‘prescribed profile’’ approa
to the problem. As will be clear presently, our calculat
V(L) can be fitted by the above functional form very acc
rately and hence it determines the coefficientsa andb from
first principles.

For orientation we note that via the Landau-Lifshitz equ
tion, Eq.~1!, the free-energy functional given in Eq.~5! im-
plies a spin-wave dispersion relation. In the long wav
length limit this yields

vq5
4bmB

M0
1

4amB

M0
q2, ~12!

thus, the spin-wave stiffness constant

D5
4amB

M0
, ~13!

and the usual cubic~fourth-order! anisotropy constant

FIG. 2. Comparison of the soliton solution, Eq.~6!, ~solid line!
and the linear magnetization profile, Eq.~10!, ~dashed line! used in
our calculations. The numeration of the layers and the partition
of the system into different regions as used in the actual calc
tions is also depicted on the picture.
3-3
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K45
ba3

2
. ~14!

As expected, in the presence of magneto-crystalline ani
ropy the spin-wave spectrum is gaped.

Without any account of dipolar interactions, in nonrelat
istic quantum mechanics the orientation of the magnetiza
is independent from the crystal axis. As is clear from t
above discussion, under this circumstance (b50) there is no
Bloch wall of finite width. Thus, our calculation ofV(L)
must include spin-orbit coupling which is the major sour
of magneto-crystalline anisotropy in transition metals22

Rather than treating the spin-orbit interaction in perturbat
theory, we use a fully relativistic spin-polarized density fun
tional theory.19,20

The natural variable in the microscopic theory is the m
netization averaged over a unit cell

mW i5E
Vi

d3rmW ~rW !, ~15!

where Vi is the volume of thei th unit cell. We may then
define the local orientationeW i by

eW i5mW i /mi , ~16!

wheremi denotes the length of the vectormW i . It is this ef-
fective local orientation that we wish to constrain to follo
the discrete version of the profile in Eq.~10!. Namely, we
assume thateW p is the same within an atomic plane with p
sition zp and take

eW p5cosfpx̂1sinfpŷ, ~17!

where for a 90° Bloch wall, which isN layer thick,

fp5p
p

2N
~p51, . . . ,N!. ~18!

Thus, we have to solve the Kohn-Sham-Dirac equation
DFT for the circumstance where the orientation of the m
netization,fp , is changing from layer to layer within a sla
of N atomic layers and is uniformally 0 andp/2 to the left
and right, respectively, of the slab as shown in Fig. 2. E
dently, the relativistic spin-polarized Screened-KK
method,23 which treats just such geometries, is ideal for tac
ling this problem. Fortunately, the code which impleme
this method scales linearly withN and, as we shall demon
strate presently, can handle 800–1000 layers with rea
available computer power.

III. THE COMPUTATIONAL METHOD

We performed calculations proposed in the previous s
tion by using the spin-polarized relativistic screen
Korringa-Kohn-Rostoker~SPR-SKKR! method.23 Although
the method is by now well-established~see also Refs. 24 an
25!, for completeness and since we also made developm
specific to the Bloch wall problem, we briefly outline ou
computational strategy. For an ensemble of individual sc
10442
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terers the multiple scattering theory~MST! yields the one-
electron Green function for an arbitrary complex energyz

and real space coordinatesrW, rW8

G~z;rW,rW8!5 (
QQ8

ZQ
n ~z,rWn!tQQ8

nm
~z!ZQ8

m
~z,rWm8 !†

2dnm(
Q

$JQ
n ~z,rWn!ZQ

n ~z,rWn8!†Q~r n2r n8!

1ZQ
n ~z,rWn!JQ

n ~z,rWn8!†Q~r n82r n!%, ~19!

wheren andm label two specific sites of position vectorsRW n

andRW n8 , while Q andQ8 denote pairs of angular momentu
quantum-numbers (k,m) and (k8,m8), respectively. The
functions ZQ

n (z,rWn) and JQ
n (z,rWn), regular and irregular a

rWn[rW2RW n50, respectively, are properly normalized sol
tions of the Kohn-Sham-Dirac equation related to a sing
finite-ranged potential well for which we now assume
spherically symmetric effective potential,Vn

eff(r ), and effec-
tive field, Bn

eff(r ), pointing along a local~positive! z coordi-
nate axis. In short,

„caW pW 1~b2I 4!mc21I 4Vn
eff~r !1bSzBn

eff~r !2zI4…

3H ZQ
n ~z,rW !

JQ
n ~z,rW !

J 50, ~20!

where

aW 5S 0 sW

sW 0
D b5S I 2 0

0 2I 2
D Sz5S sz 0

0 sz
D

I 45S I 2 0

0 I 2
D

with the usual Pauli matricessW and the two-dimensiona
unity matrix I 2. The numerical solution of the above equ
tion with a corresponding expression for the so-called sing
site t matrix was originally given in Refs. 26 and 27.
particular feature resulting from the approach they used
that, although thet matrix has necessarily off-diagonal ele
ments, no coupling between differentl values is present.

We further simplify the problem by adopting the atom
sphere approximation~ASA! in which the volume of the
sphere is taken equal to the volume of the correspond
Wigner-Seitz cell. Clearly, ASA deals with overlapping p
tentials which is, in strict sense, prohibited within the MS
however, mostly for inhomogeneous systems, this appro
is widely used, since on one hand it gives a better descrip
of the interstitial region than the muffin-tin approach, on t
other hand it is conceptually much simpler than a full pote
tial description. As implied above, our approach allows t
orientation of the magnetization to vary from site to site
required in the case of a Bloch wall where we keep
orientation to be constant within the atomic planes but le
rotate from layer to layer around the globalz direction.
3-4
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ELECTRONIC THEORY OF BLOCH WALLS IN FERROMAGNETS PHYSICAL REVIEW B63 104423
Therefore, in each layer there will be a rotationR, corre-
sponding tou5p/2 andf5fp @see Eq.~18!#, which relates
the t matrix in the local to that in the global coordinate sy
tem as follows

tglob~z!5D~R!t loc~z!D~R!†, ~21!

where D(R) denotes a matrix containing, block wise, th
irreducible representations ofR.

As the solution of the above single-site problem is re
tively easy and universal in applications of MST, the eva
ation of the scattering path operator~SPO!, tQQ8

nm (z) in Eq.
~19!, is, essentially, the main difficulty in such calculation
The geometrical arrangement of the scatterers involved
the system is put, in MST, into the so-called structure c
stants, GQQ8

nm (z)5GQQ8(z;RW n ,RW m) (Gnm(z)5$GQQ8
nm (z)%),

which for the relativistic case can be obtained by a trans
mation in terms of the Clebsh-Gordon coefficients from
nonrelativistic counterpart~see, e.g., Ref. 28!. By defining
the corresponding matrices having both site and angular
mentum indices28

t~z!5$tn~z!dnm%, G~z!5$Gnm~z!%, t ~z!5$tnm~z!%,

the SPO is given by the following matrix inversion

t~z!5@ t~z!212G~z!#21. ~22!

A particular problem arises from the fact thatGnm(z) is
long ranged, therefore, the inversion in Eq.~22! cannot be
directly performed. For a system with three-dimensional
riodicity the problem can be exactly handled by making u
of the lattice Fourier-transformation, which splits Eq.~22!

into the correspondingkW projections which has to be solve
in angular momentum space only. The Bloch wall proble
we deal with exhibits, however, two-dimensional~2D! peri-
odicity in the (x,y) plane, while in thez direction the trans-
lational symmetry is broken due to the variation of the o
entation of the magnetization. Thus employing 2D latt
Fourier-transforms

Gpq~z;kW i!5(
RW i

eıkW iR
W

iG~z;CW p1RW i ,CW q!, ~23!

wherep and q denote atomic layers, generated byCW p and
CW q , respectively,RW i are 2D lattice vectors andkW i is a vector
in the first 2D Brillouin-zone~BZ!, and the new matrix no-
tation in terms of layer indices

t~z!5$tp~z!dpq%, G~z;kW i!5$Gpq~z;kW i!%,

t~z;kW i!5$tpq~z;kW i!%,

one can write

t~z;kW i!5~ t~z!212G~z;kW i!!21. ~24!

Evaluating the matrix inversion in Eq.~24! is still de-
manding since the structure constants involved are l
ranged as far as the interlayer distances are concerne
order to render this problem tractable the concept
10442
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‘‘screening’’ has been introduced in the middle of th
nineties.25 Without going into details, a canonical transfo
mation of thet matrices and the structure constants, wh
leaves the Green function invariant, in terms of repuls
scattering potentials makes it possible to reduce the sp
range of the effective structure constants. As this transfor
tion is independent of the real scatterers in the system,
very useful to perform self-consistent calculations, since
has to be performed for the structure constants only onc
the beginning of calculation. In terms of the ‘‘screened
quantities Eq.~24! has exactly the same form. Howeve
sinceGpq(z;kW i) is now well localized, it can be truncated fo
up2qu.n at a givenn (.3 for fcc and bcc principal facets!,
which in turn implies a block-tridiagonal form for the matri
G(z;kW i). This blocks are related to the so-called ‘‘princip
layers’’ containingn subsequent atomic layers. By splittin
our system into left and right perfect semi-infinite su
systems, in each of them the scatterers are all ident
~bulk!, and into a central region, where the potentials as w
as the orientation of the magnetization can vary, the pro
tion of the SPO, Eq.~24!, onto the central region can b
calculatedexactly, i.e., taking into account all the scatterin
events to the left and right semi-infinite regions.24 A remark-
able feature of the method is that, if only the layer diago
blocks of the SPO need to be calculated, it scales line
with the size of the central region, namelyN.29 Thus it opens
the way for investigating systems with inhomogeneities
tending much beyond the atomic scales such as Bloch w

Let us now turn to the task of performing the Brillouin
zone integration

t nm~z!5E
VBZ

d2kie
2ıkW i(R

W
i2RW i8)t pq~z,kW i!, ~25!

where RW n5CW p1RW i and RW m5CW q1RW i8 , while VBZ denotes
the volume of the 2D BZ. In Ref. 23 we described a meth
for reducing the demand of the above BZ integration us
the symmetry operations of the underlying lattice. This
obviously useless for the present case of the 90° Bloch w
since the direction of the magnetization rotates from laye
layer, say, from thex axis to they axis, therefore the Bloch
wall itself is not invariant under any of the symmetry oper
tions of theC4v group characteristic to the BCC~001! BZ.

However, it is still useful to note that the magnetizatio
direction described by the anglef(z) in a 90° Bloch wall
perpendicular to the~001! direction of a BCC lattice and
satisfying the boundary conditionsf(2`)50 and f(`)
5p/2 has the symmetry property

f~z!2
p

4
52f~2z!1

p

4
. ~26!

Taking into account also the symmetry of the underlyi
lattice this implies that the Bloch wall is invariant under
180o rotation around the axis~110! which is in three dimen-
sional space represented by the matrix
3-5
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SBW5S 0 1 0

1 0 0

0 0 21
D , ~27!

whereby the axis of the rotation should cross thez axis atz
50, i.e., for whichf(0)5p/4. Quite clearly,SBW

215SBW .
Also evidently, the 2D square BZ is invariant underSBW .

To make use of this symmetry, letU be the unitary matrix
which representsSBW in the (k,m) space andp8 denote the
layer onto which a particular layerp is mapped bySBW .
Then for the corresponding single-sitet matrices we can
write

tp8~z!5Utp~z!U†. ~28!

By introducing

U5$Upq%, Upq[Udqp8 , ~29!

or alternatively, by taking the choice ofp852p,

U5S 0 0 U

. . . 0 U 0 . . .

U 0 0
D ~30!

it follows that

t~z!5Ut~z!U†. ~31!

A relationship between the 2D Fourier-transformed str
ture constants with argumentskW i andkW i85SBWkW i can also be
established using the transformation of the real-space s
ture constants

G~z;SBWRW ,SBWRW 8!5UG~z;RW ,RW 8!U†. ~32!

Therefore, by using Eq.~23! we can proceed as follows

Gp8q8~z;kW i!5(
RW i

eıkW iR
W

iU

3G~z;CW p1SBW~RW i2RW i
p
1RW i

q
!,CW q!U†

5(
RW i

eıkW i8RW iUG~z;CW p1RW i2RW i
p82RW i

q8 ,CW q!U†

5(
RW i

eıkW i8(RW i1RW i
p82RW i

q8)UG~z;CW p1RW i ,CW q!U†

5eıkW iR
W

i
p

UGpq~z;kW i8!U†e2ıkW iR
W

i
q

, ~33!

where we definedRW i
p
5SBWCW p2CW p8 andRW i

p85SBWRW i
p , both

being 2D lattice vectors. Thus, similar to Eq.~29!, introduc-
ing

Ũ~kW i!5$Ũpq~kW i!%, Ũpq~kW i![eıkW iR
W

i
p

Udqp8 , ~34!

Eq. ~33! can be written compactly

G~z,kW i!5Ũ~kW i!G~z,kW i8!Ũ~kW i!
†. ~35!
10442
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Clearly, the matrixŨ(kW i) can also be used instead ofU in
Eq. ~31!, which immediately implies the following transfor
mation property for the SPO

t~z,kW i8!5Ũ~kW i!
†t~z,kW i!Ũ~kW i!. ~36!

As the above relationship makes possible to calculate
SPO only in half of the BZ when performing the integratio
in Eq. ~25!, the computational time and memory storage
quest of the computer code can be reduced by a facto
two. Alternatively, in the actual calculations we have ma
use of the above symmetry of the Bloch wall by halving t
computational demand of the inversion in Eq.~24!, while
keeping all thekW i points in the BZ. Although, this latte
procedure is almost equivalent to what has been descr
above, as it facilitates the tridiagonal shape of the cor
sponding matrix,29 its use is rather limited to localized
schemes whereas the former one can be regarded to be
general for calculations in Bloch wall problems.

For our present purposes the one-electron Green func
Eq. ~19!, can be used to calculate several quantities of in
est such as the electronic density of states~DOS!

n~z!52
1

p
ImE d3r Tr@G~z;rW,rW !# ~z5«1ıd!, ~37!

where the energy« is real,d is a small imaginary part serv
ing as parameter of Lorentzian broadening, and Tr deno
trace of a matrix in the four-dimensional Dirac-space, t
charge density

r~rW !52
1

p
ImE

C
dz Tr@G~z;rW,rW !#, ~38!

whereC is a semicircle contour in the upper complex sem
plane starting at the bottom of the valence band,«B , and
ending at the Fermi energy,«F , and the spin-density

mW ~rW !52
1

p
ImE

C
dz Tr@bSW G~z;rW,rW !#. ~39!

Furthermore, the charge, the spin-moment and the band
ergy can be obtained straightforwardly as

Q5E
C
dzn~z!5E d3rr~rW !, ~40!

mW 5E d3rmW ~rW !, ~41!

and

Eb5E
«B

«F
d««n~«!52

1

p
ImE

C
dzzE d3r Tr@G~z;rW,rW !#,

~42!

respectively. From Eq.~19! it is quite obvious that the abov
quantities can readily be resolved into components with
spect to cells~layers! as we shall show them when w
present are results in the forthcoming sections.
3-6
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ELECTRONIC THEORY OF BLOCH WALLS IN FERROMAGNETS PHYSICAL REVIEW B63 104423
By solving the Poisson-equation for the electrostatic
tential and employing spin-density functional theory in t
local approximation30 for the exchange-correlation potenti
and exchange field, self-consistent calculations can be
formed. First we carried out self-consistent calculations
BCC bulk iron, where we have used a theoretical lattice c
stant ofa55.204 a.u. derived by recent careful full-potent
calculations.31 In that calculation we kept the orientation o
magnetization along the~100! easy axis and used 91k points
in the irreducible wedge of the 2D BZ~IBZ! for the BZ
integrations, Eq.~25!. For the energy integrals, Eqs.~40! and
~41! we used 16 points along the semicircle sampled acc
ing a Gaussian-quadrature, while the corresponding sum
tions in angular momentum space were subject to a cut-o
l max52. We converged the Fermi energy to get the cor
sponding charge (Z527) to an accuracy of 1028 electrons.
Note, that in our present approach, because of the equ
rium with the left~and right! semi-infinite regions, this Ferm
level has to be also used in the calculations of the~finite-
size! Bloch wall.

As mentioned earlier, we have made use of different
proximations to calculate the free energy. The first, com
tationally less demanding one is based on the froz
potential approximation frequently used also in magne
crystalline anisotropy calculations~see Ref. 23 and Refs
therein!. Briefly, we used the self-consistent bulk potent
and effective field magnitude in each layer of the Bloch w
and we set the orientation of the exchange field by rota
successively the bulkt matrix from layer to layer, Eq.~21!,
according to the prescribed functionf0(z). In this case only
one iteration, to calculate the single-particle~band! energy
and the charges, were carried out. As the charge neutr
~number of particles! is not preserved for the fixed volume o
the central region, the grand-canonical potential has to
considered. For any thicknessN of the Bloch wall, taking
always the difference with respect to the ferromagnetic st
this is approximated by

DV~N!5DEb2eFDQ5(
p

~DEb,p2eFDQp!. ~43!

The other approach is a fully self-consistent one. Unfor
nately, the computer power available to us was sufficient
only a few such calculations. Therefore, only for the case
N560 shall we present and discuss the changes in the e
tronic structure and magnetic moments due to the Bl
wall.

IV. RESULTS

A. The frozen potential calculations of Bloch wall energies

We have calculated the Bloch wall formation ener
DV(N) for various values ofN using the frozen potentia
approximation. Note, that the summation in Eq.~43! has to
be, in principle, taken over all the layers in the system. O
calculations show that layers more than about ten lay
away from the wall do not contribute significantly to the su
althoughDEp and DQp by themselves differ considerabl
from zero even far away from the wall.
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As well-known, in the phenomenological theory,9 the ex-
change energy and the magneto-crystalline energy contri
equally to the Bloch wall energy. Experimentally, for bcc F
the magneto-crystalline anisotropy constant,K4, is found to
be 0.3mRyd per atom,32 while careful~nonorbital-polarized!
LDA calculations predict 0.1–0.2mRyd „see Ref. 18 and
Refs. therein and note that for a cubic systemK4
53@E(111)2E(100)#.… This, on one hand, implies, that th
Bloch wall energy normalized to one layer is expected to
of the same order of magnitude as the anisotropy energy
on the other, we have to calculate the Bloch wall energy
the same accuracy as is necessary in magneto-crystalline
isotropy calculations.

The main difficulty arises from the fact that, in particula
close to the real energy axis one has to sample a high num
of kW i points when performing the BZ integration in Eq.~25!.
To reduce this problem we smoothened the energy integ
in Eqs. ~40! and ~42! by the Fermi function at a finite tem
peratureT, taking into account the poles of it below th
contour C. Both from an analysis of the integrand and b
checking it numerically, it turns out that the contour can
deformed to infinity in the upper complex semiplane. Mor
over, only a finite number of Matsubara poles,zj5eF
1ı(2 j 11)pkBT ( j 50,1,2, . . . ), has to beconsidered. As-
suming a quadraticT dependence ofDV(N;T) due to the
Sommerfeld expansion, in order to perform extrapolation
T50 it was necessary to take two differentT values only.

In our calculations we choose 300 K and 150 K for the
two temperatures by using 32 and 40 Matsubara poles w
1275 and 2926kW i points in the 2D IBZ forz0 ~6 and 3
mRyd!, respectively. These values were shown to be su
ciently high to yield converged bulk anisotropy energi
which we calculated to check the reliability of our numeric
evaluations with respect to other methods and also to c
pare to the value that can be deduced from the Bloch w
energies@see Eq.~14!#. For T5300 K and 150 K we got
K450.142 and 0.154mRyd, respectively, which were ex
trapolated toK450.158mRyd atT50. Obviously, this is a
very good agreement with the results of other first-princip
calculations.

Let’s now turn to the results for the Bloch wall energie
associated with an area of sizea2, where a is the lattice
constant of our bcc lattice, as a function of thicknessL, mea-
sured in units ofa (2L/a5N), shown in Fig. 3 forT
5150 K and T5300 K as diamonds and crosses, resp
tively. The first thing to note is that the calculated points a
very well fitted by the expression Eq.~11! as drawn by solid
and dashed lines, respectively. The resulting values for

â[
ap2a

4
and b̂[

ba3

8

are listed in Table I together what fitted forT50.
The fitted curves have their minima at 424 and 401 latt

parameters forT5300 K andT5150 K, respectively. Note
that there is a point on theT5300 K curve which is beyond
the minimum and hence we can be said to have crossed
scale gap. The minima are very shallow due to the smalln
3-7



o

.

39
ta

u
m

en
en
in
th

by
n
el
ing
bu
am

er

oint

g

to
sity

r
ove,

the
al-
ck
a-

ci-
his
s
x-
ant,

he
x-
ll,
alf

ac-
e

us-

k-
ro

at

n

he
-
f
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of the anisotropy energy, thus, this is likely to be a feature
calculations for all cubic systems.

From the extrapolated values ofâ and b̂ to T50, K4
50.16mRyd, andD5262 meV Å2 can be derived via Eqs
~13! and~14!. By using the expression ofl BW from the phe-
nomenological theory we also obtained a thickness of
lattice parameters for the Bloch wall. Several experimen
values can be found forD, e.g., 314 meV Å2 by
Stringfellow,33 281 meV Å2 by Collins et al.34 or
280 meVÅ2 by Mook and Nicklow.35 So our value is only
slightly below the experimental findings. The same is tr
for the comparison with other theoretical results found fro
bulk calculations.15,16 One source of discrepancies betwe
our and other calculations is certainly the use of differ
lattice constants. It is, however, worth noting that by us
the same computer code and a spin-flip technique, in
scalar-relativistic limit, a value ofD5300 meV Å2 was
calculated,36 in better agreement with those calculated
others. This suggests that another source of the deviatio
our present value from those of others arises from the r
tivistic approach we used, that is, the spin-orbit coupl
gives not only rise to the magneto-crystalline anisotropy,
to some extent influences the spin-spin interaction par
etrized byD.

The value of the anisotropy constant is of greater conc
As it is generally the case in LDA calculations,17,18 the ex-

FIG. 3. Bloch wall energy as a function of the Bloch wall thic
ness. The diamonds and crosses stand for the results from the f
potential calculations forT5150 K andT5300 K, respectively,
with corresponding fits to the function Eq.~11! displayed in order
by the dashed and solid lines.

TABLE I. Parameters derived from a least square fit of the d
in Fig. 3 for T5300 K and 150 K to the function Eq.~11!. In the
last row the corresponding values from a quadratic interpolatio
T50 are found.

T @K# â @mRyd# b̂ @mRyd#

300 6.41 0.0356
150 6.32 0.0392

0 6.29 0.0404
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perimental value, 0.3mRyd, is roughly a factor of two big-
ger than the theoretical results. However, the important p
here is that we find the same value forK4 as given above
when we determineK4 from bulk calculations demonstratin
the internal consistency of our calculations.

As implied by Eq.~43! our calculation allows to resolve
the Bloch wall formation energy into contributions related
layer. This than can be compared to the free-energy den
of the Ginzburg-Landau theory.9 Taking the mean value fo
each layer and in terms of the parameters introduced ab
for a linear 90° Bloch wall this free-energy density reads

ep5H 2â

N2
1b̂ sin2~fp! if 1<p<N

0 any way.

~44!

In Fig. 4 the solid line and crosses in the inset display
layer-resolved contributions to the Bloch wall energy as c
culated by our first-principles method for a 800 layer thi
wall and T5150 K, while the dashed curve and the di
monds in the inset are evaluated by using Eq.~44! with the
corresponding fitted parameters,â and b̂ ~see Table I!, that
is no further fitting have been used. Apparently, the coin
dence of the two curves is nearly perfect even in t
‘‘atomic scale’’ resolution of the Bloch wall energy. As i
clear from Eq.~44!, in the phenomenological theory the e
change contribution to the layer resolved energy is const
which equals 2â/N2, inside the wall and zero outside. A
characteristic deviation from that behavior is found for t
first-principles values near the edge of the wall. The e
change contribution to the first layer outside the Bloch wa
i.e., to layers numbered by 0 and 801 in Fig. 4, is exactly h
of the above constant value~see inset of Fig. 4!. This is due
to the nonlocal nature of the exchange couplings not
counted properly within the phenomenological theory. W
note that Bloch wall formation can be discussed also by

zen

a

to

FIG. 4. Layer resolved energies for a 800 layer Bloch wall. T
full line ~crosses in the inset! show the result from the frozen po
tential calculation atT5150 K. The inset shows a magnification o
the border area. The dashed line~diamonds in the inset! show the
layer resolved energy contributions according to Eq.~44! of the
phenomenological theory with parameters taken from Table I.
3-8
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ELECTRONIC THEORY OF BLOCH WALLS IN FERROMAGNETS PHYSICAL REVIEW B63 104423
ing an effective Heisenberg Hamiltonian with a cubic anis
ropy term, in which the above feature is readily recover
Small oscillations can also be seen near the edge of
Bloch wall. These are most likely related to Friedel-type o
cillations, which in homogeneous systems arise due to
imperfections, as relaxations in the electronic structure.

B. Self-consistent calculation

In order to access reliably the electronic structure in
presence of a Bloch wall self-consistent calculations hav
be performed. These calculations are not ground state ca
lations because the magnetic moment in every layer is for
to point along a prescribed direction. The proper way to p
form such calculations is to introduce a constraining fi
which forces the moment to point along the chos
direction.21 For our first attempts we ignored the constraini
field and, instead, took the projection of the magnetic m
ment onto the prescribed direction after every iteration.

We have performed this calculation for a 60-layer Blo
wall with a magnetization profile according to Eq.~10!. We
allowed 21 layers on the two sides outside the Bloch wal
relax. That is, given the symmetry of the Bloch wall, 5
different potentials were involved in this calculation. Th
charging due to the Bloch wall per atom for the differe
layers works out to be smaller than 1027e and, therefore, can
be considered to be zero within the accuracy of our calc
tions. This means we observed no charge redistribu
~transfer! across the Bloch wall. Despite of this fact, as i
ferred from Fig. 5, the densities of states show character
changes for different layers in the Bloch wall. Interesting
the biggest changes are found at energies also with big p
in the bulk DOS, which presumably indicates lifting of som
degeneracies, related to the cubic symmetry, due to the p
ence of Bloch wall.

Contrary to the charges, the magnetic moments displa
small but clear deviation from their bulk value. In Fig. 6 w
show the deviation of the moment from the bulk value. O
viously, the moments decrease gradually when approac

FIG. 5. The density of states~DOS! for bulk Fe bcc~thick line!
together with their difference from the bulk for several layers in
60 layer Bloch wall magnified by 1000. In the legend, negati
positive numbers label layers outside/inside the Bloch wall.
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the center of the wall. Surprisingly, however, the mome
outside the wall still quite differ from their bulk value, ap
proaching it relatively far from the wall only. Similarly, a
the center of the wall one would expect a moment equa
that calculated for a bulk with~110! hard axis. This value is
shown by the dashed line in Fig. 6.

The component of the moment parallel to the wall b
perpendicular to the exchange field is shown in Fig. 7.~One
should note that the frame of reference is a local one wh
turns round with the exchange field.! Not surprisingly, the
strong peaks appear at those layers which are just outsid
Bloch wall, as these are the layers with the most asymme
neighborhood. Clearly, these peaks are an artifact due to
prescribed magnetization profile which display pronounc
kinks at the two borders of the Bloch wall~see Fig. 2!. The
component perpendicular to the wall is smaller than 1025mB
and therefore negligible.

These calculations were performed with 91kW i points in
the two dimensional irreducible Brillouin zone. To achie
convergence roughly 100 iterations have been neces

/

FIG. 6. The deviation of the magnetic moment from its value
the bulk, where it points in the easy direction~100!, for each layer
in a 60 layer Bloch wall. The dashed line indicates the mom
obtained in a bulk calculation with the moment along the~110!
direction.

FIG. 7. The perpendicular component of the magnetic mom
for each layer in a 60 layer Bloch wall.
3-9
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~where one iteration took roughly 14 min on 16 nodes o
T3E!. Clearly, the number of self-consistent iterations nec
sary to obtain reasonable convergence goes up with the n
ber of layers and we have not been able to achieve con
gence for thicker Bloch walls within the limited CPU tim
available to us. Due to the relatively small number ofkW i
points used in this calculations we do not claim converge
for our results. But we expect the results to be qualitativ
correct.

V. CONCLUSIONS

In short, we have presented a first-principles, that is to
parameter-free and yet materials specific, description
Bloch walls in ferromagnets. As an example we have p
scribed the orientation of the magnetization density,MW (rW),
to evolve from the easy axis~100! to ~010! in BCC iron and
calculated its energy,EBW , as a function of the width,l BW ,
of the transition region. To do this we used the fully relat
istic spin-polarized density functional theory and solved
Kohn-Sham-Dirac equation by the SPR-SKKR method23

Due to the relativistic description of the electrons, their s
and orbital degrees of freedom were treated on equal foo
and, hence, the calculation gave a full account of
magneto-crystalline anisotropy. Consequently, the Blo
wall energy had a minimum. The equilibrium width as we
as the full curve,EBW( l BW) displayed in Fig. 3 was found to
be in good agreement with available experimental data.

The novel feature of this kind of electronic theory of
Bloch wall, as compared to its conventional phenomenolo
i-
-

ys

.

. B

.
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cal description,3 is that it provides an account of the disto
tions of the electronic structure due to the presence of
Bloch wall as well as its shape, width and energy. In parti
lar, we have calculated the variations of the size of the m
netic moment, related to the local exchange splitting, and
local densities of states from layer to layer across the tra
tion region. These results are displayed in Figs. 5 and
Evidently, these changes are small as expected on
grounds that bcc Fe is a good moment system. Neverthe
even in this case they contain the essential information
describe the scattering of electrons by Bloch walls as
needs to do in a study of magneto-transport.11–14

Finally, we note that our calculations scale linearly wi
the number of layers,N, within the Bloch wall. Due to this
fact we were able to perform calculations for up to 800 la
ers. That is to say we were able to describe a mesosc
magnetic defect in fully first-principles terms.
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