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Abstract

The main aspects of the fully relativistic spin-polarized Screened Korringa±Kohn±Rostoker (KKR) method for

layered systems (systems with only two-dimensional translational symmetry) are reviewed including, e.g., a discussion

of the Dirac±Kohn±Sham Hamiltonian, magnetic con®gurations, the inhomogeneous coherent potential approxima-

tion (CPA) applicable to such systems, and a short description of the (classical) magnetic dipole±dipole interaction.

Based on this type of approach ``perpendicular magnetism'' is then discussed in terms of characteristic features

frequently encountered in studies of the magnetic anisotropy energy of magnetic multilayer systems such as oscillations

or reorientation transitions. For this purpose layer-resolved band energy contributions and their discrete Fourier

transformations with respect to characteristic parameters are discussed for a few prominent systems. Ó 2000 Elsevier

Science B.V. All rights reserved.

1. Introduction

In the last 5±10 years perpendicular magnetism
became a very lively ®eld of research, not only
because of its technological implications reaching
from magnetic recording to new kinds of computer
memories, but also, and this in particular, because
of inherent theoretical challenges: for the ®rst time
it seemed that relativistic e�ects lead to new tech-
nologies and technical devices.

In the present paper a brief summary of the
Screened Korringa±Kohn±Rostoker (KKR) me-
thod as applied to layered systems (systems with
only two-dimensional translational symmetry) is
given. This method originated several years ago

from the Center for Computational Materials
Science in Vienna and is now used in varying
context in quite a few research institutions. Over
the last few years, the fully relativistic spin-polar-
ized version of this approach, applicable to mag-
netic multilayer systems, became a standard
method for ab initio calculations of perpendicular
magnetism. It seems, therefore, that there is a
de®nite need to summarize the main aspects of this
kind of approach to magnetic anisotropy studies in
multilayer systems. Consequently the ®rst few
sections in here deal with more formal aspects such
as the properties of the Dirac±Kohn±Sham Ham-
iltonian, magnetic con®gurations, two-dimension-
al translational symmetry, etc., while in a section
on applications mainly characteristic features of
magnetic anisotropies in multilayer systems such
as oscillations of the so-called band energy con-
tribution to the magnetic anisotropy energy or
reorientation transitions are illustrated. In there
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also a table of corresponding references is given,
which eventually should be used for more detailed
discussions and/or comparisons to experiment.

Although other, mostly semi-relativistic (use of
the Pauli±Schr�odinger equation) computational
schemes (FP-LMTO, FLAPW, semi-empirical
approaches) are nowadays in use for evaluating
magnetic anisotropy quantities, in this article for
matters of brevity no explicit reference is given to
such studies. For the same reason also no discus-
sion of phenomenological models (Landau±Lif-
shitz-type approaches) is included.

2. Kohn±Sham±Dirac Hamiltonian

In principle within the (non-relativistic) density
functional theory (DFT) the Kohn±Sham±Dirac
Hamiltonian is given by

H � a � p� bmc2 � V eff n;m� � � bR � Beff n;m� �;
�1�

ai � 0 ri

ri 0

� �
; b � I2 0

0 ÿ I2

� �
; �2�

Ri � ri 0
0 ri

� �
; I2 � 1 0

0 1

� �
; �3�

V eff n;m� � � V ext � V Hartree � dExc

dn
� V �r�; �4�

Beff n;m� � � Bext � e�h
2mc

dExc

dm
� B�r�; �5�

where n is the particle density, m the magnetization
density, V eff n;m� � the e�ective potential, Beff n;m� �
the e�ective (exchange) magnetic ®eld, V ext and
Bext the corresponding external ®elds, and ai are
Dirac and ri Pauli (spin) matrices,

rx �
0 1

1 0

 !
; ry �

0 ÿ i

i 0

 !
;

rz �
1 0

0 ÿ 1

 !
;

�6�

a � �a1; a2; a3�; r � �rx; ry ; rz�: �7�

Consider now a rotation (point group operation)
R, then invariance of H�r� by R implies that

S�R�H�Rÿ1r�Sÿ1�R� �H�r�; �8�
where S�R� is a 4� 4 matrix transforming the
Dirac matrices ai, b, and Ri

S�R� � U�R� 0
0 det���U�R�

� �
; �9�

and U�R� is a (unimodular) 2� 2 matrix and
det��� � det�D�3��R�� with D�3��R� being the corre-
sponding three-dimensional rotation matrix. Us-
ing the invariance condition in Eq. (8) explicitly,
one can see immediately that the condition

S�R� I4V �Rÿ1r�� �
Sÿ1�R� � I4V �Rÿ1r� � I4V �r� �10�

yields the usual (non-relativistic) rotational invari-
ance condition for the potential V �r�, while the terms

S�R� ca � p� �Sÿ1�R�; S�R� bR � B�Rÿ1r�� �
Sÿ1�R�;
�11�

have to be examined with more care. Considering
the `scalar product' in here term-wise, Eq. (11)
reduces [15] to

B�Rÿ1r� � B�r� and U�R�rUÿ1�R� � r: �12�
Consequently, the symmetry point group of H�r�
is then de®ned as

G � RjS�R�H�Rÿ1r�Sÿ1�R�� �H�r�	: �13�

2.1. Kohn±Sham±Dirac Hamiltonian and the local
density functional approximation

Within the (non-relativistic) local density func-
tional approximation (LDA) the Hamiltonian is
usually de®ned as

H�r� � ca � p� bmc2 � I4V �r� � bRzB�r�; �14�

V eff n;m� � � V �r�; B�r� � Beff n;m� �: �15�
Comparing with Eq. (1) the obvious meaning of
the last term on the right-hand side of Eq. (14) is
simply that the (e�ective) magnetization B�r�
points along an arbitrary assumed ẑÿdirection,
say n 2 R3, i.e., is of the form,
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B�r� � B�r�n; n � �0; 0; 1�: �16�

Suppose for matters of simplicity that

V �r� � V � rj j� � V �r�; B�r� � B� rj j� � B�r�; �17�

then by inspecting rotational transformations of
H�r�, see Eq. (8), from Eqs. (10) and (11) it is
obvious that any rotation R leaves V �r� and B�r�
invariant, whereas

U�R�rzBz�r�Uÿ1�R� � B�r�U�R� r � n� �Uÿ1�R�
� �r0 � n�; �18�

where

r0 � �r0x; r0y ; r0z� � U�R�rUÿ1�R�: �19�

Reviewing Eq. (18) again, it can be seen that the
`scalar product' on the right-hand side of this
equation can also be interpreted as

r0 � nÿ � � r � n� �; �20�

i.e., as if B�r� points along n;

B�r� � B�r�n: �21�

n � det���D�3��R�n: �22�

Note that n is a vector of unit length. Exactly this
kind of ``interpretation'' is meant, when stating
that B�r� is ``orientated along a particular direction
n'' [21].

3. Two-dimensional translational invariance

3.1. Complex ``square'' lattices

Suppose that the potential in Eq. (1),
V eff �n;m� � V �r�; is given as a superposition of
individual (``non-overlapping'') potentials 1,

V �r� �
XS

s�1

X
i

V
ÿ

ri;x� � Ri;x � cs;x�x

� ri;y

ÿ � Ri;y � cs;y

�
y� ri;z� � Ri;z�z

�
;

�
XS

s�1

X
i

V �ri � Ri;k � cs;k � Ri;zz�

�
XS

s�1

X
i

V s
i �Ri;z�; �23�

�x; x� � �y; y� � �z; z� � 1;

�x; y� � �x; z� � �y; z� � 0;
�24�

where the cs;k are the so-called non-primitive
translations (cs;z � 0 8s), S is the number of sub-
lattices, the Ri refer to location vectors of Cou-
lomb singularities in a particular sublattice, and
Ri;zz ®xes the position of a plane of atoms in the
con®guration space D. Quite clearly by considering
the following translational invariance condition
[15] in terms of function-space operators (denoted
by a hat),

bRj;kV �ri � Ri;k � Ri;zz� cs;k�
� V �ri � Ri;k ÿ Rj;k � Ri;zz� cs;k�; �25�

a complex two-dimensional lattice is de®ned by

L�Ri;z� � Rj;k j bRj;kV s
i �Ri;z�

n
� V s

i �Ri;z�
o

� tj;k j tj;kV s
i �Ri;z�

�
� V s

i �Ri;z�
�
; �26�

and the corresponding translational group as

T�Ri;z� � E j ti;k
� �� 	

; E j ti;k
� �Tj j � E j 0� �;

�27�

where E j 0� � is the identity element, E being the
identity rotation and Tj j denotes the group order.
It should be noted that in (25) for a particular
sublattice s the ``in-plane'' site Ri;k serves as the
origin of L�Ri;z�. A simple two-dimensional lattice
refers then ``simply'' to the case of S � 1 and
cs;k � 0.

1 The term non-overlapping potentials means that the do-

mains of any given pair of potentials are disjoint in con®gu-

ration space.
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3.2. Multilayer systems

Assuming now that in a multilayer system

L�Ri;z� �L; T�Ri;z� �T 8Ri;z; �28�
i.e., that in all layers one and the same two-di-
mensional translational symmetry applies, any
arbitrary di�erence vector of r 2 D and r0 2 D can
be written as

rÿ r0 � ri ÿ rj � Ri;k ÿ Rj;k � cs;k ÿ cs0;k

� �cs;? ÿ cs0 ;?�z;
� ri ÿ rj � Ri;k ÿ Rj;k � css0 ; �29�

where in general cs;? ÿ cs0;?� � � �Ri;z ÿ Rj;z�, and

css0 � cs;k ÿ cs0 ;k � �cs;? ÿ cs0 ;?�z
� css0 ;k � css0;?z: �30�

For a multilayer system corresponding to a simple
two-dimensional lattice, the di�erence vector css0

reduces to

css0 � css0 ;?z � �Ri;z ÿ Rj;z�z: �31�
It should be noted that Eq. (29) is the basis of

the two-dimensional lattice Fourier transforma-
tions to be applied, since the projection operator
with respect to the kk-th irreducible representation
of T is of the following form:

Pkk � Tj jÿ1
X

Rk2L
exp

�ÿ i kk � Rk
ÿ ��

R̂k

� Tj jÿ1
X

Ejtk� �2T
exp

�ÿ i kk � tk
ÿ ��

E j ti;k
� �

: �32�

3.3. Real and reciprocal two-dimensional lattices

As is well known, the translations ti;k 2L can
be written as linear combinations of primitive two-
dimensional lattice vectors a1 and a2,

ti;k � Ri;k � n1a1 � n2a2; �33�

the (unit) surface area A being de®ned as
A � a1 � a2. The corresponding reciprocal lattice
Lÿ1 is then given by

Lÿ1 � bj;k j ti;k � bj;k
� � 2pdij 8ti;k 2L

	
; �34�

the unit area in Lÿ1 being the unit area of the
surface Brillouin zone. For matters of convenience
in the following:

I�L� � i j ti;kV s
j �rj�

n
� V s

j �rj�
o

�35�

denotes the set of indices referring to L and

I�Lÿ1� � j j bj;k � ti;k
� � 2pdij 8ti;k 2L

	 �36�
the corresponding set for Lÿ1.

4. Magnetic con®gurations

Going now back to Eq. (14) and assuming that
B�r� is of the same form as V �r�, namely a super-
position of individual (non-overlapping) e�ective
exchange ®elds,

B�r� �
XS

s�1

X
i

B�ri � Ri;k � cs;k � Ri;zz�

�
XS

s�1

X
i

Bs
i �Ri;z�ns

i �Ri;z�; �37�

then translational invariance implies that in gen-
eral, see also Eq. (26),bRj;kBs

i �Ri;z� � Bs
i �Ri;z� and ns

i �Ri;z� � ns
0�Ri;z�

8i; j 2 I L�Ri;z�� �; �38�
where ns

0�Ri;z� is the orientation of the magnetiza-
tion in the origin of the sth sublattice in the plane
of atoms characterized by Ri;z, i.e., within one
particular (two-dimensional) sublattice the orien-
tation of the magnetization has to be identical for
all corresponding lattice points. This condition
results directly from the fact that for translations
the matrix S�R� in Eq. (8) has to be a unit matrix.
Quite clearly di�erent sublattices and/or di�erent
planes may have di�erent orientations.

Assuming now a (uniform) simple two-dimen-
sional lattice L �L�Ri;z� 8Ri;z, then in general a
non-collinear arrangement of N magnetic layers is
de®ned by

n � n0�R1;z�; n0�R2;z�; . . . ; n0�RN ;z�f g
� n1; n2; . . . ; nNf g; �39�
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where the ni are the unit vectors specifying the
orientation of the magnetization in these layers.
Suppose further one de®nes a reference con®gu-
ration n0 � nk j nk � n0 8kf g; where n0 refers to a
prechosen direction, and let i denote the ith layer
in this system, then the (total) energy di�erence
with respect to a change in the orientation of the
magnetization in this particular layer, i.e., with
respect to the con®guration n � nk j nk � n0f
8k 6� ig, is given by

DE�N��n; n0� � E n� � ÿ E n0� �: �40�
For example, for an antiparallel orientation of the
magnetization in layer i; ni � ÿn0 , such an energy
di�erence refers to a ``spin-¯ip'' energy. If simul-
taneously the orientation of the magnetization is
changed in two (di�erent) planes, say i and j, i.e.,
by considering the con®guration n0 � nk j nk � n0f
8k 6� i; jg, the corresponding energy di�erence is
given by

DE�N� n0; n0

h i
� E n0

h i
ÿ E n0� �: �41�

Quite clearly a ``double spin-¯ip'' energy, refers
then to the case that in Eq. (39) ni � nj � ÿn0.
Choosing the reference con®guration such that
�n0; ẑ� � 1; where ẑ refers to the surface normal,
then the energy di�erence with respect to the
magnetic con®guration na � nk j �nk; bx� � 1 8kf g,
DE�N� na; n0� � � E na� � ÿ E n0� � �42�
is traditionally called the (total) energy contribu-
tion to the perpendicular magnetic anisotropy en-
ergy. If on the other hand �n0; x̂� � 1; and
na � nk j nk � ŷ 8kf g, where x̂ and ŷ are in-plane
unit vectors, �x̂; ŷ� � 0, then the corresponding
energy di�erence DE�N� na; n0� � is called the
(total) energy contribution to the in-plane magnetic
anisotropy energy.

5. Resolvents, Green's functions and scaling trans-

formations

Suppose the Hamilton operator H (e.g., the
Kohn±Sham±Dirac operator) is given in terms of
an unperturbed Hamiltonian H0 and a perturba-

tion operator V, then clearly H can immediately be
written as

H � H0 � V � H0 � V � W ÿ W � H 00 � V 0; �43�
where

H 00 � H0 ÿ W ; V 0 � V � W : �44�
As is well known, the resolvents of H and H0 are

de®ned in the following manner:

G�z� � �zÿ H�ÿ1; G0�z� � �zÿ H0�ÿ1; �45�
from which readily the resolvent of H 00 follows:

G00�z� � �zÿ H 00�ÿ1 � �zÿ H0 � W �ÿ1
; �46�

or written in terms of a Dyson equation,

G00�z� � G0�z��1ÿ WG00�z��; �47�
where z � �� id; d > 0; is a complex energy.
From (43) and (44) then follows immediately that
the Dyson equation for G�z� can be written in
terms of either G0�z� or G00�z�
G�z� � G0�z��1� VG�z�� � G00�z��1� V 0G�z��: �48�
A Green's function is then the side-limit of a rep-
resentation of G�z� such as the below con®guration
space representations of G0�z� and G�z�;

G0�r; r0; �� � lim
d!0

r G0�z��� ��r0
 �
; �49�

G�r; r0; �� � lim
d!0

r G�z�j jr0
 �
: �50�

6. Screened KKR method

6.1. Real space structure constants

Assuming for matters of simplicity that
L �L�Ri;z� 8Ri;z; is a simple lattice (S � 1), and
choosing r and r0 to be centered at (measured
from) Ri � Ri;k � Ri;zz and Rj � r0j � Rj;k � Rj;zz

0,
respectively, the con®guration space representa-
tion of G0�z� in (50) easily can be switched to a
``partial wave'' representation, for details see e.g.
[35], the matrix elements thereof being the so-
called ``real space structure constants'',
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G0��� � G0;ij���� 	
; G0;ij��� � G0;ij

LL0 ���
n o

; �51�
where L � �`m� refers to (non-relativistic) angular
momentum indices.

6.2. Mu�n-tin geometries

Furthermore, let us assume that the potentials
in Eq. (23) and the exchange ®elds in Eq. (37) are
of ``mu�n-tin type'', i.e.,

Vi�Ri;z� � V �ri � Ri;k � Ri;zz�

� Vi� rij j; Ri;z�; rij j6 bi�Ri;z�;
V0 otherwise;

�
�52�

Bi�Ri;z� � B�ri � Ri;k � Ri;zz�

� Bi� rij j; Ri;z�; rij j6 bi�Ri;z�;
B0 otherwise;

�
�53�

where the bi�Ri;z� are the so-called mu�n-tin radii,
V0 and B0 are the mu�n-tin constants, and that the
perturbation W in Eq. (44) is also a superposition
of individual (non-overlapping) potentials,

W �r� �
X

i

W �ri � Ri;k � Ri;zz�;�
X

i

Wi�Ri;z�;

�54�
with

Wi�Ri;z� �
Wr; rij j6 bi�Ri;z�
V0 otherwise 8i 2 I�L�Ri;z�� 8Ri;z

8<:
�55�

where Wr is a suitable constant, and r stands for
`reference system'.

6.3. Multiple scattering

Using ``traditional'' multiple-scattering theory
[34], the Green's function in Eq. (50) can be writ-
ten in a partial wave representation as

G�ri � Ri; r
0
i � Rj; ��

�
X
LL0

Ri
L�ri; ��Gij

LL0 ���Rj
L0 �r0j� � dij

�
X

L

Ri
L�ri;<; ��H i

L�rj;>; ��; �56�

where the Ri
L�r; �� and H i

L�r; �� are properly nor-
malized regular and irregular scattering solutions

[35] corresponding to the energy � and the poten-
tial Vi�Ri;z�. The so-called Green's function ma-
trix G��� � Gij���f g;Gij��� � Gij

LL0 ���
� 	

is then
given by

G��� � G0��� �G0���t���G0���
�G0���t���G0���t���G0��� � � � �

� G0��� I
� ÿ t���G0����ÿ1

; �57�
namely in terms of G0���, see Eq. (51), and of
single-site t matrices t��� � ti

L���dij

� 	
; with I de-

noting a unit matrix . The scattering-path operator
s��� � sij

LL0 ���
� 	

, see for example [35],

s��� � t���ÿ1
h

ÿG0���
iÿ1

�58�

is related to (57) through

G��� � G0��� �G0���s���G0���
� t���ÿ1s���t���ÿ1 ÿ t���ÿ1: �59�

6.4. Screening transformations

Eqs. (57)±(59) can easily be reformulated with
respect to a new reference system r: If the single-
site t matrices corresponding to Wr are denoted by
tr���, the respective Green's function matrix,
Gr��� � fGr;ij���g, Gr;ij��� � fGr;ij

LL0 ���g, see also
Eq. (46), is given by:

Gr��� � G0��� �G0���tr���G0���
�G0���tr���G0���tr���G0��� � � � � ;

� G0��� I
� ÿ tr���G0����ÿ1

: �60�
By introducing the following di�erence,

tD��� � t��� ÿ tr���; �61�

one obtains for G���:
G��� � Gr��� �Gr���tD���Gr���

�Gr���tD���Gr���tD���Gr��� � � � � ;
� Gr��� I� ÿ tD���Gr����ÿ1: �62�

De®ning ®nally the following scattering-path
operator,
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sD��� � tD���ÿ1
h

ÿGr���
iÿ1

; �63�

G��� can also be expressed as

G��� � Gr��� �Gr���sD���Gr���
� tD���ÿ1sD���tD���ÿ1 ÿ tD���ÿ1

: �64�

Therefore, once tr��� and Gr��� are known, Eqs.
(62)±(64) represent a set of equations equivalent to
Eqs. (57)±(59). Combining Eq. (59) with Eq. (64)
the below relation can easily be read o�,

s��� � t��� tD���ÿ1sD���tD���ÿ1
h

� t���ÿ1
�

ÿ tD���ÿ1
�i

t���: �65�

6.5. Screened structure constants

By choosing a suitable Wr Eq. (60) can be solved
such that

Gr;ij
NR��� � Gr;ij��� � 0 for 8 Rij ÿ RijP d; �66�

where the index NR serves as a reminder that
Gr��� refers to a non-relativistic partial wave rep-
resentation and the distance d has to be viewed as
the radius of a sphere that comprises only a few
types of ``neighboring'' sites such as ®rst- and
second-nearest neighbors [9,17].

The so-called (non-relativistic) screened struc-
ture constants Gr��� can then easily be related to
their relativistic counterparts by means of the fol-
lowing transformation with Clebsch±Gordan co-
e�cients C�r�; for details see Ref. [7],

Gr;ij
R ��� �

X
r��1=2

C�r�yGr;ij
NR���C�r�: �67�

6.6. Application to systems with two-dimensional
translational invariance

Suppose now that in all atomic layers one and
the same two-dimensional translational symmetry
applies, i.e., L�Ri;z� �L 8Ri;z, see also Eq. (28),
with L referring to a simple two-dimensional lat-
tice, and ± in order to simplify the notation ± po-
sition vectors are simply denoted by Rpi

Rpi � Cp � Ri;k; Ri;k 2L; Cp � Ri;zz; �68�

where Cp is sometimes referred to as the ``spanning
vector'' of a particular layer p. According to
Eq. (66) for the lattice Fourier transformed
screened structure constants,

Gr;pq�kk; �� �
X

Rk2L
exp ikk � Rk

� �
Gr�Cp � Rk;Cq; ��;

p; q � 1; . . . ; n; �69�

therefore the following assumption can be made:

Gr;pq�kk; �� � 0 if j p ÿ q j> N ; �70�

where N is a suitably chosen parameter. Consider
now the following tridiagonal supermatrix,

0 0 0 0 0 0 0
0 A21 A22 A23 0 0 0
0 0 A32 A33 A34 0 0
0 0 0 A43 A44 A45 0

..

. . .
.

0BBBBB@

1CCCCCA; �71�

i.e., a matrix where each matrix element Aij is a
square matrix. According to Eq. (70), a non-van-
ishing block of dimension Nof elements Gr;pq�kk; ��;
�jp ÿ qj6N�, can be viewed as one particular ele-
ment of such a tridiagonal matrix. Labelling the
rows and columns of this tridiagonal matrix by P
and Q (``principal layers'') the supermatrix of the
screened structure constants, Gr�kk; �� �
fGr;pq�kk; ��g, can therefore be viewed also as a
tridiagonal matrix in principal layers, 2

Gr�kk; �� � fGr;PQ�kk; ��g: �72�

Furthermore, if a parent three-dimensional lattice
[15] can be assumed, i.e., if all interlayer distances
are equal (no layer relaxation), then obviously the
elements of this tridiagonal matrix are of the fol-
lowing form:

2 Note that for matters of transparency in the following the

elements of a matrix labelled by principle layers are character-

ized by underlined letters.
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Gr;PQ�kk; �� �

Gr;00�kk; ��; P � Q;

Gr;01�kk; ��; P � Qÿ 1;

Gr;10�kk; ��; P � Q� 1;

0 otherwise:

8>>>><>>>>: �73�

It should be noted that in the case of layer relax-
ations in principle all Gr;PQ�kk; �� are di�erent, see
also [28], although Gr�kk; �� is still formally tridi-
agonal.

The kkth projection of sD���; see Eq. (63), is
then given by

sD�kk; �� � tD���ÿ1
h

ÿGr�kk; ��
iÿ1

; �74�

where

tD��� � ftP
D���dPQg; tP

D��� � ftp
D���dpqg; �75�

sD�kk; �� � fsPQ
D �kk; ��g; sPQ

D ��� � fspq
D ���g: �76�

Quite clearly, since tD��� formally is a diagonal
supermatrix, the inverse of sD�kk; �� is of tridiag-
onal form.

Usually for a system with a surface or with
interfaces, three regions of di�erent physical
properties can be distinguished, namely a left semi-
in®nite system (L), a right semi-in®nite system (R)
and an intermediate region (I), see also the dis-
cussion in [15,36]. These regions correspond to the
following numbering scheme for principal layers:

L : ÿ1 < P 6 0;
I : 16 P 6 n;
R : n� 16 P <1;

�77�

which in turn implies that sD�kk; ��
� �ÿ1

can be
partitioned as follows:

sD�kk; ��
� �ÿ1

�
sD�kk; ��
� �ÿ1

L;L
sD�kk; ��
� �ÿ1

L;I
0

sD�kk; ��
� �ÿ1

I;L
sD�kk; ��
� �ÿ1

I;I
sD�kk; ��
� �ÿ1

I;R

0 sD�kk; ��
� �ÿ1

R;I
sD�kk; ��
� �ÿ1

R;R

0BBB@
1CCCA:
�78�

In order to evaluate s�kk; ��I;I use can be made of
the so-called surface scattering path operators, see,
in particular, the discussion in [4,6], which in turn

refer to the so-called ``missing elements'' in the
above tridiagonal matrix,

DL�kk; �� � tL
D���ÿ1
h

ÿ Gr;00�kk; ��

ÿ Gr;10�kk; ��DL�kk; ��Gr;01�kk; ��
iÿ1

;

�79�
DR�kk; �� � tR

D ���ÿ1
h

ÿ Gr;00�kk; ��

ÿ Gr;01�kk; ��DR�kk; ��Gr;10�kk; ��
iÿ1

:

�80�
It should be noted that in Eqs. (79) and (80) and in
the following equation a parent three-dimensional
lattice is assumed. In terms of these two quantities,
which have to be calculated self-consistently, the
PQth element of the scattering path operator in
the interface region is then given by

sD�kk; ��
� �ÿ1

I;I

h iPQ

� tP
D���ÿ1

�
ÿ Gr;00�kk; ��

�
dPQ

ÿ Gr;01�kk; ��dP ;Qÿ1 ÿ Gr;10�kk; ��dP ;Q�1

ÿ Gr;10�kk; ��Dr
L�kk; ��Gr;01�kk; ��dP ;1dQ;1

ÿ Gr;01�kk; ��Dr
R�kk; ��Gr;10�kk; ��dP ;ndQ;n:

�81�
Finally, with respect to two given sites, Rn � Rn;k�
Cp and Rm �Rm;k �Cq, respectively, Rn;k;Rm;k 2L,
the so-called site representation of sD�kk;�� in the
interface region can be obtained by means of the
following Surface Brillouin Zone (SBZ) integral,

snm
D �e� �

1

XSBZ

Z
exp

�ÿ ikk � �Rn;k ÿ Rm;k�
�

� spq
D �kk; ��dkk; �82�

where XSBZ is the unit area of the two-dimensional
SBZ. Since the ``unscreened'' scattering path op-
erator snm�e� is always related to snm

D �e� via Eq.
(65), in the following sections simply snm�e� is used.

6.7. Rotation of frames

Now we shall go back to the Kohn±Sham±
Dirac Hamiltonian in Eq. (14) and the section that
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introduced the concept of magnetic con®gurations.
Let R 2 O�3� be a rotation, which transforms the
orientation of the e�ective magnetization npi of site
i in the pth layer into the direction bz. Furthermore,
let tpi��� refer to the single-site t-matrix if npi is
parallel to ẑ, while tpi

R ��� refers to the t-matrix if npi

points along the direction Rÿ1bz. Because the ef-
fective potential and the e�ective exchange ®eld
are spherical symmetric, see Eqs. (52) and (53),
these two single-site t-matrices are related to each
other by the following similarity transformation,

tpi
R ��� � D�R�tpi���D�R��; �83�

where D�R� contains blockwise the irreducible
projective representations [41] of R. Clearly en-
ough, two-dimensional translational invariance
then implies that

tpi
R ��� � tp0

R ��� 8i 2 I�L�; �84�
where i � 0 refers to the origin of L.

Special care has to be taken in performing the
occurring Brillouin Zone integrals needed to eval-
uate the elements of the scattering path operator,
see Eq. (82), since in the presence of a magnetic ®eld
these integrals can no longer be restricted [3] to an
irreducible wedge of the corresponding SBZ. Let G
be the point group of the underlying two-dimen-
sional lattice, such as for example C4v in the case of
an fcc (0 0 1) surface, and suppose D�S� contains
blockwise the irreducible projective representations
[41] of S 2 G. If IBZ1 denotes an irreducible wedge
of the SBZ, then any other wedge IBZS of the SBZ is
de®ned by

IBZS � fSkk j kk 2 IBZ1g; S 2 G; �85�
such that

SBZ �
X
S2G

IBZS : �86�

It can easily be shown that

spq�Sÿ1kk; �� � D�S��spq
S �kk; ��D�S�; �87�

where ± as should be noted ± p; q are layer indices
and spq

S �kk; �� refers to the corresponding similarity
transformed t-matrix tp0

S ���, as de®ned in Eq. (83).
The SBZ-integral, Eq. (82), can therefore be
expressed as

spq��� �
X
S2G

D�S�� 1

XIBZ1

Z
IBZ1

spq
S �kk; ��dkk

� �
D�S�;

�88�
where XIBZ1

denotes the surface area of IBZ1.
Eq. (88) implies (i) that the structure constants
need only be evaluated for a chosen set of
kk 2 IBZ1 and (ii) that for any pair S;R 2 G for
which tp0

S ��� � tp0
R ��� the integrals in Eq. (88) are

identical.

6.8. Physical observables

Based on the Green function in Eq. (56) phys-
ical observables can be evaluated in the usual
manner, see, e.g., [35]. For matters of completeness
below, only the corresponding expressions for the
spin-only magnetic moments mspin and the orbital
magnetic moments morb (in units of lB) are given,

mspin � ÿ 1

p
Im

Z
C

TrfbrzG�z�gdz; �89�

morb � ÿ 1

p
Im

Z
C

TrfbLzG�z�gdz; �90�

where C denotes an integration contour in the
upper half of the complex energy plane, which
starts at the real axis below the valence band
(``band bottom'') and ends at the Fermi energy, Tr
denotes the trace in the tensorial space of spin and
con®guration, and Lz is the z component of the
angular momentum operator.

6.9. Atomic sphere approximation

Frequently in practical calculations the so-
called atomic sphere approximation (ASA) is used
in which the unit volume Xp corresponding to the
origin of the two-dimensional lattice characteriz-
ing atomic layer p is replaced by a sphere of equal
volume,

4p
3

Rp
WS� �3 � Xp:

The radius of this sphere ± the Wigner-Seitz radius
± is then used to (a) calculate respective single site
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t-matrices and (b) determine the normalization
integrals of scattering solutions needed to evaluate
densities of states, Bloch spectral functions, or
magnetic moments, see in particular the discussion
in [35], i.e., Rp

WS replaces uniformly the mu�n-tin
radii.

7. The coherent potential approximation for layered

systems

For a given intermediate region of n layers the
so-called coherent scattering path operator sc�z� is
de®ned by the following SBZ integral [5],

spi;qj
c �z��Xÿ1

SBZ

Z
exp
�ÿ ikk ��Ri;kÿRj;k�

�
�spq

c �kk;z�dkk; �91�

which implies that in each layer p for the coherent
single-site t-matrices the following translational
invariance applies:

tpi
c �z� � tp

c�z� 8i 2 I�L�: �92�

In Eq. (91) it is supposed that in all atomic layers
one and the same two-dimensional translational
symmetry applies, i.e., L�Ri;z� �L 8Ri;z, see also
Eq. (28), where L refers to a simple two-dimen-
sional lattice, and ± as in the previous section ±
position vectors are simply denoted by Rpi

Rpi � Cp � Ri;k; Ri;k 2L; Cp � Ri;zz: �93�

In Eq. (91) and in the following (super-) matrices,
labelled by layers only shall be used:

tc�z� �

t11
c �z� 0 � � � 0

. .
.

0 � � � tpp
c �z� � � � 0

. .
.

0 � � � 0 tnn
c �z�

0BBBBBBBBBBB@

1CCCCCCCCCCCA
;

sc�z� �

..

. ..
.

� � � spp
c �z� � � � spq

c �z� � � �
..
. ..

.

� � � sqp
c �z� � � � sqq

c �z� � � �
..
. ..

.

0BBBBBBBBBBB@

1CCCCCCCCCCCA
; �94�

with tpp
c �z� � tp

c�z� and p; q � 1; . . . ; n. Quite clearly
a particular element of sc�z�,

spq
c �z� � spi;qi

c �z� � sp0;q0
c �z� � Xÿ1

SBZ

Z
spq

c �kk; z�dkk;

�95�

refers to the unit cells (i � 0) at the origin of L in
layers p and q. Suppose now the concentration for
constituents A and B in layer p is denoted by ca

p
(p � 1; . . . ; n), and one speci®es the occupation in
the unit cell at the origin of L of a particular layer
p in terms of the following matrix mpa�z�

mpa�z� �

0 � � �
. .

.

0 � � � mp
a�z� � � � 0

. .
.

� � � 0

0BBBBBBBBB@

1CCCCCCCCCA
;

mp
a�z� � tp

c�z�ÿ1 ÿ tp
a�z�ÿ1

; a � A;B; �96�

where tp
a�z� is the single-site t-matrix for constitu-

ent a in layer p. The corresponding layer-diagonal
element of the so-called impurity matrix is then
given by

Dpp
a �z� � Dp0;p0

a �z� � 1� ÿ mp
a�z�sp0;p0

c �z��ÿ1
; �97�

and speci®es a single impurity of type a in the
translational invariant ``host'' formed by layer p.
The coherent scattering path operator for the in-
termediate region (multilayer) sc�z� is therefore
obtained from the following inhomogeneous co-
herent potential approximation (CPA) condition
[13],
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spp
c �z� �

X
a�A;B

ca
p spp�z�h ip;a;

spp�z�h ip;a � spp
a �z� � Dpp

a �z�spp
c �z�; p � 1; . . . ; n;

�98�
i.e., from a condition that implies solving simul-
taneously a layer-diagonal CPA condition for
layers p � 1; . . . ; n. Once this condition is met then
translational invariance in each layer under con-
sideration is achieved,

spp�z�h ip;a � sp0;p0�z�
 �
p0;a
� spi;pi�z�h ipi;a

8i 2 I�L�; a � A;B; p � 1; . . . ; n: �99�
Similarly, by specifying the occupation in two
di�erent sites, see e.g. [35], the following restricted
averages are obtained,

p 6� q : spi;qj�z�h ipia;qjb

� Dpp
a �z�spi;qj

c �z�Dqq
b �z�t 8i; j 2 I�L�; �100�

p � q : spi;pj�z�h ipia;pjb

� Dpp
a �z�spi;pj

c �z�Dpp
b �z�t 8 i� 6� j� 2 I�L�; �101�

where spi;qj
c �z�
 �

pia;qjb
has the meaning that site

(subcell) pi is occupied by species a and site (sub-
cell) qj by species b and the symbol t indicates a
transposed matrix.

8. Anisotropy energies

8.1. The band energy contribution

In general, as already stated previously,
a magnetic anisotropy energy is de®ned as the
energy di�erence between two di�erent mag-
netic con®gurations. Using a Kohn±Sham±Dirac
Hamiltonian as given in Eq. (14) such an anisot-
ropy energy has to be compiled from the respective
total energy di�erence and a contribution re¯ect-
ing the energy di�erence arising from the di�erent
magnetic dipole±dipole interactions. This term,
which is not included in a density functional-like
approach is usually described classically.

Restricting in the following magnetic anisotro-
pies to the special case of perpendicular anisotro-

pies, the magnetic anisotropy energy DEa�N� is
then de®ned as the energy di�erence between a
uniform in-plane (d � k) and a uniform normal-to-
plane (d �?) orientation of the magnetization,

DEa�N� � DE�N� � DEdd�N�; �102�
where DE�N� and DEdd�N� are the corresponding
total energy and magnetostatic dipole-dipole
energy di�erence, respectively,

DE�N� � E�N ; k� ÿ E�N ;?�; �103�

DEdd�N� � Edd�N ; k� ÿ Edd�N ;?�; �104�
and N speci®es the number of atomic layers in the
system of consideration. Relying on the ``Magnetic
Force Theorem'' (see e.g. Ref. [42]) DE�N� can be
replaced by the corresponding di�erence DEb�N�
of the grand potentials Eb�N ; d�; (d � k or ?), see
also the following section.

8.1.1. Layer-resolved band energy contributions
In the more general case of (statistically) dis-

ordered multilayers, i.e., when using the CPA,
Eb�N ; d� is de®ned as

Eb�N ; d� �
XN

p�1

X
a

ca
pEp;a

b �d�;

Ep;a
b �d� �

Z �F

ÿ1
��ÿ �F�na

p��; d� d�;

�105�

where p speci®es a certain layer, a refers to a
particular component of concentration ca

p and the
na

p��; d� are the layer and component projected
local densities of states (see also Ref. [13]). Since

�F

Z �F

ÿ1
na

p��; k�
�

ÿ na
p��;?�

�
d� �106�

is rather very small, DEb�N� is usually termed
``band energy contribution''. It should be noted
that in the case of a non-magnetic substrate, one
and the same Fermi level �F applies for all mag-
netic con®gurations.

8.1.2. Discrete Fourier transformations
Consider the following ``capped trilayer sys-

tem'', where (hkl) is the surface orientation of the
substrate and the cap can consists of r layers of a
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suitable metal (not necessarily the same as the
substrate),

Substrate�hkl�=ConCumCon=�Cap�r: �107�
Possible oscillatory behavior of DEb�n;m; r� with
respect to either the number of Co layers n, the
number of Cu-spacer layers m, or the number of
cap layers r, can be detected best in terms of dis-
crete (linear) Fourier transforms. By keeping, for
example, m and r constant such a Fourier trans-
formation with respect to a varying number of Co
layers, n � 1; . . . ;N , is de®ned by

F �q; m; r� � 1

N

XN

n�1

x n� � exp�iqn�DEb�n;m; r�; �108�

where usually a prefactor x n� � � n2 is applied. The
positions qi of pronounced maxima of F �q; m; r�j j
then describe the periods of the oscillations.
Furthermore, a discrete Fourier transform of
DEb�n;m; r� with respect to a reference level can be
de®ned,

DF �q;m;r�� 1

N

XN

n�1

x n� �exp�iqn� DEb�n;m;r�� ÿE0�;

�109�

where E0 is given, e.g., by either the following
mean value

E0 � 1

N

XN

n�1

DEb�n;m; r� �110�

or by a so-called biased value such as Ea�n;1�,
where taking the example in (107) Ea�n;1� cor-
responds to Con multilayers on Cu(1 0 0) with a
semi-in®nite Cu cap.

In the same manner layer-resolved quantities
such as layer-resolved magnetic moments or band
energy di�erences can be discrete Fourier trans-
formed. In such a case the summation is to be
taken over all layers in a particular system,

F �q; m; r� � 1

P

XP

p�1

exp�iqp�DEp;a
b �n;m; r�; �111�

such as P � 2n� m� r for the example given in
(107).

8.1.3. Intrinsic quantities
Suppose the magnetic anisotropy energy or

other physical properties of repeated magnetic
multilayer systems such as superstructures of Co
and Pd on a Pd substrate

Pd�hkl�= ConPdm� �r �112�

have to be described theoretically. Use of Eq. (111)
with P � r � �n� m� will then show the periods of
repetition for a particular physical property O�r�.
Clearly enough these periods can be multiples of
n;m or �n� m�: In order to call such a system
``colloquially'' a superlattice, in addition to well-
developed peaks in F �q; m; r�j j at q0 � Lr, L being
an integer number, a characteristic volume also
has to be de®ned. If therefore for a su�ciently
large R;

lim
r!R

O�r�
r
� O�R� � O � const; �113�

i.e., if O�R� depends only very weakly on the
number of repetitions, then O�R�=R can be re-
garded as a kind of ``intrinsic'' quantity or ``satu-
ration value''.

8.2. Magnetic dipole±dipole energy contribution

8.2.1. The classical magnetic dipole±dipole interac-
tion

If one partitions the con®gurational space into
cells centered around positions R, then within the
dipole approximation the relativistic current±cur-
rent interaction energy is reduced to the magne-
tostatic dipole±dipole interaction energy, which
can be expressed [37] (in atomic rydberg units) as

Edd � 1

c2

X
R;R0

0 mRmR0

jRÿ R0j3
(

ÿ 3
�mR � �Rÿ R0���mR0 � �Rÿ R0��

jRÿ R0j5
)
; �114�

where mR is the magnetic moment at site
R � Rpa � Rk;Rk 2L, with Rpa specifying a site in
the unit cell of the system at layer p and sublat-
tice a. The primed sum indicates a restriction
to R 6� R0. Since two-dimensional translational
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invariance pertains within the layers, Eq. (114) can
be rewritten as

Edd �
X
pa;qb

mpamqb

c2
bnMdd

pa;qbbn; �115�

6ptwhere bn refers to a given uniform orientation of
the magnetization (magnetic moments). In (115)
the so-called two-dimensional (ferromagnetic) di-
pole±dipole Madelung constant matrix is de®ned
by

Mdd
pa;qb �

X
Rk

0 1

jRpa ÿ Rqb ÿ Rkj3

� I

(
ÿ �Rpa ÿ Rqb ÿ Rk� 
 �Rpa ÿ Rqb ÿ Rk�

jRpa ÿ Rqb ÿ Rkj2
)
;

�116�

where I is a 3� 3 unit matrix and 
 denotes a
tensorial product of vectors. In (116) the prime

indicates that for Rpa � Rqb the singular term
corresponding to Rk � 0 is excluded from the
summation.

For jRpa;? ÿ Rqb;?j 6� 0 the magnetostatic Pois-
son equation can be solved in a straightforward
manner (see also Ref. [38]) by using a Fourier
expansion [39] that results into a fast convergent
series

Mdd
pa;qb�ÿ

2p
A

X
Gk 6�0

jGkjexp
ÿÿjGkjjRpa;?ÿRqb;?j

�
�exp iGk � �Rpa;k

ÿ ÿRqb;k�
�

�
ÿGk
Gk
jGkj2

ÿ isgn�Rpa;?ÿRqb;?�Gk
1

jGkj

ÿisgn�Rpa;?ÿRqb;?�1
Gk
jGkj 1

0@ 1A;
�117�

where A is the two-dimensional unit cell area and
the Gk are two-dimensional reciprocal space vec-
tors. It should be noted that the Gk � 0 compo-
nent does not contribute to the `o�-plane' terms.
For the (0 0 1) and (1 1 1) faces of the simple cubic

Fig. 1. Convergence of the band energy contribution to the

magnetic anisotropy energy with respect to the number of

k-points used in the irreducible part of the SBZ. Diamonds: free

surface of Cu(1 0 0)/Co11; squares: Cu(1 0 0)/CuCo11Cu/

Cu(1 0 0), and circles: Cu(1 0 0)/AuCo11Au/Cu(1 0 0).

Fig. 2. Layer-resolved magnetic moment di�erences with

respect to the ferromagnetic alignment in Au(1 0 0)/FeAu3Fe/

Au(1 0 0). Three cases: empty triangles, center Au-spacer layer;

®lled squares, Au-spacer layers at the Fe/Au interface; empty

circles, Fe-layers. See also Ref. [19].
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lattices (sc, bcc or fcc) Eq. (117) can be further
reduced to

Mdd
pq � Mdd

pq �
ÿ 1

2
0 0

0 ÿ 1

2
0

0 0 1

0BBBB@
1CCCCA; �118�

where

Mdd
pq � ÿ

2p
A

X
Gk 6�0

jGkj exp
ÿÿ jGkjjRp;? ÿ Rq;?j

�
� cos Gk � �Rp;k

ÿ ÿ Rq;k�
�
: �119�

For this special case the two-dimensional ferro-
magnetic dipole±dipole Madelung constants for
p � q can be evaluated by using a standard Ewald
summation technique,

Mdd
pp �

X
Rk 6�0

erfc jRkj=2r
ÿ �
jRkj3

8<: �
exp ÿ jRkj2=4r2

� �
r
���
p
p jRkj2

9=;
ÿ 2p

A

X
Gk 6�0

jGkjerfc jGkjr
ÿ ��

ÿ 1

r
���
p
p exp

�
ÿ jGkj2r2

��
ÿ 1

6r3
���
p
p � 2

���
p
p
Ar

; �120�

where r is the Ewald parameter and erfc�x� �
1ÿ erf�x� [40]. Finally, by using polar coordinates
for the unit vector bn� (sin(H) cos(/), sin(H)
sin(/), cos(H)), one immediately obtains that

bn ÿ 1

2
0 0

0 ÿ 1

2
0

0 0 1

0BBBB@
1CCCCAbn � 3

2
cos2�H� ÿ 1

2
; �121�

Fig. 3. Band energy contribution to the magnetic anisotropy

energy as a function of Co layers. Diamonds: free surfaces of

Cu(1 0 0)/Con; squares: Cu(1 0 0)/CuConCu/Cu(1 0 0); circles:

Cu(1 0 0)/AuConAu/Cu(1 0 0), and up-triangles: Cu(1 0 0)/

ConCumCon/Cu(1 0 0). The inset shows the continuation for n

P 15 for the Cu(1 0 0)/Con/Cu(1 0 0) systems. From Ref. [20].

Fig. 4. Relative band energy contribution to the magnetic an-

isotropy energy as a function of Cu-spacer layers m in Cu(1 0 0)/

ConCumCon/Cu(1 0 0), n� 1 (circles), 4 (squares), 6 (diamonds).

From Ref. [20].
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which implies that the orientational dependence of
the magnetostatic dipole±dipole anisotropy ener-
gy, DEdd , can be simply written as [38]

DEdd�H� � �Ekdd ÿ E?dd� sin2�H�: �122�

8.2.2. Disordered systems
In terms of a general inhomogeneous CPA for

layerwise, binary substitutionally disordered sys-
tems the magnetic moments arising from the con-
stituents have to be weighted with their respective
concentrations such that to each site in a given
layer p a uniform magnetic moment applies.

hmpi �
X

a

ca
pma

p; �123�

where h i denotes an average over statistical con-
®gurations and ma

p refers to the magnetic moment
of component a in layer p. It should be noted that
by using the above averaged magnetic moments in

Eq. (115), one in fact neglects vertex corrections of
the kind hmRmR0 i ÿ hmRihm0Ri, where R and R0

refer to two di�erent sites.

9. Applications

9.1. k-convergence of the band energy contribution

In order to obtain reliable band energy di�er-
ences, in principle for every new type of system the
convergence of DEb with respect to the number of
kk values used to evaluate the relevant SBZ inte-
grals, see in particular Eq. (88), has to be checked.
In Fig. 1 typical examples are shown, namely for a
free surface and for sandwich systems. As can be
seen from this ®gure, by using more than 900 kk
values 2 SBZ1, usually rather well-converged val-
ues can be expected, the inherent error being of the
order of 0.01± 0.02 MeV. It should be noted that in
order to achieve self-consistency for the e�ective

Fig. 5. Absolute values of discrete Fourier transformations as a function of q. Left panel: with respect to the number of Co layers n in

Cu(1 0 0)/Con/Cu(1 0 0), right panel: with respect to the number of Cu-spacer layers m in Cu(1 0 0)/Co1CumCo1/Cu(1 0 0) as obtained by

excluding the preasymptotic regime. From Ref. [20].
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Fig. 6. Absolute values of the discrete Foruier transformation of the layer-resolved band energy contributions to the magnetic

anisotropy energy with respect to layers in Cu(1 0 0)/(Cu3Ni3�n. The dotted line refers to free surfaces, the full line to a semi-in®nite

Cu cap. From Ref. [23].
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potentials and exchange ®elds usually substantially
less kk values are needed.

9.2. Validity of the Magnetic Force Theorem

By applying the so-called Magnetic Force
Theorem, it is assumed that the size of the mag-
netic moments does not change when changing the
orientation of the magnetization either uniformly
or in particular layers. Suppose that in the system
Au(1 0 0)/FeAu3Fe/Au(1 0 0) the ferromagnetic
con®guration corresponds to a uniform in-plane
orientation of the magnetization. Suppose further
that in one of the Fe layers the orientation of the
magnetization is now rotated from parallel to an-
tiparallel, i.e., by an angle 06 d6 p around the
surface normal. Quite clearly in order to compare
total energy di�erences with di�erences in band
energies based on the Magnetic Force Theorem,
both quantities have to be well converged with
respect to the number of applied kk values, see in
particular the discussion in [19].

Fig. 2 shows the changes of the (self-consis-
tently obtained) layer-resolved magnetic moments

with respect to the ferromagnetic con®guration as
a function of d. As can be seen, even in a rather
small system, where self-consistency e�ects got to
be rather large, the changes in the magnetic mo-
ments are very small. For a rotation by p=2 they
are of the order of 0.005 lB. Thus in general it can
be assumed that the Magnetic Force Theorem
applies reasonably well. In most cases it is there-
fore su�cient to evaluate for a particular system
the e�ective potentials and e�ective exchange ®elds
self-consistently only for one magnetic con®gura-
tion (reference con®guration) and use the thus
obtained e�ective potentials and e�ective exchange
®elds also for other magnetic con®gurations. This
in practical terms is the essence of the Magnetic
Force Theorem.

9.3. Oscillations in the band energy contribution

Frequently the band energy contribution to the
magnetic anisotropy energy shows oscillations ei-
ther with respect to the number of magnetic layers,
the number of spacer layers, the number of cap
layers, or with respect to all these parameters.

Fig. 7. Band energy contribution to the magnetic anisotropy energy (left) and per repetition (right) in Cu(1 0 0)/(Cu3Ni3�n. Circles refer

to free surfaces, squares to a semi-in®nite Cu cap. From Ref. [23].
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Fig. 3 shows such oscillations for a variety of Co-
related multilayer systems on Cu(1 0 0) with re-
spect to the number of Co layers, see in particular
[20]. With exception of the system with strongly
perturbed interfaces, namely Cu(1 0 0)/AuConAu/
Cu(1 0 0), all these systems exhibit oscillations with
a period of two. Oscillations in DEb with respect to
the number of spacer layers in Cu(1 0 0)/
ConCumCon/Cu(1 0 0) are displayed in Fig. 4.
Using discrete Fourier transformations, see in
particular Eqs. (108) and (109), the periods of such
oscillations can easily be traced. As can be seen
from Fig. 5, with respect to the number of Co
layers there is a peak at q0 � 0:5, the correspond-
ing period, qÿ1

0 , is exactly what was already read o�
from Fig. 3. With respect to the number of Cu-
spacer layers two peaks can be traced, the corre-
sponding periods ± the so-called short and long
period ± are exactly those to be seen in an ab initio
description of the interface exchange coupling in
these systems. This is not really surprising, since
the discussion on magnetic con®gurations made
already clear that the so-called interface exchange
coupling refers to nothing else but a (band) energy
di�erence between two magnetic con®gurations.

9.4. Repetitions, superstructures

In Fig. 6 discrete Fourier transformations of the
layer-resolved DEn

b (with respect to the number of
layers) are displayed, see Eq. (111), varying the
number of repetitions n in the system Cu(1 0 0)/
(Cu3Ni3)n. As can be seen in this ®gure, with an
increasing number of repetitions, the peak at
q0 � 1=6 grows in intensity and sharpens up. At
least for the band energy part of the anisotropy
energy this implies that the thickness (in mono-
layers) of the repeated unit (Cu3Ni3) is indeed the
period of oscillations with respect to the number of
layers, see [23]. The other rather small peak at
q1 � 1=3 is usually referred to as an ``aliasing
peak''. From this ®gure it is pretty obvious that
``periodicity'' along the surface normal is much
less pronounced for free surfaces than for systems
with a semi-in®nite Cu-cap.

Fig. 7 shows the band energy contribution DEb

and DEb=n with respect to the number of repeti-
tions n. As can be seen in there, in the case of free

surfaces even after 11 repetitions DEb=n is not
really constant, i.e., DEb=n did not become an
``intrinsic quantity'', while for the capped system,
for n P 10 nearly no further changes occur. Quite
clearly, at least for free surfaces of this type of
system the concept of ``superlattices'' can hardly
be justi®ed.

9.5. Reorientation transitions

9.5.1. The Fen/Au(1 0 0) system
In Fig. 8, a very typical reorientation of the

magnetization from perpendicular to in-pane is
shown for Fe multilayers on Au(1 0 0), see [7],

Fig. 8. Reorientation transition for free surfaces of Fe on

Au(1 0 0). Circles: band energy contribution; triangles: magnetic

dipole±dipole contribution; squares: magnetic anisotropy

energy. From [7].
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whereby no layer relaxation is assumed with re-
spect to the parent fcc lattice of Au. The reorien-
tation transition occurs between three and four
monolayers of Fe, which coincides nicely with
available experimental data. Fig. 8 is meant to
show in particular the importance of the magnetic
dipole±dipole contribution (``shape anisotropy'') to
the magnetic anisotropy energy, since quite obvi-
ously the reorientation transition is driven by this
quantity.

9.5.2. Fen/Cu(1 0 0) and (FecCo1ÿc)n/Cu(1 0 0)
According to the literature Fe overlayers on

Cu(1 0 0) seem to be the most disputed system in
the ®eld of perpendicular magnetism. Di�erent
experimental set-ups and/or growing conditions
lead to rather contradicting results. The reasons
for all the di�culties arise most likely from the fact
that (a) in di�erent experiments di�erent interlayer
relaxations pertain, and (b) antiferromagnetic

coupling between the Fe layers occurs, the type of
which can again depend on di�erent interlayer
spacings, see also [12,16,18]. In Fig. 9 a ``phase
diagram'' of the reorientation transition in
Cu(1 0 0)/(FecCo1ÿc)n is shown [24] that also in-
cludes the case c � 1. The results in this ®gure
correspond to the use of a parent fcc-Cu lattice (no
layer relaxation) and are supposed to illustrate the
applicability and usefulness of the CPA, discussed

Fig. 9. Phase diagram of the reorientation transition for

Cu(1 0 0)/(FecCo1ÿc)n. From [24].

Fig. 10. Reorientation transition for free surfaces of Cu(1 0 0)/

Nin as calculated for di�erent interlayer spacings. Top: mag-

netic anisotropy energy, middle: band energy contribution,

bottom: magnetic dipole±dipole contribution. From [30].
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earlier. It should be noted that for c < 1 the ex-
perimental analogon of Fig. 9 is rather of very
similar shape, see [24] and references therein.

9.5.3. Nin/Cu(1 0 0) and Com=Nin/Cu(1 0 0)
While in most systems showing a reorientation

transition this transition is from a perpendicular to
an in-plane orientation of the magnetization,
multilayers of Ni on Cu(1 0 0) exhibit just the op-
posite behavior: below about seven monolayers of
Ni the orientation of the magnetization is in-plane,
then switches with an increasing number of Ni
layers to perpendicular (®rst reorientation transi-
tion), and eventually for n P 35 turns again to in-
plane (second reorientation transition). It was

shown recently, see [30] and the discussion therein,
that the ®rst reorientation transition is essentially
caused by tetragonal distortions with respect to the
lattice spacing of the substrate, since with de-
creasing interlayer distance the band energy con-
tribution is considerably increased. Exactly this is
shown in Fig. 10. It should be noted that experi-
mentally the ®rst reorientation transition occurs at
about seven monolayers of Ni, the interlayer dis-
tances being contracted by 5.5% as compared to
fcc Cu.

The second reorientation transition is even
more complicated as with an increasing number
of Ni layers in-plane relaxations also occur. Since
this implies that no longer it can be assumed that
in all atomic planes one and the same two-di-
mensional lattice applies, only model-like studies
are at present available. Combining systems with
respect to n1 relaxed Ni layers on Cu(1 0 0) and
n2 unrelaxed Ni layers on Ni(1 0 0), these two

Fig. 11. A model for the band energy contribution to the

magnetic anisotropy energy for free surfaces of Cu(1 0 0)/Nin
taking into account relaxation of interlayer distances and in-

plane spacings. Full squares: Cu(1 0 0)/Ni15(ÿ5:5%)/Ni12(0%),

empty squares: Ni(1 0 0)/Ni18(0%). From [32].

Fig. 12. Number of Co layers at which the (second) reorien-

tation transition in relaxed free surfaces of Cu(1 0 0)/Ni�n1�n2�/
Com occurs. From [32].
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systems can be considered to be ``stacked to-
gether'', see Fig. 11, in order to predict also the
second reorientation transition in the system
Cu(1 0 0)/Nin, n � n1 � n2. Fig. 12 shows the (to-
tal) number of Ni layers at which this reorienta-
tion transition occurs as a function of the
thickness of a Co cap.

9.6. Interdi�usion of superstructures

(ConPdm)r superstructures on Pd-substrates or
(ConPtm)r superstructures on Pt substrates are the
technological basis of most magneto-optical de-
vices. As the size of the (linear) Kerr e�ect is
usually considered to be proportional to the size of

Fig. 13. Band energy contributions to the magnetic anisotropy energy in interdi�used (FenPtn)r- and (ConPtn)r-superstructures on

Pt(1 0 0) and Pt(1 1 1), n � m � 1; r=2 � 15: Top, left: Pt(1 0 0)/(FePt); top, right: Pt(1 0 0)/(CoPt); bottom, left: Pt(1 1 1)/(FePt); bot-

tom, right: Pt(1 0 0)/(CoPt). Circles: Fe or Co, diamonds: Pt, squares: total; cd refers to the interdi�usion concentration. From [33].

434 P. Weinberger, L. Szunyogh / Computational Materials Science 17 (2000) 414±437



the corresponding perpendicular magnetic anisot-
ropy, the question of interdi�usion in such super-
structures is of quite some importance. Assuming
n � m � 1, and considering systems of the type
Pt(1 0 0)/ �FecPt1ÿc�=�Fe1ÿcPtc�� �r for c � 0:5 a
completely disordered equi-concentrational Fe/Pt
alloy forms the magnetic multilayer system, while
for c � 1 an ordered superstructure of (CoPt) is
regained. Denoting the Fe concentration in odd
numbers of layers by cd (interdi�usion concentra-
tion), then quite clearly if r=2 is an odd number for
cd � 1 this leads to an Fe-terminated superstruc-
ture, whereas for r=2 being an even number a Pt-
terminated superstructure is obtained. In Fig. 13
the e�ect of interdi�usion for Fe/Pt and Co/Pt
superstructures, r=2 � 15, on Pt(1 0 0) and Pt(1 1 1)
are shown [33]. From this ®gure one easily can see
that superstructures with Co or Fe behave quite
di�erently, just as well as a di�erent orientation of
the substrate does matter for the actual size of the
magnetic anisotropy.

9.7. Overview

Since only very characteristic features of mag-
netic anisotropy energy studies in terms of the fully
relativistic spin-polarized Screened KKR method
were discussed above in a rather condensed man-

ner, in Table 1 a complete list of references of such
studies is compiled.

Quite clearly for each system listed above a very
detailed analysis of the magnetic anisotropy ener-
gy can be given in terms of layer-resolved quanti-
ties. In a few cases e�ects of ``hybridization'' were
also discussed using relevant parts of orientation
dependent densities-of-states. Since DEb results
from a sum over layer-dependent band energy
contributions, see, e.g., Eq. (105), various partial
sums can serve to distinguish and estimate surface-,
interface- and ``volume-like'' contributions to DEb;
see e.g. [30]. Although such partial sums are not
really well-de®ned, they are useful in testing phe-
nomenological models frequently used in the in-
terpretive part of experimental studies.

10. Conclusion

The fully relativistic spin-polarized Screened
KKR method proved to be extremely useful for
interpreting and predicting various aspects of
perpendicular magnetism. Since in principle this
method is of order N, where N is the number of
planes included in the intermediate region, very
large systems can be treated on an ab initio-like
level. Inclusion of more than 200 atomic layers,

Table 1

Key of references to studies of perpendicular magnetism using the fully relativistic spin-polarized Screened KKR method

Substrate System

Cu(1 0 0) Fe [12] [16] [18] [26]

Co [20] [22]

Ni [23] [30]

Ni/Co [32]

(FexCo1ÿx) [24]

Ag(1 0 0) Fe [25] [27] [29]

``4d, 5d''-overlayers [8]

Au(1 0 0) Fe [7] [10] [11] [19]

``4d, 5d''-overlayers [8]

Au(1 1 1) Co [14]

Pt(1 0 0) Fe [33]

Co [31] [33]

Pt(1 1 1) Fe [33]

Co [31] [33]
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i.e., multilayer thicknesses up to 300± 400 �A, open
up the possibility of describing mesoscopic systems
using an essentially parameter-free quantum me-
chanical approach. Furthermore, since ± within
the limits of the local density functional theory ± a
fully relativistic description is used, no need of
discussing the validity of perturbative approaches
or the singular behavior of certain operators (spin-
orbit interaction) arises.

No doubt, in future applications two further
improvements will be of crucial importance,
namely (a) a truly full-potential version of the
present approach is needed, i.e., a full potential
fully relativistic spin-polarized Screened KKR
implementation (on the way), and (b) theoretical
means to include in-plane lattice relaxations have
to be developed without violating the underlying
principles of two-dimensional lattice Fourier
transformation. Such means can be based either
on uniform displacement relaxations of type dis-
cussed years ago [1,2], or, alternatively, using
Brillouin zone integrations with an additional
phase factor corresponding formally to a ``con-
tinuous'' non-primitive translation.

Finally, it should be noted that as a genuine
Green's function approach, the applied method
serves also as backbone for calculations of electric
(GMR, etc.) and optical (linear Kerr e�ect)
transport in magnetic multilayer systems, and is
ideally suited as basis to any kind of (angle-inte-
grated) spin-resolved spectroscopy.
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