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Magnetic Anisotropy of an Impurity in a Semi-Infinite Host
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We investigate the interaction of a magnetic (Fe) impurity with the surface of a nonmagnetic (Au)
semi-infinite host on the bases of fully relativistic spin-polarized first principles calculations. We show
that the surface induces a magnetic anisotropy on the impurity, however, it is questionable whether the
anisotropy coupling constantK is sufficiently large to explain the thickness dependence of the Kondo
amplitudeB in thin films of dilute FecAu12c alloys. We also find thatKsdd is an oscillating function of
the distanced between the impurity and the surface with an amplitude which falls as1yd2 and a period
which is determined by the shape of the Fermi surface of the bulk Au host. [S0031-9007(97)03192-X]

PACS numbers: 75.30.Gw, 75.30.Hx, 75.50.Bb
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The recent discovery that the Kondo contribution
B ln T whereT is the temperature, to the resistivity in thin
films of dilute magnetic alloys depends on the thickne
of the film [1,2] is attracting considerable current attentio
[3,4]. Of particular interest is the suggestion of Újságh
et al. [3] that a magnetic impurity, such as Fe in Au
near the surface of the host metal is subject to a magne
anisotropy described by the interaction Hamiltonian

dH  Ksdd sbSz
i d2, (1)

where bSz
i is the z component (normal to the surface) o

the impurity spin operator andKsdd is the anisotropy
constant which is a function of the distanced between
the impurity and the surface as depicted in Fig. 1
They argue that impurities which are close enough
the surface to experienceKsdd $ kBTK , where TK is
the Kondo temperature, will have their spin rotation
hindered by the fact that their states corresponding
large values of the magnetic quantum numberm become
inaccessible in the course of thermal fluctuations of th
spin. As a consequence of this freezing out of sp
degrees of freedom theSsS 1 1d factor which enters
B is reduced and this decrease appears to be the ri
order of magnitude to explain a variety of experiment
observations [5]. Clearly, for this scenario to be tenab
Ksdd must be large enough and it must fall off sufficiently
slowly with d. However, in Ref. [3] the estimate of
Ksdd is based on a simple, semiphenomenological Kond
impurity model, which leaves their conclusions somewh
tentative. In this Letter we report on material specific
parameter free, first-principles calculations ofKsdd based
on the local density approximation (LDA). We find a
Ksdd which is roughly of the right size and decays fairly
slowly with increasingd. However, our calculations
imply an asymptotic behavior intriguingly different from
that of Újsághyet al. [3].
0031-9007y97y78(19)y3765(4)$10.00
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As is well known, the electron spins interact wit
the geometry of the lattice via the spin-orbit couplin
Indeed, magnetocrystalline anisotropy energies, in p
ticular, for metallic surfaces and interfaces have been c
culated successfully from first principles (see Ref. [6] a
numerous references therein). Our work builds on the
developments and is a straightforward application of the
methods to the novel problem at hand. Briefly, we appli
the fully relativistic spin-polarized screened Korringa
Kohn-Rostoker (KKR) method [6] for calculating th
magnetic anisotropy energy (MAE) for an Fe impuri
“buried” in an Au(001) surface. To render the proble
tractable we did not attempt a fully self-consistent calc
lation, but we were satisfied with a frozen potential a
proximation. That is to say, we took the crystal potent
on all the Au sites to be the same as was obtained i
relativistic LDA calculation for an infinite bulk Au crysta
[7] and the Fe potential was that from a corresponding i
purity calculation. Relying on the force theorem [8], th

FIG. 1. Sketch of the geometry we use in the paper. Ho
zontal lines denote layers of the substrate.
© 1997 The American Physical Society 3765
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MAE was then calculated by considering the band ener
only. It is central to our concerns here that we have de
with the spin polarization and the spin-orbit coupling o
equal footing and we took full account of the semi-infinit
geometry of the host. Although the interesting values
MAE are very small (,10 meV), we demonstrate that
the calculated results are robust to changes in numer
procedure.

First we calculated the MAE of the Fe impurity in
bulk Au. For the energy differenceEs100d 2 Es110d,
where the Miller indices (100) and (110) refer to th
orientation of the magnetization, we got1.2 meV .
0.01 K. Reassuringly, this is much smaller than th
relevant energy scale set byTK . 0.3 K and hence will
not complicate the foregoing discussion. Repeating the
calculations in the presence of a surface, the orientat
dependence of the energy was found to be well describ
by Esud  K cos2sud 1 Es p

2 d, whereK ; Es0d 2 Es p

2 d
is the anisotropy constant andu denotes the angle betwee
the magnetic moment and the surface normal (see Fig.
We also investigated the MAE with respect to direction
in the plane, however, since the cubic symmetry para
to the planes is not broken, it was found to hav
approximately the same value as the MAE in the bulk.

Our results forKsdd are presented in Fig. 2. Note
that the lattice spacing,d0, of the Au(001) planes equals
2.04 Å. Since here we are interested in the MAE of F
impurities buried fairly deep below the surface,Ksdd for
d , 10 Å are not shown in Fig. 2. As was noted in
Ref. [6], the numerical accuracy of the calculated MA
ultimately depends on an accurate evaluation of cert
Brillouin zone (BZ) integrals. To assess the accuracy

FIG. 2. Calculated anisotropy constantK for an Fe impurity
as a function of the distanced from the (001) surface of the
Au substrate. Different symbols refer to different numbers
kk points in the IBZ (see text) as denoted in the legend. Lin
serve as guides for the eye.
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our results, in Fig. 2 we displayed MAE’s as calculate
for different numbers of thekk points in an irreducible
segment of the surface BZ (IBZ). Evidently, our resul
are well converged.

The first thing to note about the above results is th
in the range ofd under consideration the magnitud
of Ksdd is below 0.01 meV , 0.1 K. While this is
the right order of magnitude, it is too small to be
convincing vindication of the arguments by Újsághyet al.
[3]. However, there are a number of reasons to sugg
that our calculations underestimate the MAE. These
shall enumerate later.

Let us now turn to other features of the MAE in Fig. 2
Evidently, Ksdd oscillates as a function ofd. Therefore,
the LDA ground state orientation of the spin moment of F
switches alternatingly between perpendicular and para
positions with respect to the surface. This remarkable b
havior is distinctly different from that expected by Újságh
et al. [3], who found asymptotically a monotonous1yd
decay. Inferring from Fig. 2, the decay of the amplitud
of the oscillations seems also to be faster than1yd.

In search for an explanation of these unexpect
oscillations ofKsdd we recall the well-studied fact tha
the abrupt change in the potential at the surface results
Friedel oscillations in the charge density deep inside t
bulk [9]. Significantly, the period of these oscillations i
governed by the Fermi surface. To ascertain that su
Friedel oscillations do occur in the present problem w
calculated the cell-integrated charges of the semi-infin
Au host. The results are shown in Fig. 3. Although the
calculations are not as well converged with respect to
BZ integration as those of the MAE, the oscillations a

FIG. 3. Excess chargesDQ  Q 2 Qbulk on Au atoms near
the (001) surface. Different symbols refer to different numbe
of kk points in the IBZ as denoted in the legend. Lines ser
as guides for the eye.
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clearly seen. Interestingly, their period appears to be t
same as that ofKsdd. This suggests that the oscillation
of Ksdd are the consequences of such Friedel oscillatio

To develop this idea further we studied analytically th
interaction of an impurity with a surface (or interface
based on Lloyd’s formula for the integrated density o
states [10]. The corresponding contribution to the gra
potentialViS can be written as

ViS 
1
p

Im
Z

d´ fs´d Tr lnfI 2 Dis´dt bs´d

3 DSs´dtbs´dg , (2)

wherefs´d denotes the Fermi distribution and Tr stand
for the trace of a matrix in a composite site-angula
momentum space. In Eq. (2)t bs´d is the inverse of
the real-space KKR matrix of the unperturbed bul
whereas the perturbation caused by the impurity a
the surface is described by the interactorsDis´d and
DSs´d, respectively. Since we are interested in a situati
when the impurity is rather far from the surface, afte
expanding the ln in Eq. (2) it is sufficient to keep the firs
nonzero term only. One can then easily make use of
translational symmetry properties oft bs´d and DSs´d to
transform each summation over sites into integrals in t
Brillouin zone, ending up with

ViS  2
d2

0A0

ps2pd4
Im

Z
d´ fs´d

Z
d2kk

3
ZZ

dkz dk0
z e2idskz2k0

zdtrfDis´dtbs´; kk, kzd

3 DSs´; kk, kz, k0
zdtbs´; kk, k0

zdg , (3)

whereA0 is the volume of the 2D unit cell and tr denote
the trace of a matrix in angular momentum space only.
what follows, we only sketch the steps of the asympto
analysis of Eq. (3) and the details will be published in
forthcoming paper.

Our analysis rests on three basic assumptions, each
which makes use of the presence of a rapidly oscillati
function in the integrand of Eq. (3). First, we suppos
that for a fixed´ and kk the main contribution to the
integrals overkz andk0

z comes from poles,kp
z andk0p

z , of
tbs´; kk, kzd. Second, thekk integral is evaluated using
the stationary phase method by finding the stationa
points kn

k of the functionqs´, kkd  kp
z 2 k0p

z . Finally,
the energy integral is carried out by using, e.g., Lighthill
theorems [11]. Our result forT  0 can be summarized
as

ViSsdd 

µ
d0

d

∂2 X
n

sinsqnd 1 fndIn , (4)

with

In 
A0

8p4
Dn Im trfDis´Fdtbs´F ; knd

3 DSs´F ; kn
k , kp

z , k0p
z dtbs´F ; k0

ndg , (5)
he
s
ns.
e
)
f

nd

s
r

k,
nd

on
r
t

the

he

s
In

tic
a

of
ng
e

ry

’s

where ´F is the Fermi energy,kn  skn
k , kp

z d, k0
n 

skn
k , k0p

z d, qn  qs´F , kn
k d s0 # qn # pyd0d, the phase

fn takes the values2 p

2 , 0, or p

2 for minimum, saddle-
point, or maximum ofqs´F , kkd at kn

k , respectively, while
Dn is related to the curvatures of the Fermi surface an
the Fermi velocities atkn andk0

n . Indeed, this asymptotic
analysis predicts an oscillatory behavior of the impurity-
surface interaction as a function ofd with an amplitude
falling off as1yd2.

In view of the above asymptotic form we can now
reinterpret our results in Fig. 2. In Fig. 4 we depict
the calculated values ofKsddd2 and compare them to
I sins2pdydp 1 py2d for I  22.8 meV Å2 and dp 
5 Å , 2.5d0. Evidently, the asymptotic form is in ex-
cellent agreement with the points derived from full cal-
culations. As predicted by our asymptotic analysis, the
perioddp corresponds to the extremal vector of the Ferm
surface of bulk gold along the (001) direction at the “dog-
bone” [12].

It is illuminating to mention that the form of Eq. (4)
closely resembles the magnetic interaction between two in
terfaces in metallic multilayers [13,14]. The perioddp has
indeed been quantitatively confirmed in the magnetic in
terface coupling investigations of the FeyAuyFe sandwich
system both experimentally [15] and theoretically [16]. It
should be stressed that the physical phenomenon of a ma
netic impurity interacting with a nonmagnetic surface is
very different from that of an interaction between magnetic
layers separated by a nonmagnetic spacer metal. The fa
that the same oscillations turn up in both cases lends su
port to our analysis as well to that of others who studied
the multilayer case [13,14]. Moreover, it helps to identify
the Friedel oscillations as the physical mechanism behin

FIG. 4. Ksddd2 (diamonds) as deduced from the data of
Fig. 2. The solid line depicts the function22.8 sins2pdy5.0 1
py2d.
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both effects. Thus, the point defect-planar defect int
action studied in this Letter should be regarded as an
termediate phenomenon between RKKY-like interactio
[17] between point defects and the interface-interface
teraction [14] mentioned above.

Given these general arguments it is quite surpris
that the perturbation theory of Újsághyet al. [3] yields
a nonoscillatoryKsdd , 1yd asymptotic behavior. We
attribute the difference between this and our present res
to dynamical scattering of the conduction electrons off t
impurity spin not treated in LDA. However, the details o
how this comes about are still subjects of further resea

Returning to the thickness dependence of the Kon
amplitude in thin films we have two comments to ad
Concerning the size of the effect we observe that
MAE is expected to increase considerably if the symme
parallel to the surface is broken by surface roughne
Furthermore, the inclusion of orbital contribution to th
exchange-correlation potential [18] could also increa
the MAE. Finally, direct observation of the oscillation
of the impurity-surface interaction in some appropriate
designed experiments, where the distanced between the
impurity and the surface is controlled, could conclusive
confirm or reject the hypothesis of Újsághyet al. [3].

Enlightening discussions with A. Zawadowsk
O. Újsághy, G. Zaránd, and B. Újfalussy are gratefu
acknowledged. This paper resulted from a collab
ration within, and partially funded by, the TMR Net
work on “Ab initio calculations of magnetic propertie
of surfaces, interfaces and multilayers” (Contra
No. ERB4061PL951423). One of the authors (L.S.)
also grateful for the financial support of the Hunga
ian National Scientific Research Foundation (OTK
No. F14378 and No. T21228).
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