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Electronic theory of Bloch walls in ferromagnets
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Bloch walls are treated on the basis of the relativistic spin-density functional theory in the local density
approximation. We implement the proposed theory and determine the Bloch wall thickness in bcc Fe. More-
over, we study the features of the electronic structure, such as the variations of the density of states and of the
magnetic moments, which arise due to the presence of the Bloch wall.
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I. INTRODUCTION For our present purposes it will be sufficient to take the

F [I\7I] to be given by the usual Ginzburg-Landau expansion,
Domains of different magnetic orientations spontaneously

nucleate in all magnetic materials in order to minimize the _ | & . 3

magnetostatic energydipolar interactionp of the system. F[M]%f dr[Az |VMi|2+_Z BjjM;M;
These domains are separated by domain or Bloch walls =1 hi=1

where the magnetization is changing over, rapidly, from one 3

orientation to an other. In this paper we shall develop a the- + > BijaMiM;MM + ... |, 2)
oretical account of these transition regions in terms of mobile ijkl=1

electrons and their spins, that is to say from first prmuples.Wherei andj refer to Cartesian axes,y, andz and the

The understanding and control of the domain StrUCtureCoefficientsA B. andB.. are matenal specific param-
magnetic morphology, is central to the effective use of mag- U ijkl P P

netic materials in many technologi$loreover, the nature, eters which depend on such th_ermodynam|c V?‘_“a_b'es as
shape, and motion of Bloch walls have always attracted fun'gempera-\tur.e,'l', a nd pre-ssurelp.. E.V|dently; the equn!brlum
damental scientific interet® Nevertheless, all the theoreti- MagnetizationM¢q, which minimizes?[M] is a stationary
cal discussions so far, of the entire subject, have been strict§elution of Eq.(1). The simplest Bloch wall like solution of
phenomenological. In the present paper we wish to lay théhese equations follow from parametrizing the Cartesian
foundation of a first-principles approach to the problem. ~ componentsM; in terms of spherical coordinates and ¢

To start with a tractable problem, henceforth, we shall(s€e Fig. 1
focus on that of a single Bloch wall. Note that while its . . )
width, |gy~10-1000 nm, is much larger than the lattice My=Mgcosésing, My=Mqsingsind,
spacinga, it is the smallest of all the other length scales such (©)
as the sizes of the domains, 1—100f, and the magnetic M_,=M, cosb,
texture,>0.1 mm, etc. in the problem. Thus, by deploying
our first-principles methodology, designed to treat variation
in properties on the length-scade to Bloch wall problems,
we are making the natural choice of crossing the smalles
scale gap first.

The established theory of Bloch walls is a topic in

whereM, is a constant equal to the saturation magnetization,
Snd stopping the expansion in H®) at the 4th order. For a
UbiC SyStem [B” - O and Bijk| = 5” 5k|(61(1_ 5”()

B, 6] this means

micromagneticsand it is wholly phenomenological. It con- f(ﬁ,(ﬁ):f {a[(VO(r))2+siro(r)(Vé(r))?]

sists of the equations of Landau and Lifshits generalized

by Brown.8 For clarity an_d easy fu_ture reference, we sum- +,8[sin26(F)co§0(F)

marize here the part of this theoretical framework relevant to

our present concern. In short, the magnetization density is +sint6(r)sirt¢(r)cod¢(r)]}dr, (4)

described by the vector fielii (r,t), which evolves in time N . ,

according to the Landau-Lifshitz equation, where the coefficients are defined as=AM; and B

=2(B;—B,)M3, respectively, and a trivial constant term

M 2ug . OF[M] has been dropped. Takir= 7/2 and¢ a function of thez
T Mg (1) coordinate only, Eq(4) reduces to

wherepug is the Bohr magnetor, is the Planck constant and
F[M] is a generalized free-energy functional Mif(r t).

f(qﬁ):f{a[ﬁ¢(?)]2+ﬁsirF¢(F)co§¢(F)}dF. (5)
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X ing the widely observed magneto-transport phenomena asso-
0 ciated with electrons scattering off Bloch watfs*

(e) Inevitably, a magnetic inhomogeneity will distort the
// underlying lattice and such distortions give rise to Bloch
- wall-Bloch wall interactions and pinning of Bloch walls by
/ / lattice defects like impurities vacancies or grain bounddries.

- (0] Although we do not deal with the appropriate generalization
of our first-principles approach, we wish to stress that it can

i be readily adopted to address these issues and this possibility
7 is an important part of the motivation for perusing it.

, - Finally, we comment on our choice of bcc iron as the host
/ e to the Bloch wall in our calculations. As is well known the
e - saturation magnetic moment per atquy at T=0 and the

g effective momentu.s deduced from the Curie constants,
measured af >T¢, for metallic ferromagnets are usually
not the same. In fact, the deviation @t/ u.+ from 1 can be
taken as a good measure of how independent the local mag-

FIG. 1. Sketch of the spherical coordinatésand ¢, as used  netic moments are from their relative orientation. Since bcc
throughout in the paper. iron is a famously good moment system, namgly= s,

we expect the first-principles calculations to map optimally

It can be readily showhthat, subject to the boundary condi- gnto the phenomenological theory summarized by Egs.
tions ¢(—)=0 and¢(«)= /2, the function and(6). This is indeed what we find and we take this fact as
a validation of our conceptual framework as well as our nu-
merical procedures for implementing it. The prize to pay for
having done this “easy” case is that the importance of all
the features listed abov@) —(e) are minimized. Thus, if we
disregard these interesting but small effects, our calculations
reduce to a different, if complicated, way of computing the
‘material dependent parameters, e.g., the spin-wave stiffness

] . . . constanir and the anisotro aramet@r As these are also
Given the success and the general satisfaction with thgvail able  from otherpy F[)ypes ';eof first-principles

established phenomenological theory outlined above ong. ationsi5-18the comparison of our results with those of

may, at this stage, protest that such microscopic Cons'de[)'thers in the field is a useful exercise in its own right.

ations are not needed. To answer this objection we shall now In the next section we shall describe the first-principles

p?use briefly to argue tthe case to thet contralr_y.t Inftt?? 'fntfrteﬁgeoretical framework, based on a relativistic, spin-polarized
ot economy we present our arguments as a list ot bnet s aedensity-functional theory, for our calculations. This is fol-

ments: . - :

. . owed by a section describing the computational procedures.
- (@) Firstly, the phenomenological 'Fheory assumes. thalye shall present and discuss our results in Sec. IV, whereas
M(z) rotates az goes from—< to « without a change in jn sec. V. we shall evaluate the progress we have been able
magnitude. A first-principles theory should tell us if and to make and the prospects of the microscopic approach we

When th|S iS true. have advocated_
(b) Because, as yet, experiments cannot tell us

otherwiset® the phenomenological theory accepts the form
of ¢(z) in Eqg. (6) as immutable. By contrast, the micro-
scopic theory could discover situatiofreaterialg where this A fully relativistic density functional theoryDFT),2°
is not so. The same thing can be said about deviatiors of \which includes the dipolar interaction between electrons,
from 7/2 as a function of or, indeed, thexy dependence of \yould, presumably, yield an inhomogeneous ground state
both ¢ and ¢. with the domain structure determined by the size and shape
_ (c) Of course, first-principles calculations not only yield of the sample. Clearly, the corresponding calculations are out
M(r) but also the changes in the electronic structure due tof the question and we shall follow the logic of the phenom-
the deviation ofVi(r) from its saturation value, namely the €nological theory. Namely, we neglect the dipolar interaction
presence of a Bloch wall. In other words, they describe thé@nd study a single Bloch wall engendered by the constraint
electronic structure which supports, consistent with, a Blochthat the magnetizatioM (r) is oriented along two different
wall. This information becomes available in the calculationseasy axes at— *=o. This problem is readily encompassed
we shall report. by the spin-polarized relativistic density functional theory in
(d) The change in the electronic states due to the presendbe local density approximatiofi. DA) as usually applied in
of a Bloch wall is, or can be viewed as a description of thesolid-state physic§»?° There are only two features of the
electron—Bloch wall interaction. Clearly, a study of this in- way we shall proceed which deserve further general com-
teraction will make an important contribution to understand-ment. Firstly, we note that we shall not be looking for a

(8]

B
¢(z)=arctan é/gz (6)
minimizes 7(¢) in Eq. (5). In what follows we shall study
this simple example of a 90° Bloch wall from the point of

view of mobile electron whose spin gives rise to such mag
netic configuration.

Il. A FIRST-PRINCIPLES THEORY OF BLOCH WALLS

104423-2



ELECTRONIC THEORY OF BLOCH WALLS IN FERROMAGNETS PHYSICAL REVIEW B3 104423

ground state, as usual, but a lowest-energy state consiste! 0(z)
with a constraint which prescribes a symmetry different from
the ground state. Fortunately, as it is well known, DFT cov-
ers this eventuality®?® Secondly, we shall not attempt to
address the vexing conceptual difficulties that arise in con-
nection with imposing constraints while solving self-
consistently the Kohn-Sham-Dirac equation of the thédry,
but in this preliminary exploration of the subject implement
our strategy in the simplest possible way as outlined below.
There is no reason to doubt that the established phenom
enological theoryin the introduction gets the essential phys-
ics of the Bloch wall formation right. From the point of view
of formulating a first-principles version of this theory it may

be summarized as follows: the changing orientatioN¢),
namely the variation ofp(z) in Eq. (6), across the Bloch
wall implies an exchange energy cost which is lower the
slower the variation, whereas the anisotropy energy favors ¢
rapid change from one easy directiop=0, to the other,
¢=m/2, and the width of the transition region ¢f(z) in FIG. 2. Comparison of the soliton solution, E6), (solid line)

Eq. (6), |gw= m/al/B, is determined by the balance of these and the linear magnetization profile, E40), (dashed lingused in
two tendencies. Indeed, we can bypass the solution of theur calculations. The numeration of the layers and the partitioning
Euler-Lagrange equation, which in the case of minimizingof the system into different regions as used in the actual calcula-
the free-energy(¢) in Eq. (5) is the famous Sine-Gordon tions is also depicted on the picture.

equation whose solution ig(z) in Eq. (6), and takeg$(z) to

be a simple functiong(z/L), which goes from 0 tar/2 in For the profile we shall always take the particularly
a distance of. and minimize the corresponding free-energy sSimple choice
F(L) with respect to the widtl.. As can be readily shown,

layers

by substitutinggo(z/L) into Eq.(5), the free-energy per unit 0 ¢<0
cell yields do(€)=1 ém2 0sé<1, (10)
w2 =1
FL)=alAr+BILAL, (7)  which is compared to the soliton solution in Fig. 2. For this
functionl ;= 7?/4 andl ,=1/8 and hence if)(L) is given by
where A is the area of the two-dimensioné&D) unit cell,  Eq. (7)
and
Q(L)= Amt LA L 11
(L)=—F—ar+ghL (11)

|1=f Po(£)*dé and |2=f SiNf ¢ho( £)COS ho( £)dé.
(8) which implies|gy=v27\/a/B. Note that this Bloch wall
thickness isy2 times larger than that deduced from E6).
Clearly, the first term in Eq(7), proportional to 1, is due  Thus the Bloch wall thickness is to some extent an ill-
to the exchange interaction measureddynd the second defined concept in the present “prescribed profile” approach
term, which is proportional t&. and the constang, repre- to the problem. As will be clear presently, our calculated
sents the contribution of the magneto-crystalline anisotropy)(L) can be fitted by the above functional form very accu-
energy for cubic systems. Furthermotg(L) reaches its rately and hence it determines the coefficiemtand 8 from

minimum at first principles.
For orientation we note that via the Landau-Lifshitz equa-
[al, tion, Eq. (1), the free-energy functional given in E) im-
Lmin=lsw= m ©) plies a spin-wave dispersion relation. In the long wave-

length limit this yields
Given thatl, and |, are simple dimensionless numbers

which parametrize the profiley(z/L), this result agrees _ABup  Aaps , 17

well with the exact soliton solution fdr, /1 ,= 2. a7 "M, * Mg ' (12
Evidently, the above discussion suggests a rather straightt-1 . .

forward strategy for first-principles calculation) assume huS: the spin-wave stiffness constant

a profile ¢o(z/L), (b) carry out a density functional calcula- Aaug

tion for the magnetizatiorl?l(z) constrained to follow the =M (13

profile ¢o(z/L) and calculate the total energy or grand po- 0

tential (L), (c) and minimizeQ)(L) with respect td_. and the usual cubitfourth-ordej anisotropy constant
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pas terers the multiple scattering theofIST) yields the one-
Ka=——- (14)  electron Green function for an arbitrary complex energy
_ _ ~and real space coordinatesr’
As expected, in the presence of magneto-crystalline anisot-
ropy the spin-wave spectrum is gaped. . - am m o 2t
Without any account of dipolar interactions, in nonrelativ- ~ 9(z:f.r")= > Zg(z’r”)TQQ'(Z)ZQ/(Z'rr{n)

istic quantum mechanics the orientation of the magnetization Q’

is independent from the crystal axis. As is clear from the N S o Pt ,
above discussion, under this circumstange=Q) there is no - 6nm%: {Jo(z.rn)Zg(Z,17) 'O (ry—ry)
Bloch wall of finite width. Thus, our calculation di}(L)

must include spin-orbit coupling which is the major source +ZB(Z,Fn)JB(Z,FH)T®(r$—rn)}, (19)

of magneto-crystalline anisotropy in transition metals.
Rather than treating the spin-orbit interaction in perturbationyheren andm label two specific sites of position vectdﬁg
theory, we use a fully relativistic spin-polarized density func- 5, ﬁé , while Q andQ’ denote pairs of angular momentum

tional theory:®*° . . . . _ quantum-numbers () and (x',u’), respectively. The
The natural variable in the microscopic theory is the mag- . no_ > N, > .
functions Zg(z,r,) and Jo(z,rp), regular and irregular at

netization averaged over a unit cell IS
r,.=r—R,=0, respectively, are properly normalized solu-
- 3 = - tions of the Kohn-Sham-Dirac equation related to a single,
mi:fv_d rm(r), (15 finite-ranged potential well for which we now assume a
' spherically symmetric effective potential'(r), and effec-
whereV; is the volume of theath unit cell. We may then tive field, Bﬁﬁ(r), pointing along a localpositive) z coordi-

define the local orientatioéi by nate axis. In short,
e=m/m, (16) (cap+(B—1)mc+1,V3(r)+ B B (r) —zl4)
wherem; denotes the length of the vectﬁTi . It is this ef- zg(z,F)
fective local orientation that we wish to constrain to follow Xy =0, (20
the discrete version of the profile in EGLO). Namely, we Jo(z.r)
assume tha:Ep is the same within an atomic plane with po- \yhere
sition z, and take
. .. . . [0 ¢ l, O . [ 0
€,= COS¢ X+ sing,y, =| . = =
p bp by (17 R A=l0 —1, £\0 o,
where for a 90° Bloch wall, which i8l layer thick,
I, O
$o=Poe (p=1...N) (18 "=lo
p=P5N N, 5

Thus, we have to solve the Kohn-Sham-Dirac equation ofvith the usual Pauli matrices and the two-dimensional
DFT for the circumstance where the orientation of the magunity matrix I,. The numerical solution of the above equa-
netization,¢,,, is changing from layer to layer within a slab tion with a corresponding expression for the so-called single-
of N atomic layers and is uniformally 0 ang/2 to the left ~ site t matrix was originally given in Refs. 26 and 27. A
and right, respectively, of the slab as shown in Fig. 2. Evi-particular feature resulting from the approach they used is
dently, the relativistic spin-polarized Screened-KKR that, although thé matrix has necessarily off-diagonal ele-
method?® which treats just such geometries, is ideal for tack-ments, no coupling between differenvalues is present.

ling this problem. Fortunately, the code which implements We further simplify the problem by adopting the atomic
this method scales linearly witN and, as we shall demon- sphere approximatioiASA) in which the volume of the
strate presently, can handle 800—1000 layers with readilgphere is taken equal to the volume of the corresponding

available computer power. Wigner-Seitz cell. Clearly, ASA deals with overlapping po-
tentials which is, in strict sense, prohibited within the MST,
Ill. THE COMPUTATIONAL METHOD however, mostly for inhomogeneous systems, this approach

is widely used, since on one hand it gives a better description
We performed calculations proposed in the previous secef the interstitial region than the muffin-tin approach, on the
tion by using the spin-polarized relativistic screenedother hand it is conceptually much simpler than a full poten-
Korringa-Kohn-RostokeXSPR-SKKR method?® Although tial description. As implied above, our approach allows the
the method is by now well-establishéske also Refs. 24 and orientation of the magnetization to vary from site to site as
25), for completeness and since we also made developmentsquired in the case of a Bloch wall where we keep the
specific to the Bloch wall problem, we briefly outline our orientation to be constant within the atomic planes but let it
computational strategy. For an ensemble of individual scatrotate from layer to layer around the globaldirection.
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Therefore, in each layer there will be a rotatiBn corre-  “screening” has been introduced in the middle of the
sponding tod=7/2 and¢= ¢, [see Eq(18)], which relates nineties?® Without going into details, a canonical transfor-
the t matrix in the local to that in the global coordinate sys- mation of thet matrices and the structure constants, which

tem as follows leaves the Green function invariant, in terms of repulsive
scattering potentials makes it possible to reduce the spatial
tgion(2) =D(R)tjoc(2)D(R)", (21 range of the effective structure constants. As this transforma-
where D(R) denotes a matrix containing, block wise, the tion is independent of the real sqatterers in thg system, it .is
ireducible representations & very useful to perform self-consistent calculations, since it

As the solution of the above single-site problem is rela-nas to be performed for the structure constants only once at

tively easy and universal in applications of MST, the evalu-the beginning of calculation. In terms of the “screened”
ation of the scattering path operat@PO, Tg'g,(Z) in Eq. quantities Eg.(24) has exactly the same form. However,
(19), is, essentially, the main difficulty in such calculations. SiNc€G"(z;k)) is now well localized, it can be truncated for
The geometrical arrangement of the scatterers involved ihP—d|>n ata givem (=3 for fcc and bee principal facets:
the system is put, in MST, into the so-called structure conWhich in turn implies a block-tridiagonal form for the matrix
stants, Gg“é,(z)ngQ,(z;ﬁnﬁm) (Q"m(2)={Gggr(Z)}), G(z; kH,?- This.b_locks are related to thg so-called “prin_ci.pal
which for the relativistic case can be obtained by a transforlayers” containingn subsequent atomic layers. By splitting
mation in terms of the Clebsh-Gordon coefficients from itsOUr System into left and right perfect semi-infinite sub-
nonrelativistic counterpartsee, e.g., Ref. 28 By defining  Systéms, in each of them the scatterers are all identical

the corresponding matrices having both site and angular mdbulk), and into a central region, where the potentials as well
mentum indice® as the orientation of the magnetization can vary, the projec-

tion of the SPO, Eq(24), onto the central region can be
t(2)={t"(2)6nm}, G(2)={G"(2)}, 7(2)={""(2)}, calculatedexactly i.e., taking into account all the scattering
. - B events to the left and right semi-infinite regicisA remark-
able feature of the method is that, if only the layer diagonal
H2)=[t(z) - G(2)] % (22) blocks of the SPO need to be calculated, it scales linearly
with the size of the central region, nam@W?° Thus it opens
A particular problem arises from the fact thaf™(z) is  the way for investigating systems with inhomogeneities ex-
long ranged, therefore, the inversion in E82) cannot be tending much beyond the atomic scales such as Bloch walls.
directly performed. For a system with three-dimensional pe- Let us now turn to the task of performing the Brillouin-
riodicity the problem can be exactly handled by making usezone integration
of the lattice Fourier-transformation, which splits E§2)
into the corresponding projections which has to be solved L .
in angular momentum space only. The Bloch wall problem T “m(z)=f d?kje "MRIZRD 7 Pz K)), (25)
we deal with exhibits, however, two-dimensiorfaD) peri- B Opz B
odicity in the (x,y) plane, while in thez direction the trans-
lational symmetry is broken due to the variation of the ori-where §n=6p+ ﬁ\l and §m=6q+ ﬁzH’ , while Qg denotes
entation of the magnetization. Thus employing 2D latticethe volume of the 2D BZ. In Ref. 23 we described a method

the SPO is given by the following matrix inversion

Fourier-transforms for reducing the demand of the above BZ integration using
the symmetry operations of the underlying lattice. This is

GPUzZK) =, e"zHFEHG(z;éer R;,Cq). (23)  Obviously useless for the present case of the 90° Bloch wall,

— R — since the direction of the magnetization rotates from layer to

) - layer, say, from the axis to they axis, therefore the Bloch
wherep and q denote atomic layers, generated 8y and  wall itself is not invariant under any of the symmetry opera-
Cq., respectivelyR| are 2D lattice vectors arkj is a vector  tions of theC,, group characteristic to the BQ@01) BZ.

in the first 2D Brillouin-zone(BZ), and the new matrix no- However, it is still useful to note that the magnetization
tation in terms of layer indices direction described by the anglg(z) in a 90° Bloch wall
. . perpendicular to th€001) direction of a BCC lattice and
t(2)={tP(2) 8y}, G(z:K))={GPUzZ Kk}, satisfying the boundary conditioné(—=)=0 and ¢(x)

R . =7/2 has the symmetry property

7(z,k) ={7"Uzk)},

one can write T T

) ) )= 7=—¢(-D+7. (26)
7(z;kp)=(t(z) "= G(z;kp) . (29

Evaluating the matrix inversion in Ed24) is still de- Taking into account also the symmetry of the underlying
manding since the structure constants involved are longattice this implies that the Bloch wall is invariant under a
ranged as far as the interlayer distances are concerned. 18 rotation around the axi€l10 which is in three dimen-
order to render this problem tractable the concept ofional space represented by the matrix
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01 O
Sew=|1 0 0 [, (27
0 0 -1

whereby the axis of the rotation should cross zhexis atz
=0, i.e., for which$(0)= /4. Quite clearly,Sgn=Sgw .
Also evidently, the 2D square BZ is invariant undgyy, .

To make use of this symmetry, |6t be the unitary matrix
which representSgyy in the (x,u) space ang’ denote the
layer onto which a particular laygs is mapped bySgy, .
Then for the corresponding single-sitematrices we can
write

tP'(2)=UtP(z)U". (28)
By introducing i
U={Upq}» Upq=Udqp, (29
or alternatively, by taking the choice of = —
0O 0 U
u=[ ... o u o .. (30)
Uu o o
it follows that
t(z)=Ut(z)U". (31

PHYSICAL REVIEW B63 104423

Clearly, the matrixU(IZH) can also be used instead ©Ofin

Eq. (31), which immediately implies the following transfor-

mation property for the SPO
1'(Z,k”,)=U(kH)TT(Z,kH)U(kH). (36)

As the above relationship makes possible to calculate the
SPO only in half of the BZ when performing the integration
in Eq. (25), the computational time and memory storage re-
quest of the computer code can be reduced by a factor of
two. Alternatively, in the actual calculations we have made
use of the above symmetry of the Bloch wall by halving the
computational demand of the inversion in E@4), while

keeping all theIZH points in the BZ. Although, this latter
procedure is almost equivalent to what has been described
above, as it facilitates the tridiagonal shape of the corre-
sponding matriX® its use is rather limited to localized
schemes whereas the former one can be regarded to be quite
general for calculations in Bloch wall problems.

For our present purposes the one-electron Green function,
Eqg. (19), can be used to calculate several quantities of inter-
est such as the electronic density of stdl2®9)

n(z)=—%lmj d3 T G(z;r,r)] (z=e+16), (37)

where the energy is real, d is a small imaginary part serv-
ing as parameter of Lorentzian broadening, and Tr denotes

A relationship between the 2D Fourier-transformed strucirace of a matrix in the four-dimensional Dirac-space, the

ture constants with argumerk§ and k” _SBWkH can also be

established using the transformation of the real-space struc-

ture constants
G(z:SpwR. SewR') =UG(zR,R")U". (32
Therefore, by using Eq23) we can proceed as follows
Gprqr(z; R’H) — Z ellz“liuu
el 3 el

X G(z;Cp+ Saw(R—Rf+R}),CoUT

=3 eXRUG(zC,y+R—R) —RY ,Cyu'
R N
= el RR R )UG(z Co+R;,CouT
R N
= e RIUGPYZ K] U Te KIR], (33

where we define@®f = Sg,C,— C, andRP = SgyRP, both
being 2D lattice vectors. Thus, similar to E9), introduc-
ing
— - =y
Utkp={Upq(kp}, Upq(kp=e"MUse,, (34
Eq. (33) can be written compactly

G(z,k)=0(k)G(z.k)T(K)". (35)

charge density

. 1 .
p(r)=—;ImfcdzTr[g(z;r,r)], (38

whereC is a semicircle contour in the upper complex semi-
plane starting at the bottom of the valence basgl, and
ending at the Fermi energyg, and the spin-density

N 1 - N
m(r)=—;|mfcdz T BXG(z;r,r)]. (39

Furthermore, the charge, the spin-moment and the band en-
ergy can be obtained straightforwardly as

— — 3¢ (1
Q—Ldzr(z)—f d°rp(r), (40

f d3rm(r),

& 1 g
Ebe Fdsan(ea):——lmfdzz d’r T G(z;r, 0],
eg T c
(42

respectively. From Eq19) it is quite obvious that the above
quantities can readily be resolved into components with re-
spect to cells(layers as we shall show them when we
present are results in the forthcoming sections.

(41)

and
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By solving the Poisson-equation for the electrostatic po- As well-known, in the phenomenological thedtthe ex-
tential and employing spin-density functional theory in thechange energy and the magneto-crystalline energy contribute
local approximatioff for the exchange-correlation potential equally to the Bloch wall energy. Experimentally, for bcc Fe
and exchange field, self-consistent calculations can be pethe magneto-crystalline anisotropy constdfy, is found to
formed. First we carried out self-consistent calculations fobe 0.3.Ryd per aton? while careful(nonorbital-polarizes
BCC bulk iron, where we have used a theoretical lattice contDA calculations predict 0.1-0.2Ryd (see Ref. 18 and
stant ofa=5.204 a.u. derived by recent careful full-potential Refs. therein and note that for a cubic systey
calculations?! In that calculation we kept the orientation of =3[E(111)—E(100)].) This, on one hand, implies, that the
magnetization along the 00 easy axis and used lpoints  Bloch wall energy normalized to one layer is expected to be
in the irreducible wedge of the 2D BABZ) for the BZ  of the same order of magnitude as the anisotropy energy and,
integrations, Eq(25). For the energy integrals, Eqgl0) and  on the other, we have to calculate the Bloch wall energy to
(41) we used 16 points along the semicircle sampled accordthe same accuracy as is necessary in magneto-crystalline an-
ing a Gaussian-quadrature, while the corresponding summasotropy calculations.
tions in angular momentum space were subject to a cut-off of The main difficulty arises from the fact that, in particular,
Imax=2. We converged the Fermi energy to get the correclose to the real energy axis one has to sample a high number

sponding chargeZ=27) to an accuracy of 17 electrons. of kj points when performing the BZ integration in EG5).
Note, that in our present approach, because of the equilibrg reduce this problem we smoothened the energy integrals
rium with the left(and righy s_emi—infinite reg_ions, thi; F_ermi in Egs. (40) and (42) by the Fermi function at a finite tem-
level has to be also used in the calculations of tfieite-  peratureT, taking into account the poles of it below the
sizg Bloch wall. _ contourC. Both from an analysis of the integrand and by
As mentioned earlier, we have made use of different apghecking it numerically, it turns out that the contour can be
proximations to calculate the free energy. The first, compugeformed to infinity in the upper complex semiplane. More-
tationally less demanding one is based on the frozenover, only a finite number of Matsubara poles,= e
potential approximation frequently used also in magneto-1 | (2j +1)zkgT (j=0,1,2...), has to beconsidered. As-
crystalline anisotropy calculationssee Ref. 23 and Refs. suming a quadrati@ dependence oAQ(N;T) due to the
therein. Briefly, we used the self-consistent bulk potential gommerfeld expansion, in order to perform extrapolation to
and effective field magnitude in each layer of the Bloch wallt— g it was necessary to take two differéhwalues only.
and we set the orientation of the exchange field by rotating |, gur calculations we choose 300 K and 150 K for these
successively the bulkmatrix from layer to layer, Eq(21),  yo temperatures by using 32 and 40 Matsubara poles with
according to the prescribed functi@iy(z). In this case only 1275 and Zgzal points in the 2D IBZ forz, (6 and 3

one iteration, to calculate the single-parti¢lgand energy .mRyd), respectively. These values were shown to be suffi-
and the charges, were carried out. As the charge neutrallta(.

> ) iently high to yield converged bulk anisotropy energies
t(ﬂgrggi:g ezg;gfbﬁ’]goég:jir;ﬁg;;;hggtlgﬁg;o:]lgi:fbgvhich we calculated to check the reliability of our numerical
considered. For any thickness of the Bloch wall, taking €valuations with respect to other methods and also to com-

always the difference with respect to the ferromagnetic stateP are 1o the value that can be deduced from the Bloch wall
way . P 9 energies[see Eq.(14)]. For T=300 K and 150 K we got
this is approximated by

K,=0.142 and 0.154.Ryd, respectively, which were ex-

trapolated toK ,=0.158 uRyd atT=0. Obviously, this is a

AQ(N)=AE,— e, AQ= E (AE,,—€rAQy). (43)  very good agreement with the results of other first-principles
P calculations.

The other approach is a fully self-consistent one. Unfortu- Letts now t_urn to the result; for the Bloch wall energies,
nately, the computer power available to us was sufficient foF‘SSOC""‘te(j with an area of sizé, wherea IS the lattice
only a few such calculations. Therefore, only for the case oFO”S‘aF“ of our bcc lattice, as a function qf th|_cknEsmea-
N=60 shall we present and discuss the changes in the elegtred in units ofa (2L/a=N), shown in Fig. 3 forT

tronic structure and magnetic moments due to the Bloch%150 K aan::"?OO K as d!amonds and crosses, respec-
tively. The first thing to note is that the calculated points are

wall. . . ;
very well fitted by the expression E@L1) as drawn by solid
and dashed lines, respectively. The resulting values for
IV. RESULTS
A. The frozen potential calculations of Bloch wall energies . amla R ,8a3
. = and B=——
We have calculated the Bloch wall formation energy “« 4 B 8

AQ(N) for various values oN using the frozen potential

approximation. Note, that the summation in E43) has to  are listed in Table | together what fitted for=0.

be, in principle, taken over all the layers in the system. Our The fitted curves have their minima at 424 and 401 lattice
calculations show that layers more than about ten layerparameters fof =300 K andT=150 K, respectively. Note
away from the wall do not contribute significantly to the sumthat there is a point on thE=300 K curve which is beyond
althoughAE, and AQ,, by themselves differ considerably the minimum and hence we can be said to have crossed the
from zero even far away from the wall. scale gap. The minima are very shallow due to the smallness
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) ) FIG. 4. Layer resolved energies for a 800 layer Bloch wall. The
FIG. 3. Bloch wall energy as a function of the Bloch wall thick- | |ine (crosses in the inseshow the result from the frozen po-
ness. The diamonds and crosses stand for the results from the frozgthiial calculation aT = 150 K. The inset shows a magnification of
potential calculations foff =150 K andT=300 K, respectively, ihe horder area. The dashed liftiamonds in the insgishow the
with corresponding fits to the function E¢L1) displayed in order layer resolved energy contributions according to E4f) of the
by the dashed and solid lines. phenomenological theory with parameters taken from Table I.

of the anisotropy energy, thus, this is likely to be a feature Ofperimental value, 0.3Ryd, is roughly a factor of two big-

calculations for all cubic systems. - - ger than the theoretical results. However, the important point
From the extrapolated values of and 8 to T=0, K4 here is that we find the same value ¥y as given above

=0.16 #Ryd, andD =262 meV A? can be derived via Eqs. when we determin&, from bulk calculations demonstrating

(13) and(14). By using the expression g, from the phe-  the internal consistency of our calculations.

nomenological theory we also obtained a thickness of 394 Ag implied by Eq.(43) our calculation allows to resolve

lattice parameters for the Bloch wall. Several experimentathe Bloch wall formation energy into contributions related to

values can be found forD, e.g., 314 meVA by |ayer. This than can be compared to the free-energy density

Stringfellow® 281 meVA? by Collins etal® or  of the Ginzburg-Landau theofyTaking the mean value for

280 meVA? by Mook and Nicklow®® So our value is only each layer and in terms of the parameters introduced above,

slightly below the experimental findings. The same is truefor a linear 90° Bloch wall this free-energy density reads

for the comparison with other theoretical results found from

bulk calculations>1® One source of discrepancies between ~

: : . i 20
our and other calculations is certainly the use of different —+B sif(¢,) if 1<p<N
lattice constants. It is, however, worth noting that by using €= N (44)
the same computer code and a spin-flip technique, in the 0 any way.

scalar-relativistic limit, a value oD =300 meV A% was

calculatec?® in better agreement with those calculated byIn Fig. 4 the solid line and crosses in the inset display the
others. This suggests that another source of the deviation ddyer-resolved contributions to the Bloch wall energy as cal-
our present value from those of others arises from the releculated by our first-principles method for a 800 layer thick
tivistic approach we used, that is, the spin-orbit couplingwall and T=150 K, while the dashed curve and the dia-
gives not only rise to the magneto-crystalline anisotropy, buimonds in the inset are evaluated by using &) with the

to some extent influences the spin-spin interaction paramegrresponding fitted parametees,and 3 (see Table), that

etrized byD. _ _ is no further fitting have been used. Apparently, the coinci-
The value of the anisotropy constant is ofgrelzé\ter conceryence of the two curves is nearly perfect even in this
As it is generally the case in LDA calculation&;®the ex-  satomic scale” resolution of the Bloch wall energy. As is

) ) clear from Eq.(44), in the phenomenological theory the ex-
TABLE |. Parameters derived from a least square fit of the dat&bhange Contrlbutlon to the Iayer resolved energy |S Constant,

in Fig. 3 forT=300 K a.nd 150 K to the function '.Eq.ll)' In th? which equals 2/N2?, inside the wall and zero outside. A

last row the corresponding values from a quadratic interpolation to - S -
_ characteristic deviation from that behavior is found for the

T=0 are found. . S

first-principles values near the edge of the wall. The ex-

change contribution to the first layer outside the Bloch wall,

T o [mRyd] A L1Ryd] i.e., to layers numbered by 0 and 801 in Fig. 4, is exactly half
300 6.41 0.0356 of the above constant valysee inset of Fig. ¥ This is due
150 6.32 0.0392 to the nonlocal nature of the exchange couplings not ac-

0 6.29 0.0404 counted properly within the phenomenological theory. We

note that Bloch wall formation can be discussed also by us-
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FIG. 5. The density of staté®0S) for bulk Fe bec(thick line) FIG. 6. The deviation of the magnetic moment from its value in

together with their difference from the bulk for several layers in ath® bulk, where it points in the easy directid@00), for each layer

60 layer Bloch wall magnified by 1000. In the legend, negative/'n a 60 layer Bloch wall. The dashed line indicates the moment

positive numbers label layers outside/inside the Bloch wall. gptaiped in a bulk calculation with the moment along 140
irection.

ing an effective Heisenberg Hamiltonian with a cubic anisot- .

ropy term, in which the above feature is readily recoveredthe center of the wall. Surprisingly, however, the moments
Small oscillations can also be seen near the edge of theutside the wall still quite differ from their bulk value, ap-
Bloch wall. These are most likely related to Friedel-type os-Proaching it relatively far from the wall only. Similarly, at
cillations, which in homogeneous systems arise due to anme center of the wall one would expect a moment equal to

imperfections, as relaxations in the electronic structure. at calculated for a bulk wit110) hard axis. This value is
shown by the dashed line in Fig. 6.

The component of the moment parallel to the wall but
B. Self-consistent calculation perpendicular to the exchange field is shown in Fig.Qhe
cshould note that the frame of reference is a local one which
gurns round with the exchange fieldNot surprisingly, the
be performed. These calculations are not ground state calc§lrong peaks appear at those layers \_NhiCh are just outside t_he
gloch wall, as these are the layers with the most asymmetric

lations because the magnetic moment in every layer is forceq :
to point along a prescribed direction. The proper way to per_nelghborhood. Clearly, these peaks are an artifact due to the

form such calculations is to introduce a constraining fieldPreScribed magnetization profile which display pronounced
which forces the moment to point along the chosenk'nks at the two borders of the Bloch wdBee Fig. 2 The

direction?* For our first attempts we ignored the constrainingCompPonent perpendicular to the wall is smaller than 0

field and, instead, took the projection of the magnetic mo-2Nd therefore negligible.

ment onto the prescribed direction after every iteration. These calculations were performed with Bl points in

We have performed this calculation for a 60-layer Blochthe two dimensional irreducible Brillouin zone. To achieve
wall with a magnetization profile according to EG0). We  convergence roughly 100 iterations have been necessary
allowed 21 layers on the two sides outside the Bloch wall to
relax. That is, given the symmetry of the Bloch wall, 51
different potentials were involved in this calculation. The 2t i
charging due to the Bloch wall per atom for the different X
layers works out to be smaller than 1@ and, therefore, can 10 ”
be considered to be zero within the accuracy of our calcula-
tions. This means we observed no charge redistribution
(transfey across the Bloch wall. Despite of this fact, as in-
ferred from Fig. 5, the densities of states show characteristic
changes for different layers in the Bloch wall. Interestingly,
the biggest changes are found at energies also with big peaks V

In order to access reliably the electronic structure in th
presence of a Bloch wall self-consistent calculations have t

in the bulk DOS, which presumably indicates lifting of some
degeneracies, related to the cubic symmetry, due to the pres- . ‘ ‘ ‘ . ‘
ence of Bloch wall. -20 0 20 40 60 80

Contrary to the charges, the magnetic moments display a
small but clear deviation from their bulk value. In Fig. 6 we
show the deviation of the moment from the bulk value. Ob- FIG. 7. The perpendicular component of the magnetic moment
viously, the moments decrease gradually when approachinigr each layer in a 60 layer Bloch wall.

layer index
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(where one iteration took roughly 14 min on 16 nodes on aal descriptior?,is that it provides an account of the distor-
T3E). Clearly, the number of self-consistent iterations necestions of the electronic structure due to the presence of the
sary to obtain reasonable convergence goes up with the nurgioch wall as well as its shape, width and energy. In particu-
ber of layers and we have not been able to achieve convefar, we have calculated the variations of the size of the mag-
gence for thicker Bloch walls within the limited CPU time netic moment, related to the local exchange splitting, and the
available to us. Due to the relatively small numberﬁﬂwf local densities of states from layer to layer across the transi-
points used in this calculations we do not claim convergencéon region. These results are displayed in Figs. 5 and 6.
for our results. But we expect the results to be qualitativelyEvidently, these changes are small as expected on the
correct. grounds that bcc Fe is a good moment system. Nevertheless,
even in this case they contain the essential information to
V. CONCLUSIONS describe the scattering of electrons by Bloch walls as one

. o . needs to do in a study of magneto-transgbrt?
In short, we have presented a first-principles, that is to say Finally, we note that our calculations scale linearly with

parameter-free and yet materials specific, description O{he number of layers\, within the Bloch wall. Due to this

Bloch walls in ferromagnets. As an example we have P"€act we were able to perform calculations for up to 800 lay-

scribed the orientation of the magnetization der_‘ﬂ}(f): ers. That is to say we were able to describe a mesoscopic
to evolve from the easy axid00) to (010 in BCC iron and magnetic defect in fully first-principles terms.

calculated its energ¥Egy, as a function of the widtH gy,
of the transition region. To do this we used the fully relativ-
istic spin-polarized density functional theory and solved the
Kohn-Sham-Dirac equation by the SPR-SKKR metfdd.
Due to the relativistic description of the electrons, their spin  This work resulted from a collaboration partially funded
and orbital degrees of freedom were treated on equal footingy the TMR networkContract No. EMRX-CT96-0089the
and, hence, the calculation gave a full account of theRTN Network “Computational MagnetoelectronicCon-
magneto-crystalline anisotropy. Consequently, the Blochract No. RTN1-1999-00145 and the Hungarian National
wall energy had a minimum. The equilibrium width as well Science FoundatioContract No. OTKA T030240 and
as the full curveEgy(lgyw) displayed in Fig. 3 was found to T029813. One of us(J.S) would like to thank the Compu-
be in good agreement with available experimental data. tational Collaborative Project 9 of U.K. for financial support.
The novel feature of this kind of electronic theory of a Most of the computations were performed on the 3TE ma-
Bloch wall, as compared to its conventional phenomenologichine at the Manchester Computer Center of the EPSRC.
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