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Abstract
The resistivity and giant magnetoresistance (GMR) of (Cu3Ni3)n embedded in

Cu(100), for n £ 11, that originates from the electronic structure of these ® nite,
yet otherwise perfect, systems is calculated for currents in the plane of the layers
(CIP) by using the Kubo± Greenwood formula for semi-in® nite systems and the
fully relativistic, spin-polarized screened Korringa± Kohn± Rostoker method. We
® nd that for this particular type of repeated structure the CIP resistivity decreases
from about 6 to 2 m V cm as the number of repeats increases from 2 to 11, and the
CIP-GMR while starting out at 4% for n= 2 goes up to 16% at n= 11.

§1. Introduction

We have developed a method to calculate the conductivity (resistivity) and giant
magnetoresistance (GMR) of ® nite layered structures that is based on the Kubo±
Greenwood formalism (see Butler (1985) and Banhart (1998)). Our approach is able
to correctly account for the resistance coming from defects as well as that intrinsic to
a ® nite layered structure (see Blaas et al. (1998a,b)). As we increase the number of
repeats n of a basis, e.g. Cu3Ni3, the expectation is that the electronic structureÐ and
also resistivity and GMRÐ for the multilayer will approach that of an in® nitely
translationally invariant system with this basis provided n is large enough. We
have calculated the resistivity and GMR for a series of layered structures
(Cu3Ni3)n, with n £ 11, for currents in the plane of the layers (CIP); here we limit
ourselves to otherwise perfect structures (no defects) and therefore to intrinsic
sources of resistance and GMR. Intrinsic sources are: the c̀on® nement’ resistance
for a ® nite but otherwise perfect structure, and di� erences in the electronic structures
for the parallel (P) and antiparallel (AP) alignments of the moments in adjacent
magnetic slabs which produce GMR (see Schep et al. (1995, 1998)). As n increases
we ® nd, as expected, the intrinsic resistivity (i.e. the resistance divided by the number
of layers) decreases and the GMR increases. However, we are limited at the present
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time to a rather small number of repeats n £ 11 because of the computational e� ort;
therefore we are unable to determine whether the intrinsic resistivity, i.e. the resis-
tance divided by the number of layers or repeats, of (Cu3Ni3)n goes to zero as n goes
to in® nity.

§2. Theoretical description

By using the so-called Kubo± Greenwood formula (Kubo 1957, Greenwood
1958) the electrical conductivity of a system, namely s ¹¹ , is given by

s ¹¹ = p h
N0 X at m,n

J¹
mnJ¹

nm d (²F - ²m) d (²F - ²n) . (1)

In this equation ¹ Î {x,y,z}, N0 is the number of atoms, X at is the atomic volume,
J¹ is a representation of the ¹th component of the current operator,

J¹ = J¹
nm{ }; J¹

nm = k n|J¹|m l , (2)

with |m l describing the eigenstates of a particular con® guration of the random
system, ²F is the Fermi energy, and ´´´k l denotes an average over con® gurations.
Equation (1) can be re-formulated in terms of the imaginary part of the (one-parti-
cle) Green’s function G (see Butler (1985) or Banhart (1998)),

s ¹¹ =
h

p N0 X at
Tr J¹ Im G+ (²F)J¹ Im G+ (²F) , (3)

or by using `up-’ and `down-’side limits, this equation can be re-written as

s ¹¹ = 1
4 s ¹¹ (²+ ,²

+ ) + s ¹¹ (²- ,²
- ) - s ¹¹ (²+,²

- ) - s ¹¹ (²- ,²
+ ) , (4)

where

²
+ = ²F + id , ²

- = ²F - id ; d ® 0, (5)

and

s ¹¹ (²1,²2) = - h
p N0 X at

Tr J¹ G(²1)J¹ G(²2) ; ²i = ²
6 ; i = 1,2. (6)

It was shown in quite some detail by Butler et al. (1994) and Weinberger et al. (1996)
that for layered systems, i.e. systems characterized only by two-dimensional transla-
tional symmetry, equation (6) is of the form

s ¹¹ (²1,²2) =
L

p,q=1

s pq
¹¹ (²1,²2), (7)

where L is the number of layers in the multilayer system to be summed over. s pq
¹¹ is

calculated from s pq
¹¹ (²1,²2) by using equation (4) and denotes the conductivity that

describes the current in layer p caused by an electric ® eld in layer q.

§3. Results and discussion

In the present paper repeats of Cu3Ni3 embedded in Cu(100) are investigated (see
also Zabloudil et al. (1998))
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Cu(100) Cu3 i Ni3 Cu3 Ni3 Cu3 Ni3 Cu3 ´´´ Ni3 Cu3i Cu(100)
parallel (P) ® ® ® ®
antiparallel(AP) ® ¬ ® ¬

(8)

in which the various planes of the multilayer refer to the parent lattice of fcc Cu at
the experimental lattice spacing. In the case of the P (parallel or ferromagnetic)
arrangement all orientations of the e� ective magnetization in the magnetic Ni layers
point along the surface normal, while in the AP (antiparallel or antiferromagnetic)
arrangement the orientation of the e� ective magnetization is of opposite direction in
every other set of Ni layers. As can be easily seen from the scheme in equation (8) we
sum up only between the outermost Ni layers, and the total number of layers L to be
summed over in equation (7) for a particular multilayer system is therefore given by
L = 6n - 3( ) , where n is the number of repetitions.

All calculations reported here are based on the fully relativistic, spin-polarized
screened Korringa± Kohn± Rostoker method for generating the corresponding self-
consistent scattering potentials (see Zabloudil et al. (1998)), as well as for the evalua-
tion of the electrical conductivity tensor for which 990 k i points in the irreducible
wedge of the surface Brillouin zone are used.

To keep the time for the calculations reasonable we used a rather large value for
the imaginary part of the energy in the calculations of the propagators: 5 mRyd (an
even larger number of k i points would have been necessary for computations with a
smaller imaginary part of the energy). As one should be evaluating the propagators
on the real axis, i.e. in the limit d ® 0 in equation (5), this introduces a spurious
source of resistivity in the calculations that should be removed. We have done this by
evaluating the resistivity again for n= 5 and n= 6 by using smaller values for the
imaginary part of the energy, and then by extrapolation ® nding a correction that
allows us to determine the resistivity we would have found had we been on the real
axis. In our previous work we determined the resistivity of pure, yet ® nite, copper
and cobalt (see Blaas et al. (1998a,b)), where the corrected resistivities gave as
expected a con® nement resistance and zero resistivity in the limit as the number of
layers went to in® nity. In our current analysis we followed the same procedure,
however we are limited to n £ 11 repeats of the basis Cu3Ni3, which actually corre-
sponds to only ® ve repeats in the AP con® guration. In the previous studies on copper
and cobalt we had about 40 repeats of the basis, and it seems that the present
number of repeats is insu� cient for a reliable extrapolation as n goes to in® nity.

Figure 1 shows the CIP resistivity q
a
xx = q

a
yy (with q

a
¹¹ = 1 /s a

¹¹) of (Cu3Ni3)n

multilayers embedded in Cu(100), where a refers to P or AP alignments of the
moments in neighbouring sets of Ni layers. As expected the resistivity decreases as
the number of repeats increases, the CIP resistivity decreases from about 6 to
2 m V cm as the number of repeats n increases from 2 to 11. The CIP-GMR, de® ned
as q

AP
xx - q

P
xx /q AP

xx , is shown in ® gure 2. While starting out at 4% for n= 2 it goes up
to 16% at n= 11, and saturates at a higher GMR ratio only for considerably larger
numbers of repeats n. At this time we are unable to check this saturation behaviour
because of the computational e� ort.

In ® gures 3 and 4 we illustrate the layer-resolved contributions to the CIP con-
ductivity s pq

xx for the case of n= 4, namely for (Cu3Ni3)4 embedded in Cu(100). It is
evident that the main contributions to s xx are located in the (pq)-plane at or near the
diagonal q = p. For larger di� erences q - p the contributions to s xx fall o� quite
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rapidly: for example, for q - p = 9, s pq
xx £ 0.03 au, which is already well below 5% of

the largest contributions at q = p. The in¯ uence of the ® nite size of the system clearly
shows up in the reduced conductivity contribution coming from the outermost Ni
layers, see ® gure 4 (a). The contributions from inside the multilayer are higher and
relatively independent on the number of repetitions n. This peculiar structure results
from the formation of quantum well and interface states in layered structures (see
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Figure 1. CIP resistivity q xx of (Cu3Ni3)n multilayers embedded in Cu(100) for parallel and
antiparallel alignments of moments in adjacent sets of magnetic Ni layers displayed
versus the number of repetitions n.

Figure 2. In-plane giant magnetoresistance (CIP-GMR) of (Cu3Ni3)n multilayers embedded
in Cu(100) as a function of the number of repetitions n.
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Figure 3. Layer-resolved contributions to the conductivity s pq
xx for (Cu3Ni3)4 embedded in

Cu(100) for parallel (top) and antiparallel (middle) alignments of moments in adjacent
sets of magnetic Ni layers. The di� erence between Pand AP con® gurations (bottom) is
also shown. For matters of convenience the diagonal elements (i.e. those for q = p,
compare also to ® gure 4 (b)) are connected by a thick full line. Ni layers are at p,q =
1± 3, 7± 9, 13± 15, and 19± 21, respectively.



Zahn et al. (1998)). The di� erences of layer-resolved conductivities between P and
AP con® gurations (shown in ® gure 3) demonstrates that the contributions of the Cu
layers and of the Ni interface layers are extremely important for producing the GMR
e� ect. These di� erences are caused by the absence of the highly conducting quantum
well states in the AP con® guration as compared to those present in the P con® gura-
tion.

In conclusion it is important to stress that we have found only the resistivity and
GMR arising from intrinsic sources, i.e. from the fact that the systems we are study-
ing are ® nite, and from di� erences in the electronic structures for the parallel and
antiparallel alignments of the moments in adjacent magnetic layers. We have not yet
introduced impurities for the multilayers studied in the present paper (in our method
it is indeed possible to simultaneously evaluate the resistivity and GMR arising from
the electronic structure and from impurity scattering on an ab initio level as discussed
by Blaas et al. (1998a,b)). Therefore we cannot compare our results presented here to
data on real structures where the transport is di� usive and limited by scattering from
impurities. Depending on the relative amount of spin-dependent to spin-independent
scattering by impurities the GMR of real structures can be enhanced or reduced
relative to the intrinsic values we have calculated here.
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Figure 4. Layer-resolved contributions to the conductivity s pq
xx for (Cu3Ni3)4 embedded in

Cu(100) for parallel and antiparallel alignments of moments in adjacent sets of mag-
netic Ni layers displayed versus the layer index p or versus p + (p - q) /2. (a) gives the
result of the summation over one index q, i.e. L

q=1 s pq
xx, while the individual contribu-

tions s pq
xx are displayed for (b) q = p, (c) q = p - 1, and (d) q = p - 2, respectively.
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