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On the orientational dependence of giant magnetoresistance
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1 Institut für Technische Elektrochemie, Technische Universität Wien, Getreidemarkt 9/158, 1060 Wien, Austria
2 Center for Computational Materials Science, Gumpendorferstrasse 1a, 1060 Wien, Austria
3 Department of Theoretical Physics, Technical University Budapest, Budafoki út 8, 1521 Budapest, Hungary
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Abstract. The functional dependence of the giant magnetoresistance (GMR) with respect to the relative
angle between the orientations of the magnetization in the magnetic slabs of a trilayer system is calculated
by using the Kubo-Greenwood formula for electrical transport together with the fully-relativistic spin-
polarized screened Korringa-Kohn-Rostoker method for semi-infinite systems and the coherent potential
approximation. It is found that the functional dependence of the GMR is essentially of the form (1−cosϕ).

PACS. 71.20.Be Transition metals and alloys – 72.15-v Electronic conduction in metals and alloys –
75.30.Et Exchange and superexchange interactions

1 Introduction

One of the outstanding unresolved questions about the
giant magnetoresistance (GMR) of magnetic multilayers
is its functional dependence with respect to the relative
angle between the orientations of the magnetization in
the magnetic slabs. Some results have been obtained for
free electron models when only spin-dependent scattering
has been considered. These results show that there is a
simple cosϕ dependence in the limit when the mean free
path of the electrons is large compared to the thickness of
the layers [1]. When the role of the variation of the lat-
tice potential from layer to layer is included in the free
electron models, one finds deviations from the cosϕ de-
pendence [2], but no clear trends have been established.
For example, Vedyayev et al. (see Ref. [2]) discussed the
general case with both spin-dependent scattering and po-
tential barriers between successive layers for a spin valve
structure, and showed that when the spin-dependent lat-
tice potential is included, the resistivity is no longer a lin-
ear function of cosϕ. For current in the plane of the layers
(CIP), experiments have found for the most part, the sim-
ple cosϕ behavior [3]; however for current perpendicular
to the plane of the layers (CPP), significant deviations
have been established [4]. What is lacking up till now is a
calculation of the orientational dependence of GMR that
at the same time is based on realistic band structures and
is able to account for spin-dependent scattering.

We have developed the means for calculating the
GMR of multilayered structures that incorporates both
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electronic structure and scattering [5]. We use a
fully-relativistic spin-polarized screened Korringa-Kohn-
Rostoker (SKKR) method for the electronic structure
of layered systems, the coherent potential approximation
(CPA) for the scattering, and the Kubo-Greenwood for-
mula for the conductivity. To date, we have considered
only collinear magnetic configurations of the magnetic
slabs, i.e., parallel and antiparallel; here we determine
the complete variation of the resistivity with angle, and
thereby the angular variation of GMR. As our method is
fully relativistic, it includes spin orbit coupling which re-
lates the orientation of the magnetization to the lattice;
therefore, we are able to assess the extent to which this in-
fluences resistivity and GMR. In addition, we have previ-
ously used the same SKKR method to calculate the inter-
layer exchange coupling (IEC) of multilayered structures,
and it is of interest to compare the angular dependence
of the GMR and IEC. There have been suggestions that
the two are related for the CPP geometry [6], but for CIP
there is no reason for similar orientational dependencies
for the GMR and the IEC.

Here we present the results on the functional depen-
dence of resistivity with respect to the relative angle be-
tween the orientations of the magnetization in the mag-
netic slabs. As we have only determined resistivity for CIP,
we limit our considerations to this geometry. In this first
attempt, the simplest possible case of a magnetic trilayer
system is chosen such that by varying the orientation of
the magnetization in one of the magnetic slabs, one can
see the resistivity of the system changing with respect
to the ferromagnetic (reference) configuration. To see the
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influence of the orientation of the magnetization relative
to the plane of the layers, we have determined the angular
variation of the resistivity and GMR for magnetization in
and out of the plane of the layers. The orientational de-
pendence of IEC for the same systems will be compared
to that of the GMR to determine what, if any, similarities
exist for CIP.

2 Theoretical approach

In the Kubo-Greenwood approach, the µνth element of
the electrical conductivity tensor is given by (for a review,
see, e.g., Ref. [7]):

σµν =
~
πΩ

Tr
〈
Jµ ImG+(εF) Jν ImG+(εF)

〉
. (1)

In this equation µ, ν ∈ {x, y, z}, Ω is the volume, Jµ is the
µth component of the current operator, εF is the Fermi
energy, and 〈· · · 〉 denotes an average over configurations.

In general, in a relativistic spin-polarized multiple scat-
tering theory, the Green’s function G(r, r′, z) is described
via an effective Kohn-Sham-Dirac Hamiltonian [8]:

H(r) = cα · p + βmc2 + I4V (r) + βΣ ·Beff(r), (2)

where the αi (i= 1, 2, 3) and β are Dirac matrices, I4 is
a 4×4 unit matrix, p the momentum operator, mc2 the
rest energy of an electron, V (r) the potential, Σ the spin
operator, and Beff(r) is the (effective) exchange field:

Beff(r) = Beff(r) m̂, (3)

with m̂ being a pre-chosen direction [9]. In equations (2, 3)
V (r) and Beff(r) are of muffin-tin form (with Si denoting
the radius of the ith muffin-tin sphere):

V (r) =
∑
i

Vi(ri); Vi(ri) =

{
Vi(ri); ri ≤ Si
const.; otherwise

,

(4)

Beff(r) =
∑
i

Beff
i (ri); B

eff
i (ri) =

{
Beff
i (ri); ri ≤ Si

const.; otherwise
,

such that in a ferromagnetic reference configuration

Beff
i (ri) = Beff

i (ri) m̂, ∀i. (5)

In a multiple scattering approach based on equation (2),
the Kubo-Greenwood formula (Eq. (1)) can be applied on
an ab initio level to semi-infinite systems [10], i.e., to sys-
tems characterized by only two-dimensional translational
symmetry as is the case in magnetic multilayer systems.
Our first calculations of the GMR (see Ref. [5]) showed
that presently up to a thickness of almost 200 a.u. we ob-
tained reasonable values of the GMR as well as realistic
resistivities for magnetic multilayers. Furthermore, within
a generalized inhomogeneous CPA scheme we are able to
treat the diffuse scattering arising in magnetic multilayers

by alloying the layers and by including the effects of the
interdiffused interfaces.

Up-to-now, only a comparison between the conductiv-
ity of ferromagnetically and antiferromagnetically ordered
multilayer systems has been considered in all the ab ini-
tio calculations of electrical transport in magnetic multi-
layer systems: supercell or not. In terms of a spin-polarized
fully-relativistic approach, the conductivity tensor can be
calculated for non-collinear arrangements of the magnetic
slabs; therefore, the GMR can be followed as a function of
rotation angle as one moves from a ferromagnetic to the
corresponding antiferromagnetic configuration.

We rotate the magnetization of one of the magnetic
slabs of the trilayer around an axis n̂ by an angle ϕ, and
write the resistivity as

ρxx(n̂, ϕ) = σ−1
xx (n̂, ϕ), etc. (6)

and the corresponding giant magnetoresistance (GMR) is

GMR(n̂, ϕ) =
ρxx(n̂, ϕ)− ρxx(n̂, 0)

ρxx(n̂, ϕ)
, (7)

where (n̂, 0) refers to a pre-chosen magnetic reference con-
figuration, i.e., ferromagnetic configuration.

A function f(n̂, ϕ) can be fit by using the following
expansion traditionally used for the magnetic anisotropy
energy, see, e.g., reference [11],

f(n̂, ϕ) = f(n̂, 0) +
∞∑
m=1

am(n̂) (1− cosm ϕ) , (8)

where the first two fitting coefficients can be approximated
to first order by

a1(n̂) =
1

2
[f(n̂, π)− f(n̂, 0)] ,

a2(n̂) = f(n̂,
π

2
)−

1

2
[f(n̂, π) + f(n̂, 0)] . (9)

We will be interested in ascertaining the difference in re-
sistivity, if any, on rotating the magnetization, in as com-
pared to out of, the plane of the layers. Therefore, we
denote rotation out of the plane as a rotation around the
ŷ-axis in the plane of the layers by an angle Θ, i.e., a ro-
tation from ẑ (Θ = 0) to −ẑ (Θ = π) (for both the mag-
netization is perpendicular to the layers), and a rotation
in the plane by a rotation around the ẑ-axis perpendicular
to the layers by an angle Φ, i.e., a rotation from x̂ (Φ = 0)
to −x̂ (Φ = π), in equation (8). In this manner f(ŷ, ϑ) can
be abbreviated simply by f(Θ), and f(ẑ, ϕ) by f(Φ). This
is the notation we use in the following section. It should
be recalled that such rotations refer to transformations of
the magnetization and only via the scalar product Σ ·B
in equation (2) induce a transformation of Σ.

Using the above notation, the interlayer exchange en-
ergy is defined as

IEC(n̂, ϕ) = Et(n̂, ϕ)−Et(n̂, 0) ∼ Eb(n̂, ϕ)−Eb(n̂, 0).
(10)
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Table 1. Interdiffused trilayers.

Cu(100) substrate

Cu buffer

Cu buffer

Cu buffer

Cu0.9Co0.1

Cu0.2Co0.8

Cu0.9Co0.1

 [B]

Cu spacer
...

...

Cu spacer

Cu0.9Co0.1

Cu0.2Co0.8

Cu0.9Co0.1

 [B]

Cu buffer

Cu buffer

Cu buffer

Cu(100) substrate

When one applies the magnetic force theorem, the differ-
ences in total energies Et are usually replaced by those of
the band energies Eb [12]. Equation (10) implies that in a
typical trilayer system, such as two slabs of Co separated
by a Cu spacer, the orientation of the magnetization is
rotated around n̂ by a particular angle ϕ in only one of
the two magnetic slabs.

3 Results and discussion

Here we present the results of our calculations of CIP re-
sistivities and GMR for a Co/CuN/Co trilayer with in-
terdiffused interfaces for two characteristic thicknesses of
the spacer (three and six layers of Cu) inserted in semi-
infinite Cu(100). The profile of the interdiffused interface
– [B] CuN [B] – we have used is shown in Table 1. For
the same systems we have also calculated the correspond-
ing IEC. We will be interested in the functional behavior
of ρxx(n̂, ϕ) and the corresponding GMR(n̂, ϕ) as well as
a comparison of the IEC(n̂, ϕ) for three and six spacer
layers, because for three layers of Cu the IEC is ferromag-
netic, while for six layers it is close to the transition but
within the antiferromagnetic regime.

All calculations were performed by using self-
consistent potentials obtained in terms of the fully-
relativistic spin-polarized SKKR method within the
atomic sphere approximation, which served also for the
determination of the IEC and electrical transport proper-
ties.

In Figure 1 the CIP resistivity ρxx and GMR corre-
sponding to three Cu-spacer layers are shown for two dif-
ferent cases: (a) when the orientation of the magnetization
is out of the plane of the layers, and (b) when it is in the
plane. In the first case the orientation of the magnetization

in one of the magnetic slabs [B] is varied from ẑ (parallel
or “ferromagnetic” to the magnetization of the other slab,
but perpendicular to the plane of the layers ) to −ẑ (an-
tiparallel or “antiferromagnetic”), while in the second case
the change in orientation is from x̂ to −x̂ with the magne-
tization remaining in the plane of the layers. In this figure
and in the following two figures, the actual calculated val-
ues are shown together with the two term fits found by
using equation (8). For the GMR (lower half) these two
terms are displayed as dashed and dotted lines. As one can
see from Figure 1, as well as from Table 2 in which all the
fitting parameters are listed, for three Cu-spacer layers the
GMR is essentially characterized by the first term in the
expansion in equation (8). We have not found significant
differences in the CIP resistivities whether we rotate the
magnetization in or out of the plane, and conclude that
the anisotropic magnetoresistance (AMR) is negligible for
these trilayers.

For six Cu-spacer layers, we consider only rotations
about the ŷ-axis. In Figure 2 we show the CIP resistivity
ρxx and GMR as the magnetization in one of the magnetic
slabs [B] goes from parallel (orientation of the magnetiza-
tion perpendicular to the planes of atoms) to antiparallel.
As can be seen from Table 2 and from a comparison to
the system with three spacer layers, the first fitting pa-
rameter, a1 = a1(ŷ), is reduced as we go from three to six
spacer layers, which reflects the fall-off of the GMR with
respect to the number of spacer layers, while the second
fitting parameter, a2 = a2(ŷ), is more or less unchanged
by increasing the thickness of the spacer.

Completely different results are obtained for the func-
tional behavior of the IEC for three and six Cu-spacer
layers; see Figure 3. We only considered rotations of the
magnetization about the ŷ-axis. For three spacer layers
(“ferromagnetic regime”), the IEC follows closely a fit es-
sentially governed by the first term, while for six spacer
layers (“antiferromagnetic regime”), a1 is negative, as it
should be, and very small. However, in this case the second
fitting parameter is positive and considerably larger than
the first one, i.e., for six spacer layers, the IEC viewed as a
function of the rotation angle is mainly determined by the
contribution from the second term. This result is interest-
ing inasmuch as the value of the IEC for six spacer lay-
ers is close to the crossover from antiferromagnetic to fer-
romagnetic coupling and its magnitude (IECN2) is very
small, e.g., compared to the case of three spacer layers.
In the limit when the first – bilinear (a1) – term is close
to zero, the second – biquadratic (a2) – term can dom-
inate. It has been suggested that interface disorder (see
Ref. [13]) and spin-orbit coupling can serve as possible
causes for π

2 -biquadratic coupling. Since we have used our
fully-relativistic spin-polarized results to fit the angular
dependence of the IEC, one possible interpretation of the
contributions in the expansion equation (8) is that the first
term refers to a rotation in spin space (no coupling to lat-
tice), while in principle all higher terms reflect relativistic
effects, which couple spin space to the lattice. If a two-term
fit is sufficiently accurate, this implies that the biggest
deviation from the bilinear contribution arises from the
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Fig. 1. CIP resistivity and MR for the trilayer system with three Cu-spacer layers and interdiffused interfaces. The figures on
the left hand side are for the magnetization rotated out of the plane of the layers; the right hand side are for the magnetization
rotated in plane. Circles represent calculated values, solid lines are the result of a two term fit according to equation (8), dashed
and dotted lines display the first and second term respectively.

Table 2. Fitting parameters for the interdiffused trilayers [B] CuN [B].

N = 3 N = 6

quantity unit a1 a2 a1 a2

ρxx(Θ) [µΩ cm] 0.868 0.018 0.195 0.037

GMR(Θ) [%] 9.700 1.230 4.335 1.005

IEC(Θ) [meV] 37.677 −2.325 −0.024 0.152

biquadratic which favors a perpendicular arrangement of
the magnetization in the two magnetic slabs of a trilayer
system.

Clearly the CIP-MR and the IEC have different an-
gular dependencies. It is interesting to observe that the
angular dependence of the GMR for CIP seems to be gov-
erned mostly by the first term in the expansion, whereas
– depending on the regime – in the case of the IEC the
second term can indeed be important. For CPP, it has
been proposed that in the asymptotic regime, i.e., when
the number of spacer layers becomes very large, the os-
cillatory behavior of the IEC and CPP-MR with respect
to the spacer thickness are closely related to the Fermi
surface of the spacer material [6].

4 Conclusion

We have determined the functional dependence of the
GMR for the CIP geometry and the IEC with respect to
the relative angle between the orientations of the magne-
tization in the two magnetic slabs in a trilayer system.
We find practically the same CIP resistivities whether
we rotate the magnetization in or out of the plane of the
layers; this leads us to conclude that the AMR is small for
the trilayers we have studied. Only under certain condi-
tions does the CIP-MR follow the same functional depen-
dence as the IEC; as a general rule it does not. Interpreting
the calculated results by means of a power series in the
cosine of the relative angle for the GMR shows that the
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Fig. 2. CIP resistivity and MR for the trilayer system with
six Cu-spacer layers and interdiffused interfaces; the magneti-
zation is rotated out of the plane of the layers. Circles represent
calculated values, solid lines are the result of a two term fit ac-
cording to equation (8), dashed and dotted lines display the
first and second term respectively.

first coefficient falls off with the inverse of the number of
layers, while the much smaller second coefficient seems to
remain constant. Quite obviously, this is in contrast to the
IEC, for which the first coefficient oscillates as a function
of the spacer layer thickness, so that it passes through zero
in order to change sign. At these nodes the second term
in the power series dominates.

The present calculations were limited to trilayers with
rather small layer thicknesses which can be realized at
this time. However, they show that for systems in which
we have only “normal” GMR, such as Co/Cu/Co, (as con-
trasted to the inverse GMR effect [14]), the largest GMR is
associated with the difference in the resistivities between
the parallel and antiparallel configurations of the magneti-
zations of the magnetic layers; any perpendicular or other
non-collinear configuration as a means of increasing the
GMR can be ruled out.
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