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Interlayer and interfacial Dzyaloshinskii-Moriya interaction
in magnetic trilayers: First-principles calculations
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We determine the Dzyaloshinskii-Moriya interaction within and between two magnetic cobalt layers separated
by a nonmagnetic spacer through ab initio calculations. We investigate different materials for the nonmagnetic
layer, focusing on the experimentally realized Co/Ag/Co system. We laterally shift the atoms in the nonmagnetic
layer to achieve the symmetry breaking required for the interlayer Dzyaloshinskii-Moriya interaction. We
compare the resulting interactions with the Levy-Fert model and observe a good overall agreement between
the model and the ab initio calculations for the dependence on the atomic positions. Additionally, we derive a
formula for the strength of the interlayer isotropic exchange interaction depending on the position of the atoms
in the nonmagnetic layer and compare it to the first-principles results. We investigate the limitations of the
Levy-Fert model by turning off the spin-orbit coupling separately on the nonmagnetic and magnetic atoms and
by studying the effect of band filling. Our work advances the understanding of the microscopic mechanisms of
the interlayer Dzyaloshinskii-Moriya interaction and gives insight into possible new material combinations with
strong interlayer Dzyaloshinskii-Moriya interaction.
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I. INTRODUCTION

The Dzyaloshinskii-Moriya interaction [1,2] (DMI) gives
rise to noncollinear magnetic structures, like weak ferromag-
nets, chiral domain walls [3], or magnetic skyrmions [4], and
also influences their excitations. Consequently, it plays a cru-
cial role in spintronics, spin orbitronics, and magnonics [5–7].
In magnetic multilayers, there are two important contributions
to this interaction: the interfacial DMI (IF-DMI) controlling
the rotational sense of the spins within the layers [8] and
the interlayer DMI (IL-DMI) controlling the rotational sense
between the magnetic layers [9–12]. Typically, the IL-DMI
is much weaker than the IF-DMI [9,10,13,14]. However, re-
cently two systems with IL-DMI strength comparable to that
of IF-DMI have been reported [11,15]. The IF-DMI is primar-
ily enhanced at interfaces of magnetic layers with nonmag-
netic materials possessing strong spin-orbit coupling (SOC),
while it rapidly vanishes away from the interface. In contrast,
the IL-DMI oscillates in strength as the thickness of the spacer
layer is varied [11,14]. The IL-DMI modulates the spin struc-
ture when moving across the layers, giving rise to phenomena
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which cannot be explained by IF-DMI like chiral coupling
between two ferromagnetic layers or unidirectional switch-
ing of the magnetization orientation with a preferred sense
of rotation. Recently, first successful applications of IL-DMI
for field-free spin-orbit-torque magnetization switching have
been reported by a number of groups [14,16–20], opening new
perspectives in the area of three-dimensional spintronics.

The physical mechanisms behind the emergence of DMI
include symmetry breaking and the presence of spin-orbit
coupling. Moriya provided a complete set of symmetry rules
together with a formula for the strength of the interaction
in bulk magnets based on perturbation theory [2]. Another
explicit formula was proposed by Fert and Levy in metallic
spin glasses, where the DMI between two magnetic atoms is
mediated by a nonmagnetic impurity with strong SOC in a
nonmagnetic material [21,22]. Unfortunately, such perturba-
tive formulas are unable to quantitatively predict the strength
of the DMI as a function of material combination and layer
thicknesses. Over the past decades, experimental efforts com-
bined with first-principles calculations identified interfaces
such as Co/Pt or Fe/Ir where a strong IF-DMI can be reliably
observed. However, the value of the IF-DMI for the same
material combination varies between different experimental
and theoretical techniques [23,24]. For the IL-DMI, the avail-
able data are more limited and many open questions remain.
Particularly surprising is the appearance of strong IL-DMI
in magnetic multilayers with relatively light nonmagnetic
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spacers like Ag, producing a rather weak IF-DMI [11]. An-
other interesting aspect is the reported correlations between
the thickness-dependent oscillations in the IL-DMI and those
in the interlayer isotropic Ruderman–Kittel–Kasuya–Yosida
(RKKY) interactions [11,14,25–27]. Existing theoretical in-
vestigations report wide-ranging values for the magnitude of
the IL-DMI: for two Co layers separated by 1 to 3 non-
magnetic layers, Ref. [10] gives a maximal value of 2 meV,
Ref. [28] reports 0.04 meV, and Ref. [29] 0.3 meV. Exper-
imental investigations find values in similar ranges [11,15].
The systematic dependence of the IL-DMI on the atomic
positions of the spacer atoms and on the strength of the SOC,
particularly for lighter metals as spacer, remain theoretically
unexplored up to now.

To fill this gap of knowledge, we perform an in-depth
theoretical investigation of the IL- and IF-DMI for Co/Me/Co
trilayers with Me = Cu, Ag, Pt, Au in hexagonal close-packed
(hcp) stacking using fully relativistic first-principles calcula-
tions based on the screened Korringa-Kohn-Rostoker method
[30,31]. To study the effect of the lattice geometry on the
DMI, we apply translations to the atoms of the nonmagnetic
layer from their symmetric hcp positions. We demonstrate that
not only the SOC in the nonmagnetic layer but also the SOC
in the magnetic layers significantly contributes to the IL-DMI.
This fact leads to sizable IL-DMI in Co/Ag/Co trilayers for
certain geometries. Interestingly, we find that the material
of the spacer plays an important role for the strength of the
IL-DMI through band-filling effects even without considering
the atomic SOC in the spacer. Therefore, we conclude that
the IL-DMI in such trilayers is a complex phenomenon that
is closely associated with specific factors such as the charge
distribution at the interface. Most of our findings can be qual-
itatively well explained by adapting the analytical formula
for the DMI proposed by Levy and Fert [22]. Our results are
expected to guide future experiments in the search of materials
with a large IL-DMI coupling and further the theoretical un-
derstanding of magnetic multilayers. Additionally, this work
might be a first step towards the understanding of the IL-DMI
in disordered systems.

This paper is structured as follows. In Sec. II, we introduce
the magnetic interactions obtained from the ab initio calcu-
lations, explain how we fit the data to a simple macrospin
model, show that specific symmetries need to be broken for
a nonzero IL-DMI, describe the Levy-Fert model, and clarify
the details of the first-principles method used. In Sec. III, we
show the IL-DMI vectors and exchange coupling for differ-
ent lateral positions of the nonmagnetic spacer, verify the fit
to the macrospin model by investigating the angle between
the magnetizations in the two layers, and present the results
for different nonmagnetic materials. Finally, in Sec. IV, we
conclude by summarizing the results and giving an outlook
towards possible future works.

II. METHODS

A. Crystal symmetry and IL-DMI

The DMI between spin vectors SA and SB is given by the
energy expression D(SA × SB). The lattice symmetries of a
system determine the direction of the DMI vector D. The

FIG. 1. Sketch of the atomic positions in the investigated sys-
tem with atomic nearest-neighbor DMI and resulting IL-DMI in the
macrospin model. Based on the known structure of bulk Co, we
assumed an hcp structure. Panels (a) and (b) visualize the top bulk
layer and the surface magnetic layer with the nonmagnetic spacer
in (a) hcp stacking or (b) at the bridge position, respectively. Panels
(c) and (d) show the DMI vectors between atoms in the different mag-
netic layers obtained from ab initio calculations. These interactions
are fitted to a macrospin model. The ground state and the IL-DMI
vector for the macrospin model are shown in (e) and (f). The angle
between the spins in (f) is exaggerated for illustrative purposes.

specifics are summarized within the five rules by Moriya [2].
Denoting the positions of the two magnetic atoms with A and
B, the straight line connecting them with AB, and the center
between A and B with M, the rules are as follows.

(1) M is a center of inversion ⇒ D = 0.
(2) M is in a mirror plane that is perpendicular to

AB ⇒ D ⊥ AB.
(3) AB is in a mirror plane ⇒ D ⊥ mirror plane.
(4) A twofold rotational axis perpendicular to AB passes

through M ⇒ D ⊥ twofold rotational axis.
(5)An n-fold (n � 2) rotational axis exists along

AB ⇒ D ‖ AB.
The structure investigated in this work is illustrated in

Fig. 1. It consists of a semi-infinite Co bulk in hcp stacking
(only the top layer is shown), a single atomic layer of a
nonmagnetic spacer with varying lateral position, and a single
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atomic layer of Co directly on top of the atoms below the
spacer layer continuing the hcp stacking. Consider the case
where B and C are nearest neighbors in the same layer, giving
rise to IF-DMI. The inversion symmetry is broken by the
surface and the first rule does not apply. For a finite hcp
structure with a surface, the second rule applies, resulting in
a DMI vector that is perpendicular to the atomic bond. It is
important to note that the symmetry breaking at the surface is
enough to allow for a nonvanishing IF-DMI even if the spacer
layer continues the hcp stacking in Fig. 1(a).

This changes when looking at the IL-DMI. We now con-
sider B to be in the surface layer and A to be in the top bulk
magnetic layer directly below B. The inversion symmetry is
broken because B is in the surface and A is in the bulk. Thus
the first Moriya rule is not satisfied. However, for perfect hcp
stacking in Fig. 1(c), the third and fifth rules apply. The yz
plane is a mirror plane [see Fig. 1(b)]; hence the IL-DMI
vector has to point into the x direction. On the other hand,
there is a threefold rotational symmetry around the z direc-
tion. Following the fifth rule, the IL-DMI vector also has to
point along the z direction. These two requirements cannot be
satisfied simultaneously; thus D = 0. To obtain a nonzero IL-
DMI, further symmetries have to be broken. Experimentally,
this can be achieved by introducing a gradient in the layer
thicknesses [10]. Here, we investigate the effect of breaking
the rotational symmetry by translating atoms of the nonmag-
netic spacer layer in the y direction, since this is more easily
implemented in first-principles calculations. In this case, the
mirror symmetry on the yz plane, shown in Fig. 1(b), forces
the DMI vector to be along the x direction [Fig. 1(d)], and no
further symmetries apply.

Finally, consider A and C in different layers but not directly
on top of each other. None of the symmetry rules apply for
this pair and the DMI vector may point along an arbitrary
direction. However, the DMI vectors for the six atoms denoted
by C are related by symmetry in hcp stacking, as illustrated
in Fig. 1(c). Taken together, these interactions give rise to a
modulation when moving along the x or y direction, which is
functionally the same as for IF-DMI even though the atoms
are located at different vertical positions. The sum of these
six vectors vanishes, meaning that they do not give rise to an
effective IL-DMI on the level of the unit cell [9], as shown
in Fig. 1(e). The direction of the macrospin IL-DMI vector
follows the symmetry rules for the atoms directly on top of
each other. We explain the calculation method for the atomic
and macrospin DMI vectors in Secs. II B and II C.

B. Magnetic interactions

To extract the atomic magnetic interactions, we map the
electronic structure of the magnetic system to the following
classical atomistic Heisenberg model:

H = −1

2

∑
i, j

S�
i Ji jS j −

∑
i

S�
i KiSi. (1)

Each lattice site i has a three-dimensional unit vector Si denot-
ing the spin direction. The 3 × 3 exchange tensor Ji j includes
all two-spin interactions between the sites i and j. The matrix
Ki describes the on-site anisotropy tensor. For the system in
Fig. 1, we only consider sites in the magnetic layers because

the magnetic moments in the spacer layer are induced ones for
which the Heisenberg model is not appropriate. We determine
Ji j and Ki from the relativistic generalization [32] of the torque
method [33,34], which directly yields interactions between
selected pairs of sites without requiring a fitting procedure.
Therefore, in the model we only consider sites in the surface
layer and the top bulk layer. Inside one layer, we consider
all neighbors up to a 5a distance, where a = 2.51 Å is the
in-plane lattice constant of bulk hcp Co. For the hexagonal
lattice, we have 90 neighbors for each site. Between the layers,
we have the same number of neighbors with the additional
interaction between the two Co atoms that are right above each
other. Hence we consider 181 neighbors in total for each site.
Further details on the first-principles calculations are given in
Appendix A.

To find the magnetic ground state of Eq. (1), we numeri-
cally solve the Landau-Lifshitz-Gilbert equation [35],

Ṡi = − γ

1 + α2
Si × (Beff

i + αSi × Beff
i

)
. (2)

Here, γ is the absolute value of the gyromagnetic ratio of an
electron and α is the Gilbert damping which we set to α = 1 to
achieve fast relaxation to equilibrium. The effective magnetic
field is determined by the Hamiltonian in the following way:

Beff
i = − 1

μi

∂H
∂Si

= 1

μi

∑
j

Ji jS j + 1

μi
KiSi, (3)

where μi is the magnetic moment at site i. The sum
∑

j runs
over all neighbors of i. We solve Eq. (2) using Heun’s method
by starting from a random initial configuration. We simu-
late the system till it converges to an equilibrium state. We
simulate a total of 64 × 64 × 2 spins with periodic boundary
conditions inside the layers. We find a single ferromagnetic
domain in both layers due to the strong ferromagnetic cou-
pling between the Co atoms inside the layers. The angle
between the magnetizations in the two layers allows mapping
to a macrospin model discussed in Sec. II C.

C. Macrospin model

We want to map the Hamiltonian in Eq. (1) to a simple
macrospin model to study the effect of the IL-DMI on the
angle between the two ferromagnetic layers. In this model, we
describe a given ferromagnetic layer by a single macrospin.
The Hamiltonian for this model is

H = −JS1 · S2 + D · (S1 × S2). (4)

J is the interlayer exchange coupling and D is the IL-DMI vec-
tor between the two macrospins S1 and S2. We can rewrite the
Hamiltonian of Eq. (1) by introducing isotropic Heisenberg
exchange coefficients Ji j and DMI vectors Di j [36] based on
the exchange tensors Ji j as follows:

Ji j = 1

3

∑
k∈{x,y,z}

Jkk
i j , Dk

i j = −1

2

∑
l∈{x,y,z}
m∈{x,y,z}

εklmJlm
i j , (5)
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where εklm is the Levi-Civita symbol. We can write the full
Hamiltonian in Eq. (1) using these notations as

H = − 1

2

∑
i, j

Ji jSi · S j + 1

2

∑
i, j

Di j · (Si × S j )

− 1

2

∑
i, j

S�
i Ki jS j . (6)

The anisotropy tensor Ki j includes the on-site anisotropies
Kii = 2Ki and the symmetric and traceless part of Ji j . To fit
the full system to the macrospin model, we set Si = S1 if the
site i is in the first layer, and we set Si = S2 if i is in the
second layer. Now, by neglecting the anisotropy terms and
the constant energy terms from the interfacial interactions, we
obtain that H in Eq. (6) is of the same form as H in Eq. (4),
where the correspondence between the coefficients is

J =
∑

i

J0i, D =
∑

i

D0i. (7)

The sums
∑

i run over the neighbors of the spin with index
j = 0, where we assume that this spin is in the first Co layer
and all spins i are in the second Co layer. We show the validity
of the fit to the simple macrospin model by calculating the
ground state of the full interacting Hamiltonian of Eq. (1)
from spin-dynamics simulations and then determine the angle
between the spins in the two Co layers α. This value is then
compared to the macrospin model where the equilibrium spin
directions can be calculated analytically. Here, the two spins
are perpendicular to the DM vector D with a finite angle
between them, which is given by

α = atan2(D, J ). (8)

A derivation of Eq. (8) is given in Appendix B.

D. Levy-Fert model

We compare the fitted macrospin parameters to the ones
obtained from the Levy-Fert (LF) model. In Refs. [21,22]
a formula for the DM vector between two magnetic sites
mediated by a third nonmagnetic impurity was derived. It was
assumed that both the magnetic atoms and the impurity are
embedded in low concentrations in a nonmagnetic material
described by a free-electron dispersion. The magnetic atoms
interact with the bulk through an exchange coupling between
the localized spins and the conduction electrons, while the
SOC term on the nonmagnetic impurity causes a scattering
of the electrons. Using third-order perturbation theory, they
were able to obtain an expression for the DMI reading

DLF = − V1
sin [kF (RA + RB + RAB) + φ]

RA
3RB

3RAB

× [RA · RB(RA × RB)], (9)

where RA and RB are the distances of the magnetic atoms
from the nonmagnetic scatterer, RAB is the distance between
the magnetic atoms, kF is the Fermi wave vector of the non-
magnetic bulk, φ = π

10 Zd is the phase shift induced by the
d orbitals of the nonmagnetic impurity on the conduction
electrons at the Fermi level, and the prefactor V1 includes

TABLE I. Atomic SOC constant λd and number of d electrons
for an isolated atom for different chemical elements considered
in the simulations. We also give values for the sinusoidal factor
λd sin(Zdπ/10) which is proportional to the DMI strength in the
Levy-Fert model [21,22]. Values are taken from Ref. [37]. The con-
version rate to eV is adopted from Ref. [22].

Element Co Cu Ag Pt Au

λd 0.068 eV 0.10 eV 0.22 eV 0.51 eV 0.60 eV
Atomic Zd 7 10 10 9 10
sin(Zdπ/10) 0.81 0.0 0.0 0.31 0.0
λd sin(Zdπ/10) 0.021 eV 0.0 eV 0.0 eV 0.16 eV 0.0 eV

information on the bulk, the magnetic atoms, and the nonmag-
netic scatterer. Notably, V1 is proportional to λd sin(φ) with
λd being the atomic SOC constant, listed in Table I for all
nonmagnetic spacers used in this work. The DMI vectors nat-
urally satisfy the symmetry rules in Sec. II A when summed
up over the positions of the nonmagnetic impurities necessary
to satisfy the given symmetry operation. The anisotropies cal-
culated from the analytical expression of the DMI in Eq. (11)
were demonstrated [22] to correlate well with experiments
performed on CuMnT alloys when the material T of the non-
magnetic scatterer was varied, although the numerical values
were higher by about a factor of 100.

We adapt this formula for the systems investigated in our
work to calculate the strength of the IL-DMI in the macrospin
model. We will position the two magnetic atoms in the bottom
layer and the top layer directly above each other. The nonmag-
netic layer is modeled by a two-dimensional triangular lattice.
We define

rA =

⎛
⎜⎝0

0
0

⎞
⎟⎠, rB =

⎛
⎜⎝0

0
c

⎞
⎟⎠, rkl

C =

⎛
⎜⎝

	x + k · a + l · a
2

	y + l ·
√

3
2 a

c
2

⎞
⎟⎠,

(10)

where we introduce the variables 	x and 	y that shift the
entire triangular lattice in x or y direction, while k and l index
the positions of the nonmagnetic atoms in lattice vector units
inside the triangular lattice. We define Rkl

A/B = rA/B − rkl
C as

new coordinates following the convention in Eq. (9) where the
distances are measured from the impurity. We can now write
the DMI vector obtained from the Levy-Fert model mediated
by a selected nonmagnetic impurity kl as

Dkl
LF = − V1

sin
[
kF
(
Rkl

A + Rkl
B + c

)+ φ
]

(
Rkl

A

)3(
Rkl

B

)3
c

× [Rkl
A · Rkl

B

(
Rkl

A × Rkl
B

)]
. (11)

The DMI vector D of the macrospin model Eq. (4) cor-
responds to the sum over all lattice sites in the nonmagnetic
layer in this model,

Dtot
LF =

∑
kl

Dkl
LF. (12)

Some approximations are necessary when adapting the model
to the present case, since we are investigating a bulk magnet
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with a nonmagnetic spacer instead of a spin glass with a low
concentration of impurities. Since the d band is fully occupied
in atomic Cu, Ag, and Au (Zd = 10), we get φ = π . We use
this value in the phase shift of the sine function, but not in the
prefactor V1 which is proportional to sin(φ) and would con-
sequently vanish. For kF , we substitute the value obtained for
bulk Ag (kF = 1.20 Å−1) [38] since there is no nonmagnetic
bulk material here. The Fermi surface for Co, apart from being
spin split, does not resemble a sphere [39], meaning that a
definition of a single Fermi wave vector for Co is not feasible.
We found that the model is not very sensitive to kF ; any typical
value of kF ≈ 1 Å−1 for metals produces qualitatively similar
results. We use V1 as a fitting parameter since we expect no
quantitative agreement using the value from Ref. [22]. We
focus on investigating how the predicted interaction strength
depends on the displacement of the nonmagnetic spacer 	x
and 	y, on the SOC in the nonmagnetic spacer, and on the
d-band filling Zd , since these can be compared to the first-
principles calculations. In case of a favorable comparison, we
expect that the conclusions drawn from the analytic formula
in Eq. (11) may be used to predict a way to optimize material
composition for maximizing the IL-DMI.

The interlayer exchange interaction J in Eq. (4) may be
compared to similar analytical formulas derived from pertur-
bation theory. The leading term is the RKKY interaction,

JRKKY = V0
cos (2kF RAB)

R3
AB

, (13)

which only includes contributions from the perturbation at
the two magnetic sites, since the presence of a nonmag-
netic scatterer or SOC is not necessary for its emergence.
Unfortunately, this also means that it is independent of the
displacement of the spacer layer which does not agree with
our first-principles calculations. It is mentioned in Ref. [22]
that a correction to the RKKY interaction appears if the scat-
tering off the nonmagnetic site is also taken into account. We
provide a derivation of this term in Appendix E, which may
be approximated as

Jkl
RKKY =V ′

0

sin
[
kF
(
Rkl

A + Rkl
B + c

)+ φ′](
Rkl

A

)3(
Rkl

B

)3
c

× [3(Rkl
A · Rkl

B

)2 − (Rkl
A

)2(
Rkl

B

)2]
. (14)

When comparing to the macrospin parameter determined
from first-principles calculations, we sum over the nonmag-
netic sites kl ,

J tot
RKKY =

∑
kl

Jkl
RKKY, (15)

and use V ′
0 as a fitting parameter. We also add a constant shift

J0 to the calculated interaction which includes the contribution
coming from the RKKY interaction between the Co atoms
in Eq. (13).

III. RESULTS

A. Lateral shifting of the spacer layer in Co/Ag/Co

We start by investigating the effect of a translation of the
nonmagnetic spacer layer on the parameters of the macrospin

FIG. 2. IL-DMI of the macrospin model for different positions
of the Ag atoms along the y axis. We compare the strength of the
IL-DMI obtained by ab initio calculations (red crosses) with the ones
predicted by the Levy-Fert model (12) (black line). The amplitude V1

in the Levy-Fert model was fitted to the ab initio data points. The
horizontal axis indicates the position of the Ag atoms along the y
direction, as shown below the axis. The vertical axis gives the IL-
DMI strength for the macrospin model in Eq. (4). We only show Dx

because the other components are zero.

model in Eq. (4). Initially, we will only look at the Ag spacer,
as Co/Ag/Co trilayers were experimentally realized and their
IL-DMI measured [11]. We shift the Ag atoms along the y
direction, calculate the interaction tensors for several posi-
tions, and determine the macrospin parameters using Eq. (7).
We plot the IL-DMI based on first-principles calculations
compared with results of the Levy-Fert model Eq. (12) in
Fig. 2. We denote the displacement of the Ag atoms from the
bridge position with 	y. As discussed in Sec. II A, the IL-
DMI vanishes if the system possesses both threefold rotational
symmetry around the z axis and a yz mirror plane. This is sat-
isfied at four points: at 	y = a/(2

√
3) and 	y = −a/(2

√
3),

where hcp and fcc stackings of the spacer layer are achieved,
respectively, and for 	y = ±√

3a/2, where Ag and Co align
on top of each other. A shift along the y direction with a
different 	y value breaks the threefold rotational symmetry,
but the reflection symmetry on the yz plane is preserved.
Consequently, the DMI vector points in the direction perpen-
dicular to the yz plane, D = (Dx, 0, 0), as discussed in
Sec. II A. Across all values of 	y, we observe that Dy and Dz

vanish for both the ab initio and Levy-Fert model calculations,
in agreement with Moriya’s rules. Therefore, only the x com-
ponent of the vector is shown in Fig. 2. The proportionality
constant V1 in Eq. (11) is set in such a way that the maxima of
the model and the ab initio calculations (max Dx = 1.71 meV)
are the same. The overall characteristics of the curve from
the simple Levy-Fert model agree well with the ab initio
data points. Particularly, the sign changes, the vanishing DMI
at 	y = ±a/(2

√
3) and 	y = ±√

3a/2, and the maximum
DMI strength being reached towards the outer limits of the
plot are all captured by the Levy-Fert model. Note that the
IL-DMI also vanishes at the bridge position in the Levy-Fert
model. This happens merely due to the fact that only three
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FIG. 3. Interlayer exchange interaction of the macrospin model
for different positions of the Ag atoms along the y axis. We compare
the values of J in Eq. (4) obtained from ab initio calculations (red
crosses) with the ones predicted by the spacer-mediated RKKY in-
teraction (15) (black line). The amplitude V ′

0 and the energy offset J0

are fitted to the ab initio data points. The horizontal axis indicates the
position of the Ag atoms along the y direction, as depicted in Fig. 2.

layers were included in the model calculations, in which case
there is a center of inversion between the two Co atoms for
this position of the spacer layer, leading to a vanishing DMI.
In the DFT calculations bulk Co is also considered, which
breaks this inversion symmetry. However, note that also in the
first-principles data there is a sign change in the IL-DMI close
to the bridge position of the spacer layer. Around the bridge
position, the ab initio data points are flatter, i.e., closer to
zero compared to the curve from the model, and the peaks of
maximum DMI strength are closer to 	y = ±√

3a/2. This is
likely due to the limitations of the Levy-Fert model as similar
deviations from DFT results were reported in Refs. [40–42].
The experiments on Co/Ag/Co obtained IL-DMI values of
about 0.112 meV [11], which is in a similar range compared
to our results. To compare the IL-DMI with the IF-DMI by
approximating the nearest-neighbor IF-DMI, we find that it
lies in the range −0.4 meV < DIF < 0.4 meV, making it
comparable to the IL-DMI. The details of calculations and
the data for the nearest-neighbor IF-DMI are given in Ap-
pendix C. Additionally to the IL-DMI, we investigate the
Heisenberg exchange interaction between the two Co layers in
the macrospin model. We plot the values for the ab initio and
model calculations in Fig. 3. To determine the proportionality
constant V ′

0 in Eq. (14) and the offset J0, we fit to the ab
initio data points. Similar to Fig. 2, we find that the main
characteristics are captured by the model. The local minimum
at 	y = 0 and 	y = ±√

3a/2 are present in both the model
and the first-principles data. As for the DMI strength, the
extrema in the model are at smaller values of 	y compared to
the ab initio data. Note that the interlayer exchange is strongly
modulated and even changes sign when changing the posi-
tion of the spacer layer while keeping the distance between
the Co layers fixed. This indicates that the spacer-mediated
interaction in Eq. (14) has a strong contribution compared
to the direct RKKY term in Eq. (13). The sign changes are
also captured by Eq. (14), leading to a relatively small fitted
offset of J0 = −3.80 meV. For the proportionality constant,
we obtain V ′

0 = 628 meV Å3.

FIG. 4. Angle between the two Co layers in the magnetic ground
state. The blue dots indicate the values obtained from spin-dynamics
simulations using the full Hamiltonian (1) including tensorial ex-
change interactions up to a distance of 5a. The angle for the
macrospin model (orange line) is calculated from Eq. (8) by taking
the values of D and J from Figs. 2 and 3, respectively. The horizontal
axis indicates the position of the Ag atoms along the y direction, as
depicted in Fig. 2.

B. Investigating the angle between ferromagnetic layers

To demonstrate that the macrospin model accurately de-
scribes the ground state, we compare the ground state of a
64 × 64 × 2 spin system obtained from spin-dynamics simu-
lations using the full interaction tensors with the ground state
of the corresponding macrospin model. Inside one layer we al-
ways obtain a single ferromagnetic domain in the simulations,
so we can calculate the angle α between the magnetization
directions in the top and bottom layers. We compare this angle
to the analytical expression for the angle in the macrospin
model Eq. (8) in Fig. 4. The difference between the two
methods is caused by the anisotropy terms present in the spin-
dynamics simulations but neglected in the macrospin model.
However, the two angles largely agree with each other in
the figure, indicating that the role of the anisotropy is weak.
The angle α is mostly close to either α = 0 or α = π , which
correspond to a ferro- (J > 0) or antiferromagnetic ordering
(J < 0), respectively. These two values are dominant because
the amplitude of J is large compared to Dx. The peak at
	y = 0 is explained by the sign change in J at 	y = 0; see
Fig. 3. Around 	y = 0, the two angles deviate from each
other. The role of the anisotropy parameters is pronounced in
this regime because of the relatively small values of D and J;
see Figs. 2 and 3.

C. IL-DMI for all possible translations

Since we found that the Levy-Fert model reproduces the
dependence of the IL-DMI on the position of the atoms in the
spacer layer qualitatively well, we use this model instead of
the more involved first-principles calculations to investigate
the macrospin model parameters for all possible translation
vectors (	x,	y). In Figs. 5(a)–5(c) we plot the Dx, Dy, and
|D| values obtained from the Levy-Fert model Eq. (12) using
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FIG. 5. IL-DMI vector obtained from model calculations for different positions of the Ag atoms in the whole unit cell. The vectors are
calculated from the Levy-Fert model Eq. (12) using the fitting parameters obtained in Fig. 2 from ab initio data along the line 	x = a

2 . Black
dots indicate the positions of the Co atoms. Panel (a) shows the x component Dx , (b) the y component Dy, and (c) the magnitude |D| of the DM
vector. The colors indicate the IL-DMI strength in the units of meV.

the fitted value of V1 = 58.2 meVÅ3 from Fig. 2 over a wider
area in two dimensions. The pattern is periodic with the lattice
vectors, as indicated by the positions of the Co atoms denoted
by black dots. Figure 2 corresponds to the line profile of
Fig. 5 along 	x = a/2. Along this line, the Dy component
in Fig. 5(b) is zero due to the mirror symmetry as discussed
in Sec. II A. The y component in Fig. 5(b) follows a rectan-
gular symmetry, while the x component in (a) has a different
symmetry with oscillatory characteristic. The absolute value
of the DM vector in Fig. 5(c) follows the hexagonal symmetry,
with rings of strong DMI forming around the positions of
the Co atoms. The IL-DMI vanishes (|D| = 0) when the Ag
atom is on top of the Co atoms (black dots) and at the fcc and
hcp positions (middles of the triangles of black dots) because
the threefold rotational symmetry is restored at these points.
The IL-DMI also vanishes at the bridge positions (halfway
between nearest-neighbor black dots) because the three-layer
system used for the model becomes inversion symmetric.
While this is not the case in the first-principles calculations,
in Fig. 2 we found that the IL-DMI also vanishes in those
calculations somewhere close to the bridge positions. Dz van-
ishes in the model because the DMI vectors from Eq. (11) are
always perpendicular to the line connecting the two Co atoms
which is along the z axis. This feature is not expected from the
first-principles calculations when the mirror symmetry on the
yz plane is also broken.

D. Material dependence

We investigated the dependence of the IL-DMI on the
spacer material by replacing Ag with Cu, Pt, and Au. The
heavier transition metals like Pt and Au have a higher atomic
SOC coupling constant [37]; hence it is expected that they
give rise to a stronger IL-DMI. We specifically investigate the
elements of group 11 (Cu, Ag, and Au) because the number of
valence d electrons appearing in the Levy-Fert model Eq. (9)
should be comparable (Zd ≈ 10), meaning that these three
materials mainly differ in the strength of the SOC. In contrast,
Pt and Au have a similar strength of atomic SOC, see Table I,
but Pt has a lower number of valence electrons Zd ≈ 9. We

calculated the IL-DMI and interlayer exchange interaction in
the macrospin model from the interaction tensors determined
from first-principles calculations for the symmetric hcp stack-
ing position 	y = a/(2

√
3) and the 	y = 0.67a position. We

choose these two geometries because we observe the highest
IL-DMI interaction for Ag at 	y = 0.67a in Fig. 2 and a
vanishing IL-DMI for 	y = a/(2

√
3) because of symmetry

reasons. Furthermore, we investigate the contribution of the
nonmagnetic and magnetic atoms to the DMI strength by
turning off the SOC selectively in the nonmagnetic layer, in
the magnetic layers, and in the whole system. The results
are shown in Fig. 6(a). In the center position (blue circles)
and without any SOC (red stars), the DMI vanishes for all
material combinations; the former follows from symmetry and
the latter confirms that the SOC is necessary for obtaining
DMI in the ab initio calculations. At y = 0.67a, the DMI
strength increases in the following order: Cu, Ag, Pt, and
Au. When disabling the SOC only in the nonmagnetic layer,
the DMI is weakened for Cu, Ag, and Au. For Pt, the DMI
strength is increased. We also observe a sign change for Ag,
Pt, and Au when the SOC in the nonmagnetic layer is turned
off. In this case the DMI originates from the SOC of the Co
atoms and the resulting DMI acts against the one from the
nonmagnetic material. The purple crosses in Fig. 6 show the
resulting interactions when the SOC is turned off in all Co
atoms, leaving only the nonmagnetic atoms with a nonvan-
ishing SOC constant. In this case, the order of the spacer
materials according to the magnitude of the IL-DMI values
is again Cu, Ag, Pt, and Au.

By summing up the DMI values Dx when SOC is turned off
in the nonmagnetic atoms (green squares) and the Dx values
when the SOC is turned off in the magnetic Co atoms (purple
crosses), one obtains a value close to the case where SOC is
included everywhere (orange triangles). This supports the fact
that the DMI is linear in the strength of the SOC [2,21,22]
and the contributions from the magnetic atoms and the non-
magnetic atoms are additive. Although the contribution of the
SOC on the magnetic atoms to the DMI was not calculated
in Ref. [22], from the similarity of the scattering processes
it can be assumed that the main parameters influencing its
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FIG. 6. Interlayer interactions for different spacer materials. We
obtain the IL-DMI (a) and exchange interactions (b) from the
macrospin model Eq. (4) based on ab initio calculations for Cu,
Ag, Pt, and Au as the nonmagnetic layer. We place the nonmagnetic
atoms in an hcp stacking position (blue circles) and at the position
of maximum DMI for Ag in Fig. 2, 	y = 0.67a (orange triangles).
For this latter position, we turn off the SOC in the nonmagnetic layer
(green squares), in the magnetic Co layers (purple crosses), and in
the whole system (red stars).

magnitude are also the atomic SOC λd and the number of
valence d electrons Zd . Concerning the nonmagnetic contri-
butions (purple crosses in Fig. 6), the order of the materials
precisely follows the strength of the atomic SOC in Table I.
Note that the IL-DMI induced by Au is stronger than by Pt and
reaches an objectively quite high value of around 10 meV, at
least for this specific placement of the nonmagnetic spacer.
This is remarkable since, in the case of IF-DMI in Co, Pt
is considered mostly ideal for maximizing its value, while
Au typically has a weak effect on it; see, e.g., Ref. [24] and
references therein. We also provide values for the IF-DMI in
Appendix C where we obtain the highest value for Pt. From
the data in Fig. 6(a), we can conclude that, for Ag and Au,
the contribution originating from the magnetic Co is small
compared to the overall DMI strength. However, for Cu and
Pt the DMI originating from the Co atoms is comparable in
strength to the contribution from the nonmagnetic atoms. This
is less surprising for Cu which has a similar SOC strength
as Co, but the strong enhancement of the contribution of Co
to the total IL-DMI with a Pt spacer layer is more surprising
since the atomic spin-orbit coupling constant λd is 7.5 times
larger for Pt than that of Co [37].

Since the strength of the SOC in Co is not influenced by
the material of the spacer layer, we investigate the connection
between the IL-DMI attributed to Co and the filling factor

FIG. 7. (a) Number of valence d electrons Zd and (b) prefactor
sin[(π/10)Zd ] of the DMI vector in the Levy-Fert model in the top
bulk Co layer for different spacer materials. We chose the geometry
with the highest value of DMI for Ag spacer layer 	y = 0.67a (or-
ange triangles) and repeated the calculations by turning off the SOC
in the nonmagnetic layer for the same geometry (green squares).

Zd . The filling factor can be obtained from first-principles
calculations by taking the atomically and orbitally resolved
DOS and integrating over the d orbitals up to the Fermi level
at the different sites. We show this quantity for the different
spacer materials in the top bulk Co layer in Fig. 7(a). For
bulk Co, one expects Zd to be close to the atomic filling
factor Zd ≈ 7 [22]. However, due to hybridization with the
nonmagnetic spacer, Zd in the Co layer is modified: it is
reduced for a Pt spacer layer and increased to a lesser extent
for a Cu spacer, while for Ag and Au spacers the filling factor
of Co is close to the atomic value. The Zd value controls a
phase factor and the DMI strength in the Levy-Fert model; see
Eq. (9) and the corresponding discussion. In particular, the
prefactor V1 is proportional to sin[(π/10)Zd ]. In Fig. 7(b) this
factor is shown for the top bulk Co layer. The values follow
the DMI strength if the SOC is turned off in the nonmagnetic
spacer [green squares in Fig. 6(a)], indicating qualitative
agreement with the generalization of the Levy-Fert model
to SOC scattering off the magnetic atoms when disregarding
the geometric factor. An explanation based on the filling
factors Zd is not sufficient to completely explain why the
contribution of Co to the IL-DMI is close to that of Pt,
since Pt and Co both have approximately the same value
Zd ≈ 7, but different values of the atomic SOC. Turning off
the SOC in the spacer layer has a weak effect on the band
filling. Further analysis of the filling factors Zd is given in
Appendix D.

For the interlayer exchange interaction in Fig. 6(b), we
find that it is ferromagnetic but relatively weak for all spacer
materials when perfect hcp stacking is followed. Its value
is enhanced for 	y = 0.67a, where also strong IL-DMI is
found, and it switches sign to antiferromagnetic for Ag, Au,
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and Pt spacer layers. Turning the SOC off on different atoms
has a weak effect on the exchange interaction, since it does
not originate from SOC. The IL-DMI has a stronger effect on
the angle between the magnetization directions in the layers
for Au spacer than for Pt not only because of its higher
magnitude, but because the competing interlayer exchange is
also weaker.

IV. CONCLUSION

We investigated the IL-DMI between a surface atomic Co
layer and the top atomic layer of bulk Co separated by a
nonmagnetic spacer layer by combining first-principles cal-
culations, spin model simulations, and analytical formulas.
For a Ag spacer layer we found a ferromagnetic alignment
in each Co layer and we successfully reduced the magnetic
interactions to a macrospin model with a single IL-DMI vector
and interlayer exchange constant. We verified the validity of
this model by comparing the resulting angles between the
ground-state magnetizations in the two Co layers between
the full Hamiltonian and the macrospin model. We compared
the calculated IL-DMI vector and interlayer exchange from
the macrospin model with the analytical Levy-Fert model
and its modified version for exchange interactions and ob-
served qualitatively good agreement as a function of the
displacement of the nonmagnetic layer. Finally, we inves-
tigated the IL-DMI for four different spacer materials and
observed an increased DMI strength for heavier elements with
a stronger atomic SOC, with the highest value obtained for
a Au spacer. We separated the contributions to the IL-DMI
from the magnetic and nonmagnetic atoms by selectively
turning off the SOC in the layers. We found that the contri-
bution of the Co atoms to the IL-DMI partially compensates
that of the nonmagnetic spacer in the case of Ag, Pt, and
Au. This contribution of the magnetic element is particu-
larly enhanced for Pt, which is correlated with the reduced
number of valence d electrons in Co for this spacer layer.
To the best of our knowledge, this effect of the SOC of
the magnetic material has not been reported in the litera-
ture before. Further investigations are needed to understand
the mechanism fully and explain the surprisingly high influ-
ence of the relatively weak atomic SOC of Co compared to
that of Pt.

We found reasonable agreement between the first-
principles calculations and the Levy-Fert model concerning
the dependence of the interactions on the position of the
spacer layer and the enhancement of the IL-DMI for higher
atomic SOC strength and for the number of valence electrons
Zd being closer to 5. This indicates that these predictions
of the analytical model may be used for exploring larger
parameter spaces, but first-principles calculations are still re-
quired for determining numerical values of the interactions.
Concerning material composition, in the considered geometry
we found that the IL-DMI is higher for a Au spacer compared
to Pt, while it is known from the literature that the IF-DMI
is stronger for Co/Pt than for Co/Au. Even a spacer layer
with weaker SOC like Ag may be useful for achieving a
large angle between the magnetization directions in the two
layers, because the interlayer exchange also strongly varies
with the geometry and at some positions it is comparable to

the IL-DMI in magnitude. Further studies may uncover mate-
rial combinations where the contributions from the magnetic
and nonmagnetic materials to the IL-DMI do not compensate
each other, possibly leading to a further enhancement of its
magnitude.

In this study, we investigated perfectly ordered crystals
and took into account the symmetry breaking required for
the emergence of the IL-DMI by laterally shifting the spacer
layer. In experiments the IL-DMI is caused by the growth
process introducing a thickness gradient, intermixing at the
interfaces, and lattice defects, which all contribute to the sym-
metry breaking. Therefore, our work represents a first step
towards modeling realistic materials where such disorders
also play an important role.
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APPENDIX A: AB INITIO CALCULATIONS

The ab initio calculations were performed with the
screened Korringa–Kohn–Rostoker method (SKKR) [30,31].
The fully relativistic nature of the implemented SKKR
method enables us to study the effects of SOC in detail; the
method enables scaling the strength of the SOC separately in
each atomic layer. For more information on this method, we
refer to Refs. [43–45]. To study the magnetic properties of two
Co layers with a nonmagnetic layer between them, we model
the system as 10 layers of bulk Co, a monolayer of nonmag-
netic spacer (Cu, Ag, Pt, or Au), a single Co layer, and four
layers of vacuum (empty spheres) between semi-infinite bulk
Co and semi-infinite vacuum. The two Co layers for which we
calculate the interactions and the spacer layer are visualized in
Figs. 1(a) and 1(b). For the stacking, we assume an hcp lattice
with the in-plane lattice constant of bulk Co (a = 2.51 Å). The
lattice constant along the z direction is also that of bulk Co
(c = 1.63a) except around the nonmagnetic monolayer. Here,
we set it to c = 2.06a for Ag to preserve the volume of the unit
cell of bulk Ag, and similarly to c = 1.68a for Cu, c = 1.92a
for Pt, and c = 2.06a for Au. We shift the whole nonmagnetic
spacer layer along the y direction. This preserves the mirror
symmetry on the yz plane. For the self-consistent calculations,
we used an angular momentum cutoff of 
max = 3, integrated
over 16 energy points on a semicircle contour in the upper
complex semiplane, and used 546 k points to integrate in the
part of the Brillouin zone reduced via the mirror symmetry.
The number of k points was increased for the calculation of
the interactions.
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APPENDIX B: DETERMINING THE ANGLE
BETWEEN THE LAYER MAGNETIZATIONS

IN THE MACROSPIN MODEL

We investigate the Hamiltonian in Eq. (4). Expressing the
dot and cross products by the angle α between the vectors S1

and S2 yields

H (α) = −J cos (α) + sin (α)D · n̂, (B1)

where n̂ is the normal vector of the plane spanned by S1 and
S2. Without loss of generality, we assume that the DMI vector
D points parallel to the y direction and set n̂ along the negative
y direction to minimize the energy. Therefore, we replace the
DMI vector with a simple scalar value D,

H (α) = −J cos (α) − D sin (α). (B2)

By differentiating we get

dH (α)

dα
= J sin (α) − D cos (α) = 0. (B3)

By rearranging it follows that

tan α = D

J
, (B4)

α = atan2(D, J ), (B5)

with atan2 resulting in an angle between −π and π with its
sign describing the preferred rotational sense. Assume that
the spin S1 is pointing along the z direction, S1 = êz, and a
ferromagnetic coupling J > 0. For D > 0, the second spin
is tilted towards the negative x direction with 0 < α < π/2,
while, for D > 0, S2 is tilted towards the positive x direction
described by −π/2 < α < 0.

APPENDIX C: CALCULATION OF AN EFFECTIVE IF-DMI

The first-principles calculations yield exchange interac-
tions and DM vectors between each pair of magnetic atoms;
cf. Eq. (6). To obtain a simpler measure of the in-plane
exchange interaction and the IF-DMI, we approximate the
full Hamiltonian restricted to the spins in the surface layer
in the low-energy regime by a single-layer triangular lat-
tice with only nearest-neighbor interactions. We evaluate the
Hamiltonian of Eq. (1) for cycloidal spin spirals Si(q) with
different in-plane wave vectors q. The spin spiral Si(q) is
given by

Si(q) = cos(q · Ri )êz + sin(q · Ri )q̂, (C1)

where êz is the unit vector pointing into the z direction and
q̂ is the unit vector pointing into the direction of the in-plane
wave vector q.

The spins rotating in the plane spanned by êz and q̂,
called the cycloidal rotation, is preferred by the symme-
try restrictions on the IF-DMI vectors in the C3v symmetry
class obtained for hcp or fcc stacking. The Hamilto-
nian for nearest-neighbor exchange interaction and DMI is
given by

HIF
NN = −1

2

∑
〈i, j〉

JIF Si · S j + 1

2

∑
〈i, j〉

DIF
i j (Si × S j ). (C2)

We assume that the DMI vectors DIF
i j are given by Di j =

DIF R̂i j × êz. Now, inserting spin spirals along the x direc-
tion and y direction (q = qx/yêx/y) from Eq. (C1) into the
Hamiltonian in Eq. (C2), we obtain

ε(qx ) = HIF
NN [Si(qx )]/N = −JIF

[
cos(qxa) + 2 cos

(
qx

a

2

)]
− DIF

[
sin(qxa) + sin

(
qx

a

2

)]
, (C3)

ε(qy) = HIF
NN [Si(qx )]/N = −JIF

[
1 + 2 cos

(
qy

√
3a

2

)]

− DIF

√
3

2

[
2 sin

(
qy

√
3a

2

)]
, (C4)

where N is the total number of spins in the system. We fit
the spin-spiral energies obtained from all magnetic interac-
tion tensors in the surface layer to this expression to obtain
the values of JIF and DIF . We separate the symmetric and
antisymmetric parts of the tensors in Eq. (1) to fit to JIF and
DIF separately. We only fit to small q values of |qx,y| < 0.1 2π

a
since we want the model to describe the low-energy regime
close to the ferromagnetic ground state. The fitted interfacial
parameters are summarized in Fig. 8 for different positions
of the Ag spacer layers as well as for different spacer layers
and strengths of the SOC. In Fig. 8(a), the IF-DMI has a
strong dependence on the position of the nonmagnetic layer
with some oscillatory features, similarly to the IL-DMI. The
key difference is that the IF-DMI does not vanish at any
position due to symmetry reasons, since inversion-symmetry
breaking by the surface is sufficient for its presence. However,
the fitted values along the qx and qy directions are slightly
different. This is because assuming Di j = DIF R̂i j × êz for the
in-plane component of the IF-DMI with a single DIF value
only follows from the Moriya rules for C3v symmetry, but
the DMI vectors for neighbors along the x and y direction
become inequivalent as the symmetry is reduced. Note that the
fitted values along qx and qy indeed approximately coincide
at the high-symmetry points 	y = ±a/(2

√
3),±√

3a/2. The
exchange interaction in Fig. 8(c) has a similar shape as the in-
terlayer exchange interaction in Fig. 3 but is inverted along the
y axis. The coupling inside a layer is always ferromagnetic and
the changes in it are relatively weaker than in the interlayer
term. This is probably because scattering processes inside a
single Co layer are primarily responsible for the strong fer-
romagnetic coupling. The interfacial interactions for Cu, Ag,
Pt, and Au as the nonmagnetic spacer layer are displayed in
Figs. 8(b) and 8(d). At the symmetric hcp position, we observe
a nonvanishing IF-DMI for all materials which is allowed by
symmetry, with Pt having the highest DMI strength. As in
Fig. 6, we study the magnetic interactions for a displacement
of 	y = 0.67a along the y direction, for which we observed a
maximum in the IL-DMI for a Ag spacer layer. In Fig. 8(a), we
see that the IF-DMI is quite small and close to its minimum for
a Ag spacer layer at the same displacement. At 	y = 0.67a
in Fig. 8(b), we see a decrease in IF-DMI for Cu, Ag, and
Au compared to the hcp stacking, but a further increase in Pt.
The high value of the IF-DMI at Co/Pt is in agreement with
earlier works [24]. We also show the data for SOC turned off
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FIG. 8. (a) IF-DMI and (c) exchange interactions in an effective nearest-neighbor model Eq. (C2) in the surface Co layer for different
positions of the nonmagnetic Ag spacer layer. The horizontal axis indicates the position of the Ag atoms along the y direction, as visualized
in Fig. 2. (b) IF-DMI and (d) exchange interactions in the surface Co layer for four different nonmagnetic spacer materials (Cu, Ag, Pt, and
Au). We place the nonmagnetic atoms in an hcp stacking position (blue circles) and at the position of maximum IL-DMI for Ag, 	y = 0.67a
(orange triangles). For this position, we turn off the SOC at the nonmagnetic layer (green squares), in the magnetic Co layers (purple crosses),
and in the whole system (red stars). In (b) and (d) we average over the fitted JIF and DIF from ε(qx ) and ε(qy ) for clarity.

in the nonmagnetic spacer (green squares), in the Co (purple
crosses), and in the whole sample (red stars). When turning
off the SOC in the whole material, the IF-DMI vanishes in all
cases as expected. The exchange interaction in the surface Co
layer is always ferromagnetic, it is only influenced relatively
strongly by the position of the spacer layer in the case of Pt,
and depends weakly on the SOC.

APPENDIX D: BAND-FILLING EFFECTS

To elaborate on the discussion of Figs. 6 and 7, in Fig. 9
we provide the filling factors Zd (a) in the nonmagnetic spacer
layers and (b) in the surface Co layer for different spacer
materials. The presented data points in (a) and (b) are for a
displacement of the nonmagnetic spacer by 	y = 0.67a along
the y direction, at which value the IL-DMI is maximal for a Ag
spacer layer. The number of valence d electrons Zd obtained
from the calculations deviates from the atomic value because
of hybridization. For Cu, Ag, and Au the atomic filling factor
is Zd = 10, for Pt it is Zd = 9, and for Co it is Zd = 7.
The prefactor of the DMI vector in the Levy-Fert model
V1 ∼ λd sin[(π/10)Zd ] related to the filling factor is shown in
Figs. 9(c) and 9(d). λd is chosen for each element separately
using the specific values given in Table I, but it is not taken
into account in panel (d) since all data points are for Co. For
Cu, Ag, and Au spacer layers one obtains sin[(π/10)Zd ] = 0
using the atomic value of Zd = 10 in the model, which would
indicate a vanishing DMI. However, Figs. 9(a) and 9(c) show
that the DMI does not completely vanish here because the
actual filling factor is lower than this value. The increasing

trend with increasing SOC strength in Fig. 9(c) is similar to
Fig. 6(a) when the SOC in the Co layers is turned off (purple
crosses). The prefactor λd sin[(π/10)Zd ] is higher for Pt than
for Au because of the lower filling of Pt, yet the order of
the IL-DMI values in Fig. 6(a) is the opposite for these two
materials. This may be attributed to the geometric factors
not taken into account in the prefactor. Figure 9(d) may be
compared to the IL-DMI values in Fig. 6(a) without SOC in
the spacer layer (green squares) or to the same plot for the
top bulk Co layer in Fig. 7. The increasing trend in the DMI
prefactor from Cu through Ag to Pt is reproduced, but the fact
that the predicted DMI prefactor for Au is smaller than for
any other spacer layer is in contrast to the calculated IL-DMI
values in Fig. 6(a), where the contribution of the Co layer to
the DMI is the second highest in Au. However, the top bulk
Co layer in Fig. 7 and the surface Co layer in Figs. 9(b) and
9(d) both influence the contribution of the magnetic atoms to
the DMI. Note that the filling factors Zd of both Co layers and
that of the Pt layer are below their atomic value for Pt as a
spacer. This may be caused in part by partial charge transfer
outside these three layers, i.e., to the vacuum layers or the
other bulk Co layers, or in part by a hybridization between s
and d orbitals transferring charge to the former. Such effects
are not possible to incorporate in the Levy-Fert model and
these limitations have to be kept in mind.

APPENDIX E: DERIVATION OF THE SPACER-MEDIATED
RKKY INTERACTION

Here we calculate the contribution of the nonmagnetic
atoms to the exchange interaction. We follow the derivation of
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FIG. 9. Filling factor Zd (a) in the nonmagnetic spacer layer (b) and the surface Co layer for different spacer materials. Panels (c) and
(d) show the factor V1 = λd sin[(π/10)Zd ] for the same cases, which is proportional to the DMI in the Levy-Fert model Eq. (9).

Ref. [22], where such a term was predicted but not explicitly
calculated. The correction to the ground-state energy of a
three-dimensional free Fermi gas in second-order perturbation
theory is

E (2) =
(

1

8π3

)2 ∫
k�kF

d3kP
∫

d3k′∑
σ,σ ′

× 〈k, σ |V |k′, σ ′〉〈k′, σ ′|V |k, σ 〉
Ek,σ − Ek′,σ ′

, (E1)

where Ek,σ = Ek = h̄2k2/(2m) is the free-electron dispersion
and P denotes the principal value of the integral. As perturba-
tion we consider two pointlike magnetic impurities with spins
Sa and Sb located at positions Ra and Rb,

V = −�δ(r − Ra)s · Sa − �δ(r − Rb)s · Sb, (E2)

which interact with the spins of the conduction electrons s
through the coupling �. Furthermore, we consider that the
free-electron eigenstates |k, σ 〉 include the effect of a pertur-
bation up to first order by a centrosymmetric potential located
at a nonmagnetic site,

|k, σ 〉 = eikr − 4π eiη2(k) sin η2(k)h(+)
2 (kr)

2∑
m=−2

Y ∗
2m(k̂)Y2m(r̂),

(E3)

where η2(k) is the phase shift caused by the impurity, h(+)
2 is

the spherical Hankel function of the first kind, and Y2m is the
spherical harmonic, while the position r is measured from
the position of the impurity. The phase shift is expressed in
the virtual-bound-state approximation as

η2(k) = arctan
	

Er − Ek
, (E4)

where Er is the position of the resonance and 	 is its width.
Note that we only consider perturbation by the d orbitals of
the impurity, leading to the indices l = 2 in the expressions.
We do not consider SOC here since it is not necessary for
the correction to the Heisenberg interaction and the strength
of the SOC has a weak effect on this interaction in our first-
principles calculations as demonstrated above.

Substituting the unperturbed wave functions eikr from
Eq. (E3) into Eq. (E1) and performing the integrals results in
the RKKY interaction,

E (2)
(0) = 9π�2

32EFk3
F

cos (2kFRab)

R3
ab

Sa · Sb, (E5)

where kF and EF are the Fermi wave vector and velocity and
Rab = |Ra − Rb|. When one substitutes the perturbation from
Eq. (E3) into one of the four wave functions |k, σ 〉 in Eq. (E1)
while considering the unperturbed plane waves in the other
three wave functions, one gets

E (2)
(1) =

(
1

8π3

)2
�2

N2

∫ kF

0
k2dk P

∫ ∞

0
k′2dk′ 1

Ek − Ek′

∑
σ,σ ′

〈σ |s · Sa|σ ′〉〈σ ′|s · Sb|σ 〉

×
⎡
⎣−4π

∫
e−ik(Ra−Rb)dk̂

⎛
⎝e−iη2(k′ ) sin η2(k′)h(−)

2 (k′Rb)
∫

eik′Ra

2∑
m=−2

Y2m(k̂
′
)Y ∗

2m(R̂b)dk̂
′

+ eiη2(k′ ) sin η2(k′)h(+)
2 (k′Ra)

∫
e−ik′Rb

2∑
m=−2

Y ∗
2m(k̂

′
)Y2m(R̂a)dk̂

′
⎞
⎠+ (a ⇔ b)

⎤
⎦+ (k ⇔ k′). (E6)
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Here, N is the atom density resulting from performing the spatial integrals over the delta distributions in Eq. (E2). The summation
over spin indices can be performed separately,∑

σ,σ ′
〈σ |s · Sa|σ ′〉〈σ ′|s · Sb|σ 〉 =

∑
α,β

1

4

∑
σ,σ ′

σα
σσ ′σ

β

σ ′σ Sα
a Sβ

b = 1

2
Sa · Sb, (E7)

yielding an isotropic exchange interaction. The integrals over the directions of the wave vectors k̂ and k̂
′
read∫

e−ik(Ra−Rb)dk̂ = 4π sin (kRab)

kRab
, (E8)

∫
eik′Ra

2∑
m=−2

Y2m(k̂
′
)Y ∗

2m(R̂b)dk̂
′ = −4π j2(k′Ra)

2∑
m=−2

Y2m(R̂a)Y ∗
2m(R̂b) = −5

2
j2(k′Ra)[3(R̂a · R̂b)2 − 1], (E9)

using the properties of the spherical harmonics. Assuming that the magnetic impurities are far away from the nonmagnetic one,
the spherical Hankel and Bessel functions may be approximated by their asymptotic forms,

h(±)
2 (kr) ≈ −e±ikr

kr
, j2(kr) ≈ − sin (kr)

kr
. (E10)

Collecting the terms in Eq. (E6) while exchanging the a and b indices and using trigonometric identities results in

E (2)
(1) = 5�2

8π4N2

m

h̄2

1

RaRbRab
Sa · Sb[3(R̂a · R̂b)2 − 1]

∫ kF

0
k dk sin (kRab)

× P
∫ ∞

0
dk′ 1

k2 − k′2 2{sin η2(k′) sin[k′(Ra + Rb) + η2(k′)] − sin2 η2(k′) cos[k′(Ra − Rb)]} + (k ⇔ k′). (E11)

The principal-value integrals may be evaluated using contour integrals in the complex plane as discussed in Ref. [22]. This
results in an infinite series in negative powers of the distances Ra + Rb, |Ra − Rb|, and Rab. Keeping only the leading-order terms
which decay the slowest with distance gives

P
∫ ∞

0
sin η2(k′) sin[k′(Ra + Rb) + η2(k′)]

1

k2 − k′2 dk′ ≈ − π

2k
sin η2(k) cos [k(Ra + Rb) + η2(k)], (E12)

P
∫ ∞

0
sin2 η2(k′) cos[k′(Ra − Rb)]

1

k2 − k′2 dk′ ≈ π

2k
sin2 η2(k) sin (k|Ra − Rb|), (E13)

and

P
∫ ∞

0
sin
(
k′Rab

) k′

k2 − k′2 dk′ ≈ −π

2
cos (kRab), (E14)

from the term where k and k′ are interchanged. After collecting all the terms and using trigonometric identities, this leads to

E (2)
(1) = − 5�2

8π3N2

m

h̄2

1

RaRbRab
Sa · Sb[3(R̂a · R̂b)2 − 1]

×
∫ kF

0
sin [k(Ra + Rb + Rab)] sin η2(k) cos η2(k)

+ {cos [k(Ra + Rb + Rab)] − cos [k(|Ra − Rb| + Rab)]} sin2 η2(k)dk. (E15)

Note that |Ra − Rb| is the difference between the distances of magnetic atoms a and b measured from the impurity, while
Rab = |Ra − Rb| is the distance between the magnetic atoms.

Assuming that the virtual bound state is very narrow, the factor sin η2(k) vanishes for wave vectors away from the Fermi level
and changes very rapidly in its vicinity. Therefore, k may be replaced by kF in the slowly varying trigonometric functions which
depend on the relative positions of the atoms in Eq. (E15). Performing the integral in k yields∫ kF

0
sin η2(k) cos η2(k)dk =

∫ kF

0

(Er − Ek )	

(Er − Ek )2 + 	2
dk = 2m	

h̄2

∫ kF

0

(
k2

r − k2
)

(
k2

r − k2
)2 + k4

	

dk

= −2m	

h̄2

⎡
⎢⎢⎢⎣

ei π
4 arctan

(
ei π

4 k√
k2
	−ik2

r

)

2
√

k2
	 − ik2

r

+
ei 3π

4 arctan

(
ei 3π

4 k√
k2
	+ik2

r

)

2
√

k2
	 + ik2

r

⎤
⎥⎥⎥⎦

kF

0

= m	

h̄2kr
α1, (E16)
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∫ kF

0
sin2 η2(k)dk =

∫ kF

0

	2

(Er − Ek )2 + 	2
dk =

(
2m	

h̄2

)2 ∫ kF

0

1(
k2

r − k2
)2 + k4

	

dk

= −2m	

h̄2

⎡
⎢⎢⎢⎣

ei 3π
4 arctan

(
ei π

4 k√
k2
	−ik2

r

)

2
√

k2
	 − ik2

r

+
ei π

4 arctan

(
ei 3π

4 k√
k2
	+ik2

r

)

2
√

k2
	 + ik2

r

⎤
⎥⎥⎥⎦

kF

0

= m	

h̄2kr
α2. (E17)

For narrow virtual bound states close to the Fermi level,
√

2m	/h̄2 = k	 � kF ≈ kr =
√

2mEr/h̄2, the factors α1 and α2 may
be approximated as

α1 ≈ − 1

2
ln

⎛
⎝ (kr − kF)2 + k4

	

4k2
r

(kr + kF)2 + k4
	

4k2
r

⎞
⎠, (E18)

α2 ≈η2(kF). (E19)

When calculating the DMI in Ref. [22], the integral over k was rewritten to an integral over η2 while keeping the k dependence
only in the phase shifts. This method works for the calculation of α2 (here we included kr in the prefactor instead of kF for
increased numerical accuracy), but a different approximation is required for α1 which is sharply peaked at kF = kr .

In summary, the energy correction including scattering off the nonmagnetic impurity may be written as

E (2)
(1) = − 45π�2	

32E2
F k2

Fkr

sin [kF(Ra + Rb + Rab)]α1 + {cos [kF(Ra + Rb + Rab)] − cos [kF(|Ra − Rb| + Rab)]}α2

RaRbRab

× Sa · Sb[3(R̂a · R̂b)2 − 1], (E20)

where EF = h̄2k2
F/(2m) and N = k3

F/(3π2) was substituted,
the latter assuming a single electron per site. The spatial
dependence of this term is very similar to that of the DMI
derived from the same model, although the prefactor does not
contain the SOC since that was not included in the deriva-
tion here. However, the dependence on the spin directions is
the same as in the RKKY interaction. This interaction term
vanishes for certain angles between R̂a and R̂b, but unlike for
the DMI there is no global symmetry which could forbid the
presence of this term when summing over the positions of all
nonmagnetic impurities.

To decrease the number of fitting parameters in the
comparison with the first-principles results, we combined
the sin[kF(Ra + Rb + Rab)] and cos[kF(Ra + Rb + Rab)]
terms by introducing a phase factor φ′ and neglected the
cos[kF(|Ra − Rb| + Rab)] term, resulting in the expression
used in the main text,

E (2)
(1) =V ′

0
sin [kF (RA + RB + RAB) + φ′]

(RA)3(RB)3RAB

× [3(RA · RB)2 − (RA)2(RB)2]Sa · Sb. (E21)
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