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Superlattice symmetry in magnetic multilayer systems
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The problem of superlattice symmetry, i.e., the question of periodicity along the growth direction~surface
normal! in magnetic multilayer systems, is discussed using discrete Fourier transformations for the anisotropy
energy, as well as, for the antiparallel and perpendicular interface exchange coupling. We analyze the system
Cu~100!/~Cu3Ni 3) n , wheren is the number of repetitions, for the case of free surfaces and surfaces capped
semi-infinitely by Cu~100!. It will be shown that for some magnetic properties, and only in certain situations,
~almost! periodic behavior with respect ton applies, while for other properties an oscillatory behavior is
characteristic. Also discussed are implications with respect to typical experimental situations and with respect
to traditional supercell approaches.@S0163-1829~98!00313-0#
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I. INTRODUCTION

Frequently when discussing physical properties of m
netic multilayer systems, periodicity along the surface n
mal is assumed in most theoretical approaches, but als
analyzing experimental data. Theoretically very often sup
cell calculations are performed, which of course, indep
dent of the number of atoms per unit cell, use implici
cyclic boundary conditions along the growth direction.1–4 In
the same manner, there is a tendency to interpret and ex
results of experimental investigations in terms of superlat
effects.5–9 Therefore, it seems that there is a definite need
investigating the applicability of such approaches. F
this reason in the present paper magnetic properties
~Cu3Ni 3) n on Cu~100!, where n is the number of repeti-
tions, are determined by considering free surfaces and
faces capped semi-infinitely by Cu~100!. Quite clearly one
such unit~Cu3Ni 3) serves as a building block and—by a
suming periodicity along~100!—has to be viewed as the un
cell. By employing an approach that makes use only of tw
dimensional translational symmetry, namely, within t
planes of atoms, and that allows one to varyn, periodicity
with respect ton can manifest itself~if it really exists! for
various magnetic properties. The magnetic anisotropy ene
and specific forms of multi-interface exchange coupling
570163-1829/98/57~13!/7804~10!/$15.00
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ergies are chosen as characteristic examples.

II. THEORETICAL ASPECTS AND COMPUTATIONAL
DETAILS

The fully relativistic spin-polarized version10 of the
screened Korringa-Kohn-Rostoker method11 for layered
systems12 is applied to calculate selfconsistently the ele
tronic structure and the magnetic properties of~a! free sur-
faces of~Cu3Ni 3) n on Cu~100!, denoted in the following as
Cu~100!/~Cu3Ni 3) n/Vac, and~b! semi-infinitely capped sur-
faces, denoted by Cu~100!/~Cu3Ni 3) n/Cu~100!, whereby all
interlayer distances refer to a fcc parent lattice13 correspond-
ing to the experimental lattice spacing of Cu~no surface or
interface relaxations!. For each system, i.e., for eachn, first
the electronic and magnetic structure of the magnetic c
figuration corresponding to auniform in-plane orientation of
the magnetization in the Ni layers~magnetic reference con
figurationC0, see also Table I! is calculated self-consistentl
using 45ki points in the irreducible part of the surface Bri
louin zone~ISBZ! and the local density functional form o
Ref. 14. The obtained self-consistent layer-resolved effec
potentials and layer-resolved effective magnetization fie
in the spin-polarized Kohn-Sham-Dirac Hamiltonian~see,
e.g., Ref. 15! are then used to evaluate the following diffe
7804 © 1998 The American Physical Society
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TABLE I. Magnetic configurations.

Conf. MNi M Cu M Ni M Cu M Ni M Cu M Ni M Cu M Ni orientation of magnetization

C0: ↑ ••• ↑ ••• ↑ ••• ↑ ••• ↑ uniform in-plane
C1: → ••• → ••• → ••• → ••• → uniform perpendicular to plane
C2: ↑ ••• ↓ ••• ↑ ••• ↓ ••• ↑ antiparallel in-plane
C3: ↑ ••• → ••• ↑ ••• → ••• ↑ alternating in-plane and

perpendicular to plane
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ences in the band energies with respect to the magnetic
figurations given in Table I:

DE~Ci !5E~Ci !2E~C0!. ~1!

It should be noted that in Table I configurationC1 refers to
the case that uniformly in all Ni layers the orientation of t
magnetization is perpendicular to the planes of atoms. C
figurationC2 comprises again a case of in-plane orientatio
arranged, however, alternatively antiparallel, while in co
figuration C3 in-plane and perpendicular-to-plane orien
tions alternate.DE(C1) refers to the band energy contribu
tion to the magnetic anisotropy energy,10,16 while DE(C2)
andDE(C3) reflect multi-interface exchange coupling.

In principle the magnetic anisotropy energy and the mu
interface exchange coupling energy also contains a contr
tion arising from the magnetic dipole-dipole interaction10

which, however, only grows more or less linear with t
number of magnetic layers.10,17–19 In the case of the mag
netic anisotropy energy, e.g., the magnetic dipole-dipole
ergy predominantly determines the so-called volu
anisotropy.20,19 In the present investigations the magne
dipole-dipole interaction is not included.

If P denotes the total number of atomic layers in t
intermediate regime,12 i.e., the total number of atomic layer
between the ~nonmagnetic! semi-infinite systems, then
DE(Ci) can be partitioned into layerwise contribution
DEp(Ci),

DE~Ci !5 (
p51

P

DEp~Ci !5 (
p51

P

@Ep~Ci !2Ep~C0!#, ~2!

which in turn can be Fourier transformed using the followi
discrete Fourier transformation~FT!

F~q;Ci !5 (
p51

P

eiqpDEp~Ci ! ~3!

or, in relation to their mean valueDE(Ci)/P, as

DF~q;Ci !5 (
p51

P

eiqpFDEp~Ci !2
DE~Ci !

P G , ~4!

whereq is given in units of 2p/d with d being the interlayer
distance.21,19

All band energy differences presented in this paper w
evaluated within the force theorem approximation~see in
particular Ref. 16! by using 990ki points in the ISBZ and by
applying the group theoretical methods described in Ref.
By normalizing the absolute value of the Fourier transfo
in a suitable manner, e.g., to a unit areaA,
n-

n-
,
-
-

-
u-

n-
e

re

0.

A5F E
0

1/2UDF~q;Ci !UdqG21

, ~5!

comparison can made between different cases such as
and capped surfaces, and different numbersn of repetitions.
Quite clearly any other layer-resolved quantity such as
magnetic moments or the Madelung potentials12 can be
transformed in the same manner.

If the physical property investigated is periodic with r
spect to the building block a period of six, i.e., a pronounc
maximum inuDF(q;Ci)u at q51/6 has to show up, since on
unit ~Cu3Ni 3) consists of six layers. A period of twelv
(q51/12) is characteristic if the quantity is periodic wit
respect to twice a building block. Of course the interest
and physically relevant question of using such discrete F
is how largen has to grow in order to trace a periodic b
havior. In the present paper the number of repetitions is
stricted to n<11, which in turn implies a maximum
multilayer thickness of about 225 a.u.

By relating the band energy differencesDE(Ci) in Eq. ~1!
to the number of repetitions~band energy difference per un
cell!, one further can examine whether for increasingn,
DE(Ci)/n approaches a constant or oscillates. The next s
tion will show examples for both kinds of behavior.

It should be noted that both, discrete FT’s and quantit
per repetition~unit cell!, are essential in describing what
sometimes called colloquially superlattice symmetry or c
loquial lattice,13 namely, in defining periodic behavior with
respect to the surface normal.

III. RESULTS AND DISCUSSION

A. Layer-resolved band energies

In the following, in all figures showing layer-resolve
quantities, the indexing of atomic layers starts at the Cu~100!
substrate, i.e., the Cu substrate is to the left of the inter
diate region and vacuum or the cap is to the right. Forn<5
the layer-resolved band energy contributionsDEp(C1) to the
magnetic anisotropy energy are displayed in Fig. 1 for f
and capped surfaces. For the free surface case one can e
see the strong perturbation caused by the surface, howe
for n>4 a period of six emerges since with increasingn the
number of nearly identical peaks in the interior of the film
increasing. For the capped case the effect of the interfa
with the semi-infinite substrate on both sides is fairly m
ginal: for eachn the corresponding entries are practica
characterized byn identical peaks inDEp(C1).

Completely different in shape are the layer-resolved ba
energy contributionsDEp(C2) to the ~antiparallel! interface
coupling energy shown in Fig. 2~a! in the case of capped
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FIG. 1. Layer-resolved band energy contribution to the magnetic anisotropy energyDEp(C1) in ~Cu3Ni 3) n multilayers on Cu~100!. Left:
free surfaces Cu~100!/~Cu3Ni 3) n/Vac, right: semi-infinitely capped surfaces Cu~100!/~Cu3Ni 3) n/Cu~100!. The number of repetitionsn is
marked explicitly.
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systems. Obviously, odd and even number of repetitions
play a different kind of boundary conditions: for oddn pe-
riods of 12 are terminated symmetrically due to an invers
with respect to the geometrical center of the multilay
whereas for evenn this is not possible. Therefore, in Fig
2~a! the entries corresponding to oddn’s have a symmetric
shape, while those corresponding to an even number of
etitions are asymmetric with a peak of positive sign at
s-

n
,

p-
e

right-hand-side boundary. Note that for evenn’s the shapes
of DEp(C2) in Fig. 2~a! will be reversed with respect to th
labeling of layers if the orientation of magnetic moments
reversed simultaneously in each layer. It is easy to guess
for n>9 the pattern to be seen follows the one shown in
right column of Fig. 2~a!.

As can be seen from Fig. 2~b!, for free surfaces a simila
pattern as illustrated in Fig. 2~a! applies: for oddn the con-
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FIG. 2. Layer-resolved band energy differences for antiparallel interface exchange couplingDEp(C2) in the case of~a! Cu~100!/
~Cu3Ni 3) n/Cu~100! and~b! for n57,8 for free surfaces Cu~100!/~Cu3Ni 3) n/Vac ~left side! and for semi-infinitely capped surfaces Cu~100!/
~Cu3Ni 3) n/Cu~100! ~right side!. The number of repetitionsn is marked explicitly.
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tributions from the two boundaries of the multilayer rema
approximately equal in size and identical in sign, whereas
evenn the surface induces a much bigger perturbation t
for an oddn.

The above features of multi-interface exchange coup
are also characteristic for the pattern ofDEp(C3) ~not
shown!, i.e., for the case of layer-resolved band energy c
tributions to the perpendicular interface coupling, where
the peaks are about half as big as those in Figs. 2~a! and 2~b!.

B. Magnetic moments and Madelung potentials

In Figs. 3 and 4 one particular case, namely,n58, is
examined in some detail. Figure 3 shows the distribution
magnetic moments for free and capped surfaces corresp
ing to the reference configurationC0 and their discrete FT’s
As to be expected near the surface the Ni moment is slig
enhanced, however, in terms of the distribution of magn
moments in the multilayer system, the free surface case
fers only very little from that of the capped surface. This
directly mapped in the corresponding discrete FT’s: in b
cases a strong peak atq51/6 is seen, the difference in pea

FIG. 3. Magnetic moments in~Cu3Ni 3) 8 multilayers on
Cu~100!. Top: free surface, middle: capped surface, bottom: ab
lute value of the discrete Fourier transformationA21uDF(q;C1)u of
the magnetic moments for the free surface~dashed line! and the
capped surface~solid curve!.
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heights being only marginal. As to be expected with incre
ing n the width of this peak shrinks and its height increas
while simultaneously—due to the increasing number
terms summed over—the background reduces.

A completely different pattern arises when consideri
the distribution of Madelung potentials corresponding to
reference configurationC0 ~Fig. 4!. Clearly enough in terms
of electrostatics a remarkable perturbation at a surface ha
be encountered, however, it is somewhat surprising to
that for the free surface in the discrete FT of the lay
resolved Madelung potentials the peak atq51/6, which
characterizes the capped system, is completely whipped
It should be noted that in the latter case also a kind of ‘‘ali
ing’’ at q51/3, i.e., a period of 3 can be seen. In particu
Fig. 4 illustrates and explains quite convincingly the diffe
ent behavior of free and capped surfaces in Fig. 1 and
2~b!.

-

FIG. 4. Layer-dependent Madelung constants in~Cu3Ni 3) 8

multilayers on Cu~100!. Top: free surface, middle: capped surfac
bottom: absolute value of the discrete Fourier transformat
A21uDF(q;C1)u of the layer-dependent Madelung constants for
free surface~dashed line! and the capped surface~solid curve!.
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FIG. 5. Absolute value of the discrete Fourier transformationA21uDF(q;C1)u of the band energy contribution to the magnetic anisotro
energy for free surfaces~dashed lines! and capped surfaces~solid curves!. The number of repetitionsn is marked explicitly.
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C. Discrete Fourier transformations of layer-resolved band
energy differences

For n<10 the discrete FT’s ofDEp(C1) are displayed in
Fig. 5 for free and capped surfaces. In this figure one can
that for capped surfaces with increasingn the peak atq51/6
gets substantially sharper, while in the case of f
surfaces—even after 10 repetitions—this peak is still rat
weak and quite some intensity remains forq.0.3. For rea-
sonably largen the capped surfaces obviously show a we
defined period of 6, whereas for free surfaces the presenc
the interface to the vacuum almost prevents such a perio
ity ~see also Figs. 1 and 4!.

In the discrete FT’s ofDEp(C2) ~Fig. 6! several rather
well-developed peaks emerge with increasingn, namely, at
q51/12, 1/6, 1/3, 0.41, and 1/2. The main periods of 6 a
12 obviously reflect the number of atomic layers per build
block and the geometrical arrangement of the orientation
ee
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-
of
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the magnetization, since in every second building block
same orientation of the magnetic field applies. Somew
surprising is that also a period of about 2.5 (q50.41) can be
seen, which quite likely refers to the so-called short per
recorded in magnetic systems with a Cu spacer,22,23 and
which in the asymptotic limit frequently is related to a pa
ticular vector of the Fermi surface of fcc Cu.22,24 At first
glance forn>8 the difference between free and capped s
faces seems to become unimportant. However, a close
spection of the peak atq51/2 shows that~a! for odd num-
bers of repetitions the peak height is considerably larger t
for even numbers and~b! for odd n there is almost no dif-
ference between free and capped surfaces, while for evenn a
clear difference exists. Going back to Figs. 2~a! and 2~b! one
can correlate this particular peak to the peaks in the lay
resolved quantities near the interfaces, which with altern
ing n alternate in sign. In particular from Fig. 2~b! it is clear
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FIG. 6. Absolute value of the discrete Fourier transformationA21uDF(q;C2)u of the band energy contribution to the antiparallel interfa
exchange coupling energy for free surfaces~dashed lines! and capped surfaces~solid curves!. The number of repetitionsn is marked
explicitly.
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that for oddn the difference between free and capped s
faces is much smaller than for an even number of repetitio

In Fig. 7 the results for the discrete FT’s of the laye
resolved band energy differences due to perpendicular m
interface exchange interactions are compiled. As one can
there is one prominent peak atq51/12 evolving with in-
creasingn. As compared to Fig. 6 the peaks atq51/6 and
0.41 are less pronounced, while those atq51/3 and 1/2 are
of about the same peak heights. Unlike in the case of a
parallel interface exchange coupling the height of the pea
q51/2 does not oscillate with respect to even and odd nu
bers of repetitions.

In comparing Figs. 5–7 the discrete FT’s reveal periods
6 ~building block! in the case of the anisotropy energy, a
of 12 ~arrangement of the orientations of the magnetizati!
-
s.

ti-
ee

ti-
at
-

f

for the interface coupling situation. Quite obviously, if a p
riod of 12 occurs~aliasing! signals corresponding to period
of 6 and 3 show up.

D. Energetic contributions per repetition

In Fig. 8 the total band energy contribution to the anis
ropy energy, and to the two types of multi-interface e
change coupling are shown together with the correspond
quantity per repetition. In the case of capped surfa
DE(C1)/n is already a constant forn>8, while for free sur-
faces the values forDE(C1)/n still go slightly up with in-
creasingn. Since for an increasing number of repetitio
DE(C1)/n asymptotically becomes a constant, this particu
quantity, namely,DE(C1)/n, then has to be called periodic i
n. Stated differently, this implies that even for capp
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FIG. 7. Absolute value of the discrete Fourier transformationA21uDF(q;C3)u of the band energy contribution to the perpendicu
interface exchange coupling energy for free surfaces~dashed lines! and capped surfaces~solid curves!. The number of repetitionsn is
marked explicitly.
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surfaces such repeated multilayer systems have to be at
as thick as about 150 a.u. in order to justify a ‘‘periodic
approach.

For antiparallel and perpendicular multi-interface e
change coupling the total band energy per repetition sh
oscillatory behavior with respect ton. In both cases a period
of two can be read off from the corresponding entries in F
8. Quite clearlyDE(C2)/n andDE(C3)/n are not periodic in
n, since their values oscillates withn. These oscillations
seem to fit very well the theoretical predictions made
Aristov25 in discussing indirect Ruderman–Kittel–Kasua
Yosida ~RKKY ! interactions.

In view of the period of 12 occurring in the FT’s in Figs
6 and 7, it is intriguing to consider multilayers of the typ
~Cu3Ni 3) 2n , i.e., to double the building block~unit cell! and
then relate the total band energy ton. Clearly enough such a
ast

-
s

.

y

representation no longer results in an oscillating quant
However, as shown in Fig. 9 the convergence ofDE(C2)/n
andDE(C3)/n with respect ton is far from convincing. Even
for a multilayer thickness of about 200 a.u., these two qu
tities have not reached a constant value.

E. Comparison to experiment

Experimentally mostly free surfaces of Ni on Cu~100!
were investigated,26–29 including in some cases surface
capped by Cu.27 For less than 7 monolayers~ML ! of Ni the
orientation of the magnetization is in-plane,29 above 8 ML a
reorientation transition to a perpendicular orientation occu
For thin films a tetragonal distortion of the parent substr
fcc lattice was suggested,1 while for thick Ni films the mag-
netic moments vary with film thickness, having a maximu
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FIG. 8. Band energy contribution to the mag
netic anisotropy energy~top!, the antiparallel in-
terface exchange coupling energy and the perp
dicular interface exchange coupling energy f
free surfaces ~circles!, and capped surface
~squares! for ~Cu3Ni 3) n multilayers on Cu~100!.
The right column shows the corresponding qua
tity per repetition.
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at a nominal thickness of about 100 Å.30 There seem to be no
experimental results for repeated multilayer systems like
one investigated in this paper.

IV. CONCLUSION

In the present paper we tried to address two import
questions connected with physical properties of multila
systems, namely,~1! is there a characteristic volume~unit
cell! such that when repeated a particular quantity stays c
stant and~2! are there pronounced peaks in the discrete FT
the corresponding layer-resolved quantity with respect to
interlayer distance that suggest an almost Bloch periodic
havior in the direction of the surface normal. Quite clearly
the presence of three-dimensional translational symm
unit cells and~three-dimensional! Bloch periodicity are au-
tomatically provided. At least for the systems and proper
chosen here, no straightforward answer can be given.
surfaces differ considerably from surfaces capped se
infinitely with Cu~100!. As was shown recently31 different
cap materials can induce, e.g., large effects in the anisot
energy, just as a variation of the cap thickness can ca
oscillations of the interface exchange coupling energy.32 In
view of these facts it has to be stated that only two, v
specific types of systems have been considered. For the
energy part of the anisotropy energy it was found that
peated multilayer systems have to be at least 150–200
e
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FIG. 9. Band energy contribution to the antiparallel~top! and
perpendicular~bottom! interface exchange energy per repetition f
~Cu3Ni 3) 2n multilayers on Cu~100!. Free surfaces: circles; cappe
surfaces: squares.
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thick to permit the use of a unit cell in practical terms. F
multi-interface exchange interactions this thickness has to
almost twice as big.

The discrete FT’s prove that with a few repetitions
~Cu3Ni 3), namely,n.6, periods can be traced mapping t
number of layers per repetition~6! or of the characteristic
sequence of the orientation of the magnetization~12!: the
peak positions stay constant, whereas the peak heights
widths change when increasingn.

The present paper also shows that any interpretation
experimental results in terms of fitting models based on
riodicity along the surface normal have to be used with
treme care. It might very well turn out that such models
only helpful for reasonably thick multilayers, namely tho
with a thickness of several hundred a.u. This in turn is
actly the regime where supercell calculations, i.e., comp
tional schemes using three-dimensional translational sym
try, will be very useful. For thin multilayer systems
O
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d-
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however, even a colloquial use of periodicity along t
growth direction can obscure considerably the physics to
seen.
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