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We propose a method to determine the magnetic exchange interaction and onsite anisotropy tensors of
extended Heisenberg spin models from density functional theory including relativistic effects. The method
is based on the Liechtenstein-Katsnelson-Antropov-Gubanov torque formalism, whereby energy variations
upon infinitesimal rotations are performed. We assume that the Kohn-Sham Hamiltonian is expanded in a
nonorthogonal basis set of pseudoatomic orbitals. We define local operators that are both Hermitian and satisfy
relevant sum rules. We demonstrate that in the presence of spin-orbit coupling a correct mapping from the
density functional total energy to a spin model that relies on the rotation of the exchange field part of the
Hamiltonian can not be accounted for by transforming the full Hamiltonian. We derive a set of sum rules
that pose stringent validity tests on any specific calculation. We showcase the flexibility and accuracy of the
method by computing the exchange and anisotropy tensors of both well-studied magnetic nanostructures and of
recently synthesized two-dimensional magnets. Specifically, we benchmark our approach against the established
Korringa-Kohn-Rostoker Green’s function method and show that they agree well. Finally, we demonstrate how
the application of biaxial strain on the two-dimensional magnet T-CrTe2 can trigger a magnetic phase transition.
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I. INTRODUCTION

The discovery of magnetism in the van der Waals ma-
terials CrI3 and Cr2Ge2Te6 [1,2] has unleashed an intense
theoretical and experimental activity on two-dimensional and
layer-dependent magnetism, as well as raised expectations on
the development of advanced magnetic, spintronic, magneto-
optical, magnetocalorimetric, and quantum technologies [3].
Efforts to raise the critical temperature beyond room tempera-
ture, as well as to achieve a large perpendicular anisotropy, are
currently being undertaken, with promising candidates such
as Fe3GaTe2 [4]. Almost all van der Waals magnets involve a
magnetic transition metal atom together with a halogen such
as the trihalides CrX3 (X = Br, Cl, and I) [5,6], or a chalcogen
such as MPX3 (M = Mn, Fe, Ni; X = S, Se) [7,8] or MoTe2

[9]. Some magnets also feature a more complex stoichiometry
and crystal structure like Fe3GeTe2 [4,10].

The magnetic response of most magnetic materials can be
derived from the generalized classical Heisenberg model

H ({Si}) = 1

2

∑
i �= j

Si Ji j S j +
∑

i

Si Ki Si, (1)

where Si = h̄ Si ei indicates the angular momentum vector of
an atom or localized magnetic entity placed at site i in the
material, whose modulus is h̄ Si and whose direction is given
by the unit vector ei. Ji j and Ki are 3 × 3 tensors that describe

the exchange coupling between sites i and j, and the intra-
atomic magnetic anisotropy at site i, respectively. The above
Hamiltonian can also be rewritten as

H ({ei}) = 1

2

∑
i �= j

ei Ji j e j +
∑

i

ei Ki ei (2)

by defining the renormalized tensors Ji j = h̄2SiS j Ji j and
Ki = (h̄Si )2 Ki, that have energy units. These tensors satisfy
that Ji j = JT

ji and Ki = KT
i , where T denotes the transpose

matrix. It is therefore pressing to develop adequate theoretical
and experimental tools that determine the above exchange and
anisotropy tensors and use them to gain a deeper understand-
ing and control of layered magnetism.

Density functional theory (DFT) [11,12] is a platform,
based on a fully quantum-mechanical approach, upon which
the above tools may be developed. The reason behind this
assertion is that DFT delivers the exact ground-state energy
EG and density nG(r) of any material, provided that the exact
exchange-correlation (XC) functional is known [13]. DFT
establishes that there exists a functional F [n] of the electron
density n(r) = 1

2 [n0(r) τ0 + m(r) · τ] which, when evaluated
at the exact ground-state density nG(r), delivers the ground-
state energy EG = F [nG]. Here, n(r) is a 2 × 2 matrix in spin
space where n0(r) and m(r) are the charge and magnetization
densities, τ0 is the 2 × 2 identity matrix, and τ denotes the
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vector of Pauli matrices acting on the spin degree of freedom.
Therefore, the F functional can also be written as F [n0; m]
and the ground-state energy is EG = F [n0,G; mG]. It is hence
natural whenever simulating a magnetic system to identify
the localized spin-momentum vector Si = Si ei in Eqs. (1) and
(2) with a suitable average of the ground-state magnetization
mG(r) over a given spatial region i so that the ground-state
energy becomes effectively a function of Si. Then, if Si is
found to be constant, F [n0,G; ei] can be expanded in powers of
ei, thereby providing a mapping to the global energy minimum
of the classical Hamiltonian (2), from which the magnetic
parameters can be extracted. This mapping can be drawn not
only between the ground states of the classical Hamiltonian
and the F functional, but also between other pairs of local
minima. In this work we will call this parallelism the DFT-to-
spin model (DFT2S) mapping.

A meaningful mapping can only be performed for elec-
tron states that are sufficiently localized within given atoms
and whose charge and longitudinal spin degrees of freedom
are frozen so that their total spin is sufficiently well de-
fined. A simple example relates to the Hilbert space of a
single site or orbital, that is composed of four possible states
(|0〉 , |↑〉 , |↓〉 , |↑↓〉). A faithful DFT2S mapping can only
be achieved if this space can be reduced to the Hilbert space
of a spin 1

2 , that has only the states |↑〉 and |↓〉. The re-
duction is physically meaningful if the corresponding charge
and longitudinal spin correlation functions have a gap in their
excitation spectrum as is illustrated in Ref. [14] for the one-
dimensional Hubbard model. We shall argue later in this paper
that the above Hilbert space mismatch is the source of serious
numerical issues that are only solved when implementing a
Hilbert-space reduction from the full variational basis to the
set of localized magnetic orbitals.

Several strategies to carry out a DFT2S mapping have been
used in the past. One of the methods consists of determining
EG for ferromagnetic and antiferromagnetic minima of the
functional, or for orientations of the moments along other
different directions [15,16]. Then, by computing total-energy
differences, averaged estimates of the magnetic tensors can
be retrieved. The method is, however, very limited because
one needs to determine the total energy of many different
magnetic configurations in order to evaluate and disentangle
all components of the exchange matrices, and to differentiate
among the many neighbors of a given site. Furthermore, for
molecules or isolated nanostructures only magnetic configu-
rations belonging to the same angular momentum multiplet
should be compared.

We shall follow instead the torque or Liechtenstein-
Katsnelson-Antropov-Gubanov (LKAG) method [17–21],
that provides accurate estimates of the full magnetic tensors
with a fraction of the cost required by the total-energy dif-
ferences method. The LKAG method relies on the so-called
magnetic force theorem [22], which establishes that upon
application of an infinitesimal perturbation to the ground
state of the many-electron system, its total energy variation
is equal to the variation of the ground-state energy of the
Kohn-Sham (KS) Hamiltonian. The LKAG approach then
consists of performing suitable infinitesimal rotations of the
angular momenta of both the classical and the KS Hamilto-
nians, on calculating the corresponding energy differences by

use of second-order perturbation theory, and on equating those
second-order energy variations.

We mention here the LKAG implementation performed
in the Korringa-Kohn-Rostoker Green’s function (KKR-
GF) [23] and the tight-binding linear muffin-tin orbital
(TB-LMTO) methods [24,25], that have been particularly
successful for calculating magnetic exchange interactions of
a number of bulk materials, surfaces, interfaces, films, su-
perlattices, or finite metallic clusters in the past [26–28].
Furthermore, the calculation of tensorial exchange interac-
tions, including two-ion magnetic anisotropy and DM vectors,
has become available by extending the LKAG formula to the
relativistic case [29,30]. This extension opened the door to
the analysis, design, and tuning of complex magnetic states
like domain walls [31], spin spirals [32,33], and magnetic
skyrmions [34–37] in ultrathin films. However, the KKR-GF
or TB-LMTO methods are not designed to describe open sys-
tems or generically systems lacking high degrees of symmetry
such as nanoscale structures.

A torque DFT2S mapping is facilitated if the starting elec-
tron Hamiltonian is written in the tight-binding language,
where the electron degrees of freedom are already expressed
in terms of localized orbitals. A plane-wave basis might be
chosen as a starting point, and the ensuing eigenstates be
Wannierized afterwards yielding a tight-binding Hamiltonian.
However, it turns out that those Wannier states may not be
centered close enough to the physical atoms [38,39], raising
difficulties on the DFT2S mapping if this is the case.

This difficulty is overcome if the physical states are ex-
pressed in terms of a pseudoatomic-orbitals (PAO) basis
set. PAO-based implementations of DFT, such as the SIESTA

method [40], have proven to be a flexible, fast, and cost-
effective approach for studying generic nanostructures. We
have provided recently a generalization of the nonrelativistic
LKAG DFT2S mapping to PAO bases [41], therefore gaining
access to the isotropic Heisenberg exchange constants JH

i j ,
that are proportional to the trace of the exchange tensor in
Eq. (2). We have also demonstrated the usefulness of the new
approach for several graphene-based materials [42]. The PAO
approach has, however, the inconvenience that the concept of
a localized operator is a nontrivial issue [43] that has not yet
been resolved.

We present in this paper an extension of our previous work
to the fully relativistic case, that enables us to determine all
the matrix elements of the Ji j and Ki tensors in Eq. (2). We
establish several sum rules related to energy variations on
the one hand, and exchange and anisotropy tensors on the
other, that apply for specific symmetry operations. In addition,
we propose a definition of a local operator, that is suitable
for both orthogonal and nonorthogonal basis sets, and fulfills
those sum rules. We demonstrate that in presence of spin-
orbit coupling a DFT2S mapping can not be achieved by
performing spin or total angular momentum rotations on the
full Hamiltonian. We also find a quantum analog of the Steiner
theorem, that relates off-site to onsite matrix elements of the
orbital angular momentum. We demonstrate the accuracy and
flexibility of the approach by its successful description of
the exchange and anisotropy parameters of two small atomic
clusters, of two heterostructures, and of the van der Waals
magnet T-CrTe2.
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The layout of this paper is as follows. Section II describes
how to deploy the quantum-mechanical algebra needed to
develop the DFT2S mapping using an nonorthogonal basis
set. Section III describes how to perform local infinitesimal
rotations of the angular moments in Eq. (2), and compute
energy variations up to second order in perturbation theory.
Section IV describes general principles on how to perform
analogous infinitesimal angular moment variations in the DFT
system, and describes our specific implementation of the
DFT2S mapping. Section V describes the tests that we have
performed to validate our method. We show that our approach
satisfies several stringent consistency checks and sum rules.
We also discuss the benchmarks that we have performed
against the well-established KKR-GF method for a number of
magnetic heterostructures. Section VI describes the exchange
and anisotropy tensors of the van der Waals magnet T-CrTe2,
and demonstrates that a magnetic phase transition can be
driven and controlled by biaxial strain.

An implementation of the LKAG-PAO approach called
TB2J [39] has also been proposed recently. TB2J has been
substantiated as a postprocessing tool that interfaces both to
the WANNIER90 [44] and the SIESTA codes. Our approach dif-
fers from the TB2J implementation in several crucial aspects.
We discuss those differences in Secs. III and IV. We have also
tested the impact of those differences on the quality of the
determined exchange and anisotropy tensors in Sec. V.

II. QUANTUM MECHANICS USING
A NONORTHOGONAL BASIS SET

A DFT2S mapping between the Heisenberg Hamiltonian
in Eq. (2) and a KS Hamiltonian written in the tight-binding
language is appealing because the physical magnitudes in both
cases are centered at atoms. A KS tight-binding Hamiltonian
can be obtained by the use of Wannier orthonormal orbitals.
However, while these orbitals are rather localized they might
not be centered close enough to atomic sites. In contrast, PAO
basis functions are strictly centered at atomic sites but are
not orthogonal, which leads to difficulties when defining local
operators as explained in detail by Soriano and Palacios [43].
In order to provide with a coherent discussion we reproduce
here a considerable part of their development.

We devote this section to review the algebraic struc-
ture needed to perform quantum-mechanical algebra using
a nonorthogonal basis set. Large swathes of the section are
known [40,43], while other are nontrivial, and specifically, the
definition of a local operator, and the correct way to perform
symmetry operations has not been discussed in the past to the
best of our knowledge.

A. PAO basis

Let us suppose that the Hilbert space EN of physical states
of a quantum system is variationally spanned in the PAO basis
set E = {|μ1〉 , |μ2〉 , . . . , |μN 〉}, such that the scalar product
between two PAOs is the overlap integral O12 = 〈μ1|μ2〉, and
N is the basis size. The overlap integrals can be arranged to
form the N × N matrix O.

Let E∗
N be the dual space where we define the dual basis set

E* = { |μ1*〉 , |μ2*〉 , . . . , |μN *〉 } such that the orthogonality

relation 〈μ|ν*〉 = 〈μ*|ν〉 = δμν is fulfilled. Then the scalar
product between two dual vectors is 〈μ*|ν*〉 = (O−1)μν .

We introduce now the following compressed notation. We
arrange the PAO and dual PAO bases in row vectors of kets

| ε〉〉 = ( |μ1〉 , |μ2〉 , . . . , |μN 〉 ),

| ε*〉〉 = ( |μ1*〉 , |μ2*〉 , . . . , |μN *〉 ) (3)

so that the overlap and orthogonality relation can be expressed
compactly as

〈〈ε | ε〉〉 = O,

〈〈ε* | ε*〉〉 = O−1,

〈〈ε* | ε〉〉 = 〈〈ε | ε*〉〉 = IN , (4)

where IN is the N × N identity matrix. Notice that the dual and
direct bases become the same when the overlap matrix tends
to the identity matrix. The closure relation can be expressed
compactly as

Î = | ε〉〉〈〈ε* | =
∑
μ∈E

|μ〉 〈μ*|

= | ε*〉〉〈〈ε| =
∑
μ∈E

|μ*〉 〈μ| , (5)

where Î is the identity operator.
Let us assume now that we are interested in a PAO basis

subset that we call A = {|μ1〉 , |μ2〉 , . . . , |μA〉} and let us call
B = {|μA+1〉 , |μA+2〉 , . . . , |μN 〉} the complementary subset
such that E = A ∪ B. We arrange the two subsets into the row
vectors of kets:

| A〉〉 = ( |μ1〉 , |μ2〉 , . . . , |μA〉 ),

| B〉〉 = ( |μA+1〉 , |μA+2〉 , . . . , |μN 〉 ). (6)

We can define the following non-Hermitian pseudoprojection
operators

P̂A = | A〉〉 〈〈A* | �= P̂†
A = | A*〉〉 〈〈A |,

P̂B = | B〉〉 〈〈B* | �= P̂†
B = | B*〉〉 〈〈B | (7)

that fulfill the closure relation

Î = P̂A + P̂B = P̂†
A + P̂†

B . (8)

These operators also satisfy that P̂A = P̂2
A but are not true

projectors because they are not Hermitian and because P̂†
A P̂B

is not equal to the null operator.

B. Operators and local operators

We discuss now how to span linear operators acting on EN ,
E∗

N in the PAO basis. Let Ĉ be one such operator. We can
express Ĉ either by computing matrix elements in the direct
basis Cμν = 〈μ|Ĉ|ν〉, or in the dual basis C∗

μν = 〈μ*|Ĉ|ν*〉:

Ĉ =
∑

μ,ν∈E ,E∗
|μ*〉Cμν 〈ν*| = | ε*〉〉C 〈〈ε*|

=
∑

μ,ν∈E ,E∗
|μ〉C∗

μν 〈ν| = | ε〉〉C* 〈〈ε|, (9)
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where we have arranged the matrix elements into the N × N
matrices C and C*. The overlap matrix O, the Hamiltonian
H , and the expectation values of the angular momenta L, S, J
are written in the direct basis, while the density matrix and
the Green’s function G of the system are written in the dual
basis, as will be explained below. Matrix elements of operator
products can be calculated using the above projectors

〈μ| Ĉ D̂ |ν〉 = 〈μ| Ĉ | ε〉〉〈〈ε* | ε*〉〉 〈〈ε | D̂ |ν〉
= Cμε O−1 Dεν, (10)

where Cμε and Dεν are N-dimensional row and column vectors
of matrix elements, respectively. The overlap matrix above
simplifies if one of the operators is expressed in the dual basis.
For example, the product of an operator Ĉ times the Green’s
function Ĝ becomes

〈μ| Ĉ Ĝ |ν*〉 = 〈μ| Ĉ |ε〉〉 〈〈ε*| Ĝ |ν*〉 = Cμε G∗
εν . (11)

We address now how to define a local operator in terms of a
subset A of the PAO basis. Any operator can be decomposed
into four operator pieces:

Ĉ = (
P̂†

A + P̂†
B

)
Ĉ

(
P̂A + P̂B

)
= P̂†

A Ĉ P̂A︸ ︷︷ ︸
ĈAA

+ P̂†
A Ĉ P̂B︸ ︷︷ ︸

ĈAB

+ P̂†
B Ĉ P̂A︸ ︷︷ ︸

ĈBA

+ P̂†
B Ĉ P̂B︸ ︷︷ ︸

ĈBB

= (| A*〉〉 | B*〉〉)(CAA CAB

CBA CBB

)(〈〈A*|
〈〈B*|

)
. (12)

ĈAA above defines the onsite operator and the correspond-
ing projection is called onsite projection (OP). Soriano and
Palacios [43] developed the above analysis, and described the
different problems arising when trying to define local projec-
tions and operators.

We propose here the following definition of a Hermitian
local operator:

ĈA = ĈAA + 1

2
(ĈAB + ĈBA)

= (| A*〉〉 | B*〉〉)( CAA
1
2 CAB

1
2 CBA 0

)(〈〈A*|
〈〈B*|

)
(13)

and we will refer to the corresponding projection as local
projection (LP). Notice that this operator fulfills already the
most basic sum rule

Ĉ = ĈA + ĈB. (14)

We will show later in the paper that this definition of a local
operator fulfills two additional sum rules, while this is not the
case for the onsite operator.

C. Spin degree of freedom

We introduce now the Hilbert space of spin states of an
electron ES , that we shall always express in a basis of eigen-
states of Ŝz. Then the spin operator is

Ŝ = (|↑〉 |↓〉) h̄

2
τ

(〈↑|
〈↓|

)
, (15)

where τ is the vector of Pauli matrices. The electron spin
degree of freedom is included in the PAO scheme by

performing the direct product E = EN ⊗ ES . The spin operator
is expressed in E as Ŝ = h̄

2 Î ⊗ τ, and in the PAO basis as

S = 〈〈ε | Ŝ | ε〉〉 = h̄

2
O ⊗ τ. (16)

We shall drop from now on the direct product notation since
there is no risk of confusion. Scalar and vector operators
acting on E can be written as

ÂE = 1
2 (Â0 τ0 + Â · τ),

ÂE = 1
2 (Â τ0 + Âv τ), (17)

where Â0, Âv, Â act on EN and E∗
N .

D. Orbital angular momentum operator

The orbital angular momentum with respect to a point RA

is

L̂A = (r̂ − RA) × p̂ τ0. (18)

We assume that RA is centered at an atom A. We express this
operator in the PAO basis as

〈〈ε | L̂A | ε〉〉 =
( 〈〈A|L̂A | A〉〉 〈〈A | L̂A | B〉〉

〈〈B | L̂A | A〉〉 〈〈B | L̂A | B〉〉
)

=
(

OAA LA LA OAB

OBA LA LA
BB

)
, (19)

where LA = 〈LAMA|L̂A|LAMA〉 is the angular momentum
atomic matrix corresponding to atom A. Transforming from
real |LM〉 to complex spherical harmonics |Lm〉 is achieved
by the matrix R(L),

|LM〉 =
L∑

m=−L

〈Lm|LM〉 |Lm〉 =
L∑

m=−L

R(L)mM |Lm〉 . (20)

The matrix element LA
BB = 〈〈B | L̂A | B〉〉 can be determined

using the following quantum Steiner theorem:

LA
BB = 〈〈B | (r̂ − RA) × p̂ | B〉〉

= 〈〈B | (r̂ − RB) × p̂ | B〉〉 + (RA − RB) × 〈〈B | p̂ | B〉〉
= LB OBB + (RA − RB) × 〈〈B | p̂| B〉〉. (21)

Finally, the matrix elements of the linear momentum operator
can be determined using standard methods employed to de-
termine, e.g., kinetic energy terms [40]. The above algebraic
manipulations might be useful to reduce the full Brillouin
zone k-point sampling to smaller Brillouin zones by applying
rotation-related symmetry transformations.

E. Variational eigenstates and eigenenergies

We assume now that the physical system under considera-
tion consists of a Bravais lattice having M unit cells, defined
by the Bravais vectors Rm with m = 1, . . . , M. We choose a
PAO basis set of P orbitals within each unit cell Rm whose
wave functions are centered at the atomic positions dμ and
that are described by PAO kets |m, μ〉 with μ = 1, . . . , P. We
assume that the electron dynamics of the system is described
by the Hamiltonian Ĥ . We then expand the Hamiltonian
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eigenstates in the variational basis:

|ψk,n〉 = 1√
M

∑
m,μ

ck,n(μ) eik·Rm |m, μ〉 , (22)

where the eigenstate index is n = 1, . . . , P. By collecting all
PAOs belonging to the cell m into the vector of ket states
| Rm〉〉 = ( |m, 1〉 , |m, 2〉 , . . . , |m, P〉 ), and rearranging the
wave-function coefficients and PAOs into the Bloch vectors

Ck,n =

⎛
⎜⎜⎝

ck,n(1)
ck,n(2)

. . .

ck,n(P)

⎞
⎟⎟⎠, (23)

|φk〉 = 1√
M

M∑
m=1

eik·Rm |Rm〉〉 (24)

the variational eigenfunctions can be rewritten as

|ψk,n〉 = |φk〉 · Ck,n. (25)

Notice that the wave-function coefficients Ck,n can be identi-
fied by taking the scalar product of |ψk,n〉 with the dual basis

〈〈ε*|ψk,n〉 = 1√
M

⎛
⎜⎜⎝

eik·R1

eik·R2

· · ·
eik·RM

⎞
⎟⎟⎠ ⊗ Ck,n. (26)

The variational eigenvalues and eigenvectors are obtained by
minimizing the expectation value of Hamiltonian

Ek,n = 〈ψk,n| Ĥ |ψk,n〉
〈ψk,n | ψk,n〉 =

Ck,n
† Hk Ck,n

Ck,n
† Ok Ck,n

, (27)

where the momentum-space P × P Hamiltonian and overlap
matrices are

Hk = 〈φk|Ĥ |φk〉 = 1

M

∑
R j

e−ik·(R j−R0 ) 〈〈R j |Ĥ |R0〉〉, (28)

Ok = 〈φk| φk〉 = 1

M

∑
R j

e−ik·(R j−R0 ) 〈〈R j | R0〉〉. (29)

Here j runs over the supercell of unit cells coupled to the unit
cell R0, that we take as reference. The variational eigenvalues
and eigenvectors are found by solving the conventional secu-
lar equation

Hk Ck,n = Ek,n Ok Ck,n. (30)

The requirement that the eigenvector norm be positive,
〈ψk,n | ψk,n〉 > 0, means that Ok is a positive-definite matrix.
This in turn implies that the eigenvalues Ek,n are real and that
the wave-function coefficients are Ok orthogonal [45]:

Ck,n
† Ok Ck,n′ = δn,n′ . (31)

We gather now together the P vectors Ck,n and build the
P × P matrix Ck = (Ck,1, . . . ,Ck,P ). The secular equation and
orthogonality relationships can be rewritten in a compact form
as

Hk Ck = Ok Ck Hdiag
k ,

C†
k Ok Ck = IN ,

Hdiag
k = diag(Ek,1, . . . , Ek,P ) (32)

so that

C†
k Hk Ck = Hdiag

k . (33)

F. Green’s function

The retarded Green’s function is defined in the usual one-
body notation as

Ĝ(ω) =
∑
k,n

|ψk,n〉 〈ψk,n|
ω − Ek,n + i δ

= |ε〉〉 G*(ω) 〈〈ε| , (34)

G*(ω) = 〈〈ε*|Ĝ(ω)|ε*〉〉 =
∑
k,n

〈〈ε*|ψk,n〉 〈ψk,n|ε*〉〉
ω − Ek,n + i δ

=
∑

k

Dk ⊗ G∗
k(ω), (35)

where the supercell phases matrix Dk and unit-cell Green’s
function G∗

k(ω) matrices are

DkM =
⎛
⎝eik·R1

· · ·
eik·RM

⎞
⎠(

e−ik·R1 , . . . , e−ik·RM
)
, (36)

G∗
k(ω) = Ck

(
(ω + i δ) IN − Hdiag

k

)−1
C†

k (37)

and δ is an infinitesimal positive number.

G. Global and local symmetry transformations

Let a finite global transformation be generated by the op-
erator Ûθ = e− i θ Ĝ where Ĝ is the transformation generator.
Application of the above transformation to an observable Ĉ
defines the deviation operator

δĈθ = Ûθ Ĉ Û †
θ − Ĉ = | ε*〉〉 δCθ 〈〈ε* |. (38)

Let G = 〈〈ε|Ĝ|ε〉〉 and C = 〈〈ε|Ĉ|ε〉〉 be the generator and an
observable expressed in the PAO basis, respectively. Then we
can write

〈〈ε| Ûθ |ε〉〉 = e−i θ G O−1
O, (39)

δCθ = 〈〈ε | δĈθ |ε〉〉 = e−i θ G O−1
C ei O−1 θ G − C. (40)

If the transformation is infinitesimal, the variation of C to
second order is

δCδθ = δC1 δθ + δC2 δθ2, (41)

δC1 = i 〈〈ε| [ Ĉ, Ĝ ] |ε〉〉 = i (C O−1 G − G O−1 C), (42)

δC2 = 1
2 〈〈ε| [ [ Ĝ, Ĉ ], Ĝ ] |ε〉〉

= G O−1C O−1G
− 1

2 (C G O−1G O−1 + G O−1G O−1C). (43)

The deviation operators of the global and the local transforma-
tions on a subset A of the PAO basis can be written as follows:

δĈδθ = (| A*〉〉 | B*〉〉)(δC
δθ ,AA δC

δθ ,AB

δC
δθ ,BA δC

δθ ,BB

)(〈〈A*|
〈〈B*|

)
, (44)

δĈδθ,A = (| A*〉〉 | B*〉〉)( δC
δθ ,AA

1
2 δC

δθ ,AB
1
2 δC

δθ ,BA 0

)(〈〈A*|
〈〈B*|

)
. (45)
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H. Spin rotations

A global spin rotation around a unit vector u is generated
by the spin operator Ĝ = Ŝ · u whose matrix elements are
G = 1

2 O τ u, where the matrix τ u = τ · u. The presence of the
overlap matrix in the definition of G allows us to simplify
considerably the algebra since the products G O−1 and O−1 G
become just the matrix T u = IN τ u. As a consequence, the
matrix elements of the deviation operator are

δCu,δθ = δC1
u δθ + δC2

u δθ2,

δC1
u = i

2
[C, T u ],

δC2
u = 1

8
[ [ T u,C ], T u ]. (46)

III. PERTURBATIVE ANALYSIS OF THE CLASSICAL
HAMILTONIAN

We start this section by rewriting the classical Hamiltonian
in Eq. (2) in a more convenient way. We first subtract the con-
stant term

∑
i Kzz

i I3, and redefine the intra-atomic anisotropy
matrices as

K̃i = Ki − Kzz
i I3 =

⎛
⎝Kxx

i − Kzz
i Kxy

i Kxz
i

Kyx
i Kyy

i − Kzz
i Kyz

i
Kzx

i Kzy
i 0

⎞
⎠.

(47)

This renormalized anisotropy matrix has only five indepen-
dent matrix elements. We then introduce the symmetric and
antisymmetric parts of the exchange tensor Js,a = (J ± JT )/2
that enable us to define the Dzyaloshinskii-Morilla (DM) and
the symmetric vectors

Di j = (
Jyz,a

i j , Jzx,a
i j , Jxy,a

i j

)
, (48)

Si j = (
Jyz,s

i j , Jzx,s
i j , Jxy,s

i j

)
, (49)

such that

J = Js + Ja =
⎛
⎝Jxx Sz Sy

Sz Jyy Sx

Sy Sx Jzz

⎞
⎠

+
⎛
⎝ 0 Dz −Dy

−Dz 0 Dx

Dy −Dx 0

⎞
⎠, (50)

where the i, j site subindices have been omitted for simplicity.
We define now the Heisenberg exchange constant and the
renormalized symmetric tensor

JH
i j = TrJs

i j/3, (51)

JS
i j = Js

i j − JH
i j I3, (52)

where I3 is the identity 3 × 3 matrix. As a consequence, the
classical Hamiltonian in Eq. (2) can be rewritten as

H = 1

2

∑
i �= j

JH
i j ei · e j + 1

2

∑
i �= j

ei JS
i j e j

+ 1

2

∑
i �= j

Di j · (ei × e j ) +
∑

i

ei K̃i ei. (53)

The perturbative analysis [17] assumes that Hamiltonian (53)
has a local or global energy minimum when the unit vectors
ei are all collinear [either aligned ferromagnetically (FM) or
antiferromagnetically (AFM)] to each other along a direction
given by the unit vector o, EG = H ({o}). Then, performing an
infinitesimal rotation of the o vector at site A, of magnitude
δθ around an axis defined by the unit vector uA, delivers the
rotated vector eA that is given at second order in δθ by

eA 
 o + o1
A δθ + o2

A δθ2,

o1
A = uA × o,

o2
A = 1

2 [uA (uA · o) − o]. (54)

The energy variation expanded to second order is

E ({o}, uA) 
 E0 + E1
A δθ + E2

A δθ2, (55)

E1
A ({o}, uA) = 1

2

[
o

( ∑
i

JiA + 2 KA

)
o1

A + o1
A

(∑
i

JAi + 2 KA

)
o

]
, (56)

E2
A ({o}, uA) = 1

2

[
o

(∑
i

JiA + 2 KA

)
o2

A + o2
A

(∑
i

JAi + 2 KA

)
o

]
+ o1

A KA o1
A, (57)

where E1
A = 0 according to our assumption that the Hamilto-

nian (53) has a local or global extremum at the configuration
where the spins are all aligned along o. The above equa-
tions are completely general.

We describe now how all the matrix elements in each Ji j

and K̃i tensor can be obtained performing rotations about
two axes perpendicular to o. We denote these two axes by v
and w = o × v. The vectors o, v, w can then be chosen to
be the three Cartesian axes x, y, z of the coordinate system
that define the Hamiltonian (53), or any cyclic permutation of
them.

The fact that the first-order variations are zero leads to the
following two sum rules:

∑
i

Jov
iA + 2 Kov

A = 0,

∑
i

Jow
iA + 2 Kow

A = 0, (58)

where we have taken advantage of the fact that JiA = JT
Ai and

Ki = KT
i . These equations allow us to determine two of the
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three off-diagonal matrix elements of the K̃i matrices provided
that the related exchange matrix elements are known.

Second-order energy variations give access to the two di-
agonal elements of the anisotropy matrix:

Kww
A − Kvv

A = E2
A ({o}, v) − E2

A ({o}, w),

Kww
A − Koo

A = E2
A ({v}, o) − E2

A ({v}, w),

Kvv
A − Koo

A = E2
A ({w}, o) − E2

A ({w}, v). (59)

This set of six equations allows us to perform consistency
checks on the two diagonal matrix elements.

The remaining off-diagonal matrix element Kvw
A can be

obtained by computing second-order energy variations about
an axis defined by a unit vector lying at the diagonal of v and
w:

Kvw
A = 1

2

(
E2

A ({o}, v) + E2
A ({o}, w)

) − E2
A

(
{o}, v + w√

2

)
.

(60)

Furthermore, for those cases where the Hamiltonian (53) has
extrema along all the three directions o, v, and w, the condi-
tions (58) can be recast as the following set of six sum rules:∑

i

DiA = 0, (61)∑
i

JS,αβ
iA + 2 Kαβ

A = 0 (α, β ∈ {o, v,w}, α �= β ). (62)

The first set of sum rules dictates that the sum of the DM vec-
tors is identically zero. The second set of sum rules provides
us with an alternative way to determine all three off-diagonal
matrix elements of the K̃A matrix. A third strategy to de-
termine matrix elements of the K̃A matrix relies on taking
advantage of the symmetries of the system under study. We
will give an example in Sec. V C below.

The exchange tensor JAB for a given site pair (A, B) can
be calculated by performing simultaneous rotations at the two
sites, along the directions uA, uB with the same magnitude δθ .
A straightforward calculation yields

E ({o}, uA, uB) 
 E0 + E2
A ({o}, uA) + E2

B ({o}, uB)

+ Eint ({o}, uA, uB), (63)

where

Eint ({o}, uA, uB) = 1
2

(
o1

A JAB o1
B + o1

B JBA o1
A

)
δθ2. (64)

The explicit expressions for the exchange tensor of a
generic magnetic material can then be found by choosing o
to lie subsequently along each of the three coordinate axes
while the unit vectors uA, uB are chosen along the other two
perpendicular axes v and w. We find

δθ2 Jww
AB = Eint ({o}, v, v),

δθ2 JS,vw
AB = −1

2
(Eint ({o}, v, w) + Eint ({o}, w, v)),

δθ2 Do
AB = εovw

2
(Eint ({o}, v, w) − Eint ({o}, w, v)), (65)

where εovw denotes the Levy-Civita tensor. These equa-
tions allow us to determine all the matrix elements of the
symmetric tensors JS

AB and the DM vectors DAB. Furthermore,
they provide a means to test the accuracy of any numerical

FIG. 1. Sum rule for the global spin rotation of a dimer system:
the sum of the energy of the local spin rotation of both atoms plus
the interaction energy is zero in the absence of spin-orbit interaction.

implementation because the number of equations is larger
than the number of unknowns.

The above analysis gives another stringent sum rule for
the case of a dimer system: if the spin-orbit interaction is
absent, then the dimer has rotational symmetry, so a global
spin rotation by the vector u does not change the energy.
Therefore,

E2
A ({o}, u) + E2

B ({o}, u) + Eint ({o}, u, u) = 0. (66)

A graphical explanation of the dimer sum rule is shown in
Fig. 1. Furthermore, even if the spin-orbit interaction is in-
cluded, a dimer still has rotational symmetry along the dimer
axis, so a global spin rotation around that symmetry axis also
yields the above sum rule.

We finally note that the choice performed above of the or-
thogonal axes can be generalized by selecting nonorthogonal
rotation directions as discussed in detail in Ref. [29]. This
latter choice has the benefit that it can exploit symmetries of
the system being investigated that are not compatible with the
choice of orthogonal axes.

IV. PERTURBATIVE ANALYSIS OF THE
ELECTRON HAMILTONIAN

A number of physical issues and technicalities arise when
trying to establish the equivalent perturbative analysis of the
electron Hamiltonian, that must be handled correctly to avoid
nonphysical results or inaccuracies. We write in this section a
complete road map including a brief discussion of some
well-known issues. The first subsection shows that energy
variations upon an infinitesimal transformation can be deter-
mined using the Kohn-Sham Hamiltonian of the unperturbed
system. The second subsection explains how to extract the
different pieces of the KS Hamiltonian. The third subsection
describes how to perform correctly rotations of the angular
momentum in the KS Hamiltonian. It also addresses the iden-
tification of the correct angular momentum operator in the
DFT2S mapping. The fourth subsection establishes the LKAG
formula for a PAO basis set. The final subsection summarizes
the steps to be taken to perform the DFT2S mapping.

A. Magnetic force theorem

The torque-based DFT2S mapping consists of determining
the energy variation of the magnetic material upon application
of an infinitesimal perturbation on its many-body electron
Hamiltonian. A difficulty arises because this energy varia-
tion is calculated from the associated KS Hamiltonian. Let
us assume that we apply a perturbation δV to the external
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potential. Let us also assume that the ground-state densities
of the unperturbed and perturbed systems are n0 and n =
n0 + δn. Then the KS Hamiltonians are

H0[n0] = T + VHXC[n0],

HF [n0] = H0[n0] + δV,

H[n] = T + VHXC[n] + δV

= HF [n0] + δVHXC[n0]. (67)

In other words, the perturbed KS Hamiltonian is not simply
HF as would be the case of a simple one-body electron Hamil-
tonian because the density n changes, which yields a change
�VHXC[n0] in the Hartree-exchange-correlation fictitious po-
tential VHXC. Let the eigenenergies of the three Hamiltonians
in Eq. (67) be

ε0
α[n0],

εF
α [n0] = ε0

α[n0] + δε0
α[n0],

εα[n] = εF
α [n0] + δεF

α [n0], (68)

respectively. The ground-state energy is not just given by
the sum of eigenenergies, but double-counting terms must be
subtracted:

E0[n0] =
∑

α

ε0
α[n0] fα[n0] − Edc[n0], (69)

E [n] =
∑

α

εα[n] fα[n] − Edc[n]

=
∑

α

(
εF
α [n0] + δεF

α [n0]
)

fα[n0] − Edc[n0] − δEdc[n0],

(70)

where we assume that the continuity principle fα[n] = fα[n0]
typical of quasiparticle Fermi-liquid theory is fulfilled. The
magnetic force theorem [22] states that potential relaxation
effects and double-counting terms cancel each other,∑

α

δεF
α [n0] fα[n0] = δEdc[n0], (71)

such that the energy variation can just be computed from the
eigenenergies of HF just as if the many-body problem was in
effect a one-body problem:

E [n] = E0[n0] + δE [n0] = E0[n0] +
∑

α

δε0
α[n0] fα[n0].

(72)

B. Extracting the different components of the KS Hamiltonian

Within noncollinear DFT, the exchange-correlation poten-
tial is expanded as

1
2 (VXC,0 τ0 + VXC · τ) = 1

2 (VXC,0 τ0 + VXC m̂ · τ), (73)

where the exchange field VXC is assumed to be collinear to the
magnetization direction m̂ everywhere. The KS Hamiltonian
can then be written as

H = 1
2 (H0 τ0 + VSO · τ + VXC · τ ). (74)

The scalar part of the Hamiltonian H0 is comprised of the
kinetic energy T , the lattice potential VL, the Hartree potential

VH , and the scalar part of the exchange-correlation potential
VXC,0, and VSO is a sum of atomic spin-orbit potentials,

H0 = T + VL + VH + V 0
XC,

VSO =
∑

a

VSO(|r − Ra|) la, (75)

where the angular momentum operator with respect to a point
Ra is La = h̄ la.

We address now how to extract VXC from the KS Hamilto-
nian. We define the time-reversal operator T̂ = i τ2 Ĉ, where Ĉ
denotes charge conjugation and acts on EN . Application of T
on n(r) leaves n0 invariant and switches the sign of m. Appli-
cation of T on the KS Hamiltonian yields HTR = T H T −1.
Then H can be split into time-reversal-symmetric (TRS) and
time-reversal-broken (TRB) parts:

HTRS = H + HTR

2
= 1

2
(H0 τ0 + VSO · τ),

HTRB = H − HTR

2
= 1

2
VXC · τ. (76)

Finally, H0 and the vectors VXC and HSO can be found by
taking the spin trace

H0 = TrS (HTRS),

VSO = TrS (HTRS τ),

VXC = TrS (HTRB τ). (77)

C. Rotating noncollinear Kohn-Sham Hamiltonians

We devote this section to analyze how to establish a faith-
ful mapping between the KS and the classical Hamiltonian
(53). Note that the spin-orbit interaction enters the classical
Hamiltonian in two ways. First, the exchange constants JAB

become 3 × 3 matrices instead of scalars, and the intra-atomic
anisotropy tensors KA become nonzero; second, the vectors
eA can now refer not only to the atomic spin, but can also
represent the atomic total angular momentum.

We stress that in Sec. III we have performed rotations
over the classical Hamiltonian that operated only on the unit
vectors eA. The DFT2S mapping is hence accomplished by
performing transformations of the electron KS Hamiltonian
where only the angular momentum vector at a given atom A
is rotated, while keeping all other vectors untouched. Possible
angular momentum vectors are the atomic spin mA and the
atomic total angular momentum JA, and we identify ways to
perform transformations of the KS Hamiltonian where only
the atomic angular momenta are rotated. We stress that other
vectors appearing in the KS Hamiltonian such as r and VSO

should remain invariant under the transformations. This aspect
of the DFT2S mapping is displayed schematically in Fig. 2.

First we address rotations of the atomic spins in terms
of the orientation of the local KS spin magnetization given
the unit vector m̂(r) being a basic quantity of the local
spin density approximation (LSDA) to DFT. We notice that
m̂(r) enters the KS Hamiltonian only in the combination
VXC(r) m̂(r) · τ. We then remind that rotating the three-
dimensional vector m̂ in the scalar product by an angle θ

around an axis defined by the unit vector u is equivalent
to applying a reversed rotation on the 2 × 2 Pauli matrices
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FIG. 2. (a) Illustrates the vectors appearing in the classical (left)
and the KS Hamiltonian (right). It is also indicated by curved arrows
which of those should be transformed upon rotations in order to
achieve a faithful DFT2S mapping. VXC is parallel to the atomic
magnetization eA by definition, while, quite generally, VSO is not.
(b) Shows graphically the impact of a rotation about the quantization
axis on the classical Hamiltonian (left) and the KS Hamiltonian
(right). The classical Hamiltonian is left invariant, while the KS
Hamiltonian changes if VSO is rotated, thus invalidating the DFT2S
mapping. We will show in Sec. V A and Table II how this reasoning
is applied in the case of a platinum dimer.

because

(R m̂) · τ = m̂ · (
R−1

S τ RS
)
, (78)

where R = R(θ, u) = eθ u× is a 3 × 3 rotation matrix accord-
ing to Rodrigues’ formula (× denotes the cross product), and
the Pauli matrices are rotated by the spin-rotation matrix

RS = RS (θ, u) = e−iθS·u/h̄ = e−iθτ·u/2. (79)

We apply a back-rotation to the different parts of the KS
Hamiltonian and find

R−1
S H0(r) τ0 RS = H0(r) τ0, (80)

R−1
S (VSO(r) · τ )RS = VSO(r) · (

R−1
S τ RS

)
= ( R VSO(r) ) · τ, (81)

R−1
S (VXC(r) · τ )RS = VXC(r) · (

R−1
S τ RS

)
= ( R VXC(r) ) · τ. (82)

This important result means that performing a spin rotation
on the full Hamiltonian not only rotates VXC and hence m̂. It
also rotates the vector VSO, which is undesirable if one wishes
to accomplish a DFT2S mapping, as explained in the second
paragraph of this section and in Fig. 2.

We address now whether a DFT2S mapping can be
achieved when the vector eA refers to the atomic total angular
momentum at an atomic site A. We must therefore rotate
the KS Hamiltonian using the total momentum JA = LA + S.
This generates rotations whose operator is RJ,A = RL,A RS .
Rotating the different parts of the KS Hamiltonian yields

R−1
J,A H0(r) τ0 RJ,A = H0

(
R−1

A r
)
τ0, (83)

R−1
J,A(VSO(r) · τ )RJ,A = (

R−1
A VSO

(
R−1

A r
)) · (

R−1
S τ RS

)
= VSO

(
R−1

A r
) · τ, (84)

R−1
J,A(VXC(r) · τ )RJ,A = VXC

(
R−1

A r
) · (

R−1
S τ RS

)
= (

RAVXC
(
R−1

A r
)) · τ, (85)

which means that this transformation rotates not only the
magnetization but also causes the space position r to rotate
which is undesirable within the DFT2S mapping.

All in all, a correct DFT2S mapping is valid if only the
exchange field VXC is spin rotated. We will present several
tests in Sec. V that demonstrate numerically this conclusion.
We should note, however, that this restriction does not hold
when the atomic sphere approximation is implemented. In this
case the potentials and fields have a spherical shape so that the
total angular momentum rotation of the Hamiltonian can be
used to achieve the rotation of the exchange field only [29].

We remind now that we have shown in Sec. III that de-
termining all the tensors’ components for a chosen Cartesian
coordinate system requires three different classical Hamilto-
nians, each of them having a uniform magnetic direction o
oriented along one of the three Cartesian axes. We there-
fore need to compute Kohn-Sham Hamiltonians Hm where
m̂ is oriented along the three coordinate axes x, y, and z.
These three Hamiltonians can be obtained by performing three
different collinear DFT simulations. We have found that, es-
pecially for isolated molecules and nanostructures, the three
simulations lead to different magnetic multiplets making the
application of the magnetic force theorem questionable. As a
simpler approach we performed a single self-consistent DFT
collinear simulation where m̂ is oriented along any of the three
axes resulting in the Hamiltonian Hm. The exchange field Vm

XC
is then extracted and rotated to deliver two new exchange
fields Vi

XC that are aligned along the other two coordinate
axes. The two required KS Hamiltonians can then be obtained
using Hi = HTRS + Hi, TRB.

D. The LKAG torque method

The LKAG torque method to perform the DFT2S mapping
consists of performing infinitesimal rotations on localized an-
gular moments of the Kohn-Sham fictitious system associated
with a many-body Hamiltonian, computing the second-order
energy variations of the KS system due to those rotations and
equating them with the equivalent classical expression given
in Eqs. (59) and (65).

The magnetic force theorem demonstrates that the energy
variations can be computed directly from the KS Hamiltonian
as if it represented a one-body system because potential relax-
ation effects cancel variation in double-counting terms. Then,
these energy variations of the one-body KS Hamiltonian can
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be determined using a variety of techniques, and we use here
the popular Lloyd’s approach [46]. We assume that we have a
one-body Hamiltonian Ĥ = Ĥ0 + V̂A where V̂A is a perturba-
tion. Let Ĝ0(ε) and Ĝ(ε) be the Green’s functions associated
to Ĥ0 and Ĥ . Then the density of states is

ρ(ε) = − 1

π
Im TrĜ(ε) = ρ0(ε) + δρA(ε), (86)

where the variation in the density of states can be easily shown
to be

δρA(ε) = − 1

π
Im Tr∂ε ln[Î − V̂A Ĝ0(ε)]. (87)

The energy variation at zero temperature is

δEKS
A =

∫ EF

−∞
dε ε δρA(ε)

= − 1

π

∫ EF

−∞
dε Im Tr ln[Î − V̂A Ĝ0(ε)], (88)

where the last step is achieved via integration by parts. We
assume now that the perturbation is infinitesimal,

V̂A = V̂ 1
A δθ + V̂ 2

A δθ2, (89)

and expand the energy variation to second order so that

δEKS
A = − 1

π

∫ EF

−∞
dε Im Tr

(
V̂ 2

A Ĝ0 + 1

2
V̂ 1

A Ĝ0 V̂ 1
A Ĝ0

)
δθ2.

(90)

If V̂A refers to a local perturbation, then the perturbation matrix
elements are

V 1,2
A =

(
V 1,2

AA
1
2 V 1,2

AB
1
2 V 1,2

BA 0

)
(91)

while the full unperturbed Green’s function matrix must be
used:

G0(ε) =
(

G0,AA G0,AB

G0,BA G0,BB

)
. (92)

If we approximate the local perturbation by the onsite approx-
imation by discarding the matrix elements VBA, VAB, then the
energy variation can be simplified to

δEKS
A = − 1

π

∫ EF

−∞
dε Im Tr

(
V 2

AA G0,AA

+ 1

2
V 1

AA G0,AA V 1
AA G0,AA

)
δθ2. (93)

We suppose now that two different infinitesimal perturbations
A and B are applied simultaneously to the system so that

V̂AB = V̂A + V̂B,

V̂A/B = V̂ 1
A/Bδθ + V̂ 2

A/Bδθ2. (94)

Then the energy variation up to second order can be recast as

δEKS
AB = 1

π

∫ EF

−∞
dε ImTr ln(Î − V̂AB Ĝ)

= δEKS
A + δEKS

B + δE int
AB, (95)

where

δE int
AB = − 1

π

∫ EF

−∞
dε ImTr(V̂ 1

A Ĝ0 V̂ 1
B Ĝ0) δθ2. (96)

If V̂A,B refer to local perturbations, then some extra sorting
and bookkeeping of the PAO indices must be performed. We
arrange the PAO basis into three subsets {A, B, R}, so that the
complementary subset to A is {B, R}, and to B is {A, R}, and
the matrices corresponding to the local perturbation operators
are

V 1
A =

⎛
⎜⎝ V 1

AA
1
2 V 1

AB
1
2 V 1

AR
1
2 V 1

BA 0 0
1
2 V 1

RA 0 0

⎞
⎟⎠, (97)

V 1
B =

⎛
⎜⎝ 0 1

2 V 1
AB 0

1
2 V 1

BA V 1
BB

1
2 V 1

BR

0 1
2 V 1

RB 0

⎞
⎟⎠. (98)

Within the onsite approximation for the local perturbation the
matrix elements other than VAA, VBB are neglected, thus the
energy variation can be simplified to

δE int
AB = − 1

π

∫ EF

−∞
dε ImTr

(
V 1

AA G0,AB V 1
BB G0,BA

)
δθ2. (99)

If the local perturbation consists of a spin rotation of the
XC potential HXC = VXC · τ around an axis u, the perturbed
potential matrices are

δV u,1 = i

2
[ HXC, T u ],

δV u,2 = 1

8
[ [ T u, HXC ], T u]. (100)

The DFT2S mapping finishes by comparing Eq. (59) to (90)
for single-spin rotations at site A, and Eq. (65) to (96) for
double-spin rotations at sites A, B, whereby all magnetic con-
stants can be extracted.

E. Implementation of the LKAG method

We describe in this section the specific decisions and steps
that must be taken to implement the LKAG torque method.
These are as follows:

Step 1. Perform a DFT simulation where a given quantiza-
tion axis o1 has been selected so that VXC ‖ o1. We assume
that o1 lies along one of the three Cartesian axes defined for
the classical Hamiltonian. Obtain the KS Hamiltonian H1.

Step 2. Extract V1
XC from H1. Rotate V1

XC to align it with
each of the two Cartesian axes perpendicular to o1, that we
call o2 and o3. Use the new exchange fields V2/3

XC to determine
the KS Hamiltonians

H2/3 = HTRS + 1
2 V2/3

XC · τ. (101)

We are then furnished with a reference Hamiltonian quantized
along each of the three Cartesian axes, that complies with the
requisite that the spin-orbit part of the Hamiltonian should not
be rotated. These three Hamiltonians are needed to achieve
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the mapping and find all the matrix elements of the magnetic
tensors. Accordingly, the next steps in the mapping must
be performed for each of the three quantization axes o1/2/3,
hence, the three KS Hamiltonians.

Step 3. Choose one of the three quantization axes (we
call it o without the superindex to simplify the notation) and
define two perpendicular axes v and w = o × v. Perform an
infinitesimal rotation for each magnetic site A in the unit cell,
around each of the two axes v and w, thus obtaining δV v,w

A
by Eqs. (91) and (100). The energy variation is obtained using
Eq. (90).

Step 4. For a given magnetic site in the unit cell A, we
identify the list of neighboring magnetic sites B such that
the exchange tensor JAB is non-negligible. For each of these
sites B, we perform double-site rotations around the axes vA,
wB, that give a total of four rotations for each quantization
axis. The energy variation for each is obtained from Eqs. (96),
(97), and (100). The number of equations (12) is larger than
the number of unknown quantities (9), which enables us to
perform consistency checks.

We comment now on an additional issue related to the
identification of the electron degrees of freedom that can be
considered as localized because they have an energy gap in
the charge and longitudinal spin sectors, as we have discussed
in the Introduction. We have found that the quality of the
determined exchange and anisotropy constants depends dra-
matically on the choice of PAO orbitals that are considered
localized at sites A, B and will hence be rotated via Eq. (100).
So much so that the parameters may change by large factors
and even by orders of magnitude in some cases if PAO orbitals
representing nonlocalized electrons are included, as will be
discussed further below.

V. TESTS AND BENCHMARKS ON DIVERSE
NANOSTRUCTURES

We have implemented the DFT2S mapping described in
the previous sections as a postprocessing package [47] of
the PAO-based DFT program SIESTA [40,48]. We devote this
section to disclose and comment on some of the tests that
we have carried out to ensure that the proposed approach is
satisfactory.

The first two subsections detail consistency tests that we
have performed on two simple systems. These are an isolated
platinum dimer and an isolated chromium trimer. We mention
that the apparent simplicity of those two systems has allowed
us to carry out stringent tests, that might be overlooked or
hidden in more complex systems. We have tested for these
systems the performance of the local and onsite projections,
as well as the impact of rotating either the full KS Hamil-
tonian or only the exchange-field vector VXC on the DFT2S
mapping. We have used as guiding principles the dimer sum
rule established in Eq. (66) and other simple symmetry con-
siderations. As an example, we expect that a rotation about the
quantization axis should lead to a zero-energy variation. We
have picked the Hamiltonian of the above two systems that
correspond to a z-quantization axis, and have rotated VXC to
have it aligned along the x and the y axes. We have computed
the spin vector again and have found that the modulus is
still different. We have then decided to compute the available

constants for the magnetic multiplet corresponding to the z-
quantization axis.

We have realized while implementing and testing our code
that the PAO radii have a strong impact on the numerical val-
ues of the exchange parameters. Interestingly enough, we have
found that the default cutoff radii provided by the program
SIESTA tend to deliver reasonable estimates of the exchange
parameters. However, those cutoff radii are variational param-
eters that can be improved by minimizing the total KS energy,
which tends to deliver radii longer than SIESTA’s defaults. We
have found that the exchange parameters obtained whenever
using the optimized radii differ easily by factors of 4–5 or even
by orders of magnitude, if all PAOs are included in the atomic
rotations. This issue is circumvented if only the PAOs related
to localized degrees of freedom are rotated, which in the cases
below mean those describing d orbitals. We have tested that
in this case, the exchange constants bear small modifications
when the PAO radii are changed. The variational optimization
of the PAO radii can then be used as a guiding principle to
improve the quality of the exchange constants.

We have carried two detailed benchmarks against the
more established KKR framework [29], where we have an-
alyzed two nanostructures deposited on metallic surfaces. We
have found that the two approaches agree very well for the
exchange tensors. The DM vectors show slightly larger dis-
crepancies, that we have been able to trace down to differences
in the electronic structure, that can be identified while analyz-
ing the projected densities of states (PDOS) of those systems.

The accuracy parameters common to all the simulations
discussed in this section are as follows. We have employed a
double-ζ polarized basis set whose first-ζ PAOs had long radii
of about 8 bohrs. We have optimized the pseudopotentials
by a fitting procedure to the electronic band structure, lattice
constants, and magnetization of the plane-wave code VASP,
that we have described elsewhere [49]. We have used a lo-
cal spin density approximation XC functional [50] whenever
we have benchmarked our results against the KKR method.
We have used the more adequate PBE functional otherwise
[51]. We have used a stringent set of accuracy parameters
due to the strong sensibility of anisotropy-related magnitudes
whenever the spin-orbit interaction has been included. As an
example, we have used real-space mesh grids equivalent to a
plane-wave energy cutoff of 1000–1200 Ry, depending on the
case. The electronic temperature for the smearing occupation
function has been set typically as low as 0.1 K to identify
and discern small degeneracy liftings due to the spin-orbit
interaction. Similarly, the tolerance on the error of the density
matrix and the Hamiltonian matrix elements has been set as
low as 10−6 and 10−5 eV, respectively. We have been able to
converge a collinear FM solution for all the systems described
in this work, and we have taken it as the local or global energy
minimum state upon which we perform the DFT2S mapping.
We have used simulation boxes with a lateral length as large
as 20 Å to avoid finite-size effects for the platinum dimer and
the chromium trimer.

A. Isolated Pt dimer

We have placed a platinum dimer at the DFT equilib-
rium distance along the z axis, as determined by the code
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TABLE I. Relative error committed in the sum rule in Eq. (66)
for a platinum dimer, where both the local and the onsite projections
are tested. The sum rule is fulfilled up to numerical accuracy for the
local projection when all PAOs are taken into account. We also find
that the error increases to 3.8% when the PAO basis is truncated to
s and d orbitals. In sharp contrast, the relative error in the sum rule
grows to about 14% when the onsite projection is used.

Local projection Onsite projection

All PAOs 0 14.2
sd PAOs 3.8 13.9

SIESTA. We have been able to converge DFT simulations for
the dimer, where the quantization axis was oriented along
each of the three coordinate axes. We have computed total-
energy differences that are consistent with previous published
results [16]. The total angular momenta per atom are JA =
(1.8, 0, 0), (0,1.8,0), and (0, 0, 4) μB for the x, y, and z quan-
tization axes, respectively. Similarly, the spin moments are
SA = (0.98, 0, 0), (0,0.98,0), and (0, 0, 3.06) μB. These val-
ues indicate that the three states belong to different magnetic
multiplets, so that the DFT2S mapping leads to three different
Heisenberg Hamiltonians.

We have then analyzed whether the sum rule in Eq. (66)
is verified for a platinum dimer. We have found that our
definition of a localized operator fulfills that sum rule, while
the conventional onsite projection fails to fulfill it by about
14% as shown in Table I.

We have then performed rotations around the quantization
axis to check that the computed energy variation is zero,
as it should by symmetry. We have found that rotating the
full Hamiltonian leads to nonzero energy values as shown in
Table II. In contrast, the energy difference is reduced to zero
up to numerical accuracy if only the exchange field is ro-
tated. By numerical accuracy we mean here energy differences
within the range 0.01 meV. The second column in Table II
shows that rotating VXC or the full Hamiltonian produces
qualitative differences on the computed values of the ex-
change constants that must not be overlooked.

B. Isolated equilateral chromium trimer

We analyze now the exchange tensors between the different
atomic pairs of the chromium trimer shown in Fig. 3(a). We

TABLE II. Impact of rotating the full Hamiltonian HKS, or only
the exchange field VXC for a platinum dimer. We denote the two
dimer atoms by A and B. The first column shows the second-order
single-site rotation energy E 2

A ({uz}, uz ), that should be identically
zero by symmetry. The second column displays the exchange con-
stants Jyy

AB = Jxx
AB for the same dimer. All quantities are displayed

using the local and onsite projection and measured in meV.

E 2
A ({uz}, uz ) Jyy

AB = Jxx
AB

Rotating H -19/-22 -134/-138
Rotating VXC 0/0 -65/-70

FIG. 3. Schematic drawings of the simulated chromium trimers.
(a) The isolated trimer, where the convention for the coordinate axes
is indicated; [(b)–(d)] top and side views of the Cr trimer/Au(111)
heterostructure for three different heights h = 2.36, 2.83, and 2.06 Å.
Red- and gold-colored spheres denote the Cr and the surface Au
atoms, respectively. The figure also shows the DM vectors in green
arrows. The DM magnitudes are rescaled among the three figures to
allow for a better visualization of the vectors.

have arranged the chromium atoms to form an equilateral
triangle lying in the xy plane. We have found local energy min-
ima for the three quantization axes x, y, z. However, we have
checked that they have different atomic angular moments,
so that they belong to different multiplets. We have picked
the lowest-energy state among the three, that corresponds to
the spins aligned along the z axis, at a distance of 2.885 Å
between the Cr atoms. The atomic spin moment at this energy
minimum is 5.33 μB and the orbital contribution is 0.166 μB,
giving mJ = 5.5 μB per atom, and a total spin moment of
16 μB for the trimer. The DFT2S mapping then allows us to
infer only Jxx, Jyy, Jxy,S , Dz, Kxx − Kzz = Kyy − Kzz, Kxz, and
Kyz.

We have verified for the trimer that (a) the DM sum rule
in Eq. (61) is fulfilled for the Dz component; (b) that Dz

i j is
the same for the three atom pairs; (c) that the intra-atomic
anisotropy matrix elements Kxx

i − Kzz
i of the the atoms are

related by 2 π/3 rotations; (d) that JS,αβ
i j for the three atom

pairs are related by 2 π/3 rotations around the z axis.
We have first analyzed the dependence of the exchange

constant Jyy
12 on the PAO radii, where we have used the local

projection proposed in this paper. Table III shows that Jyy
12

changes by a factor of 4 to 5 when modifying the radii of the

TABLE III. Jyy
12 for the isolated Cr trimer analyzed in Sec. V B

for different input energy shifts in mRyd, a variable that controls the
cutoff radii R1

s,p,d of the first-ζ PAO. As a rule of thumb, smaller
energy shifts lead to larger PAO radii. Larger PAO radii tend to be
better from a variational point of view. All exchange energies are
given in meV.

Energy shift R1
s/d (bohrs) Jyy

12 (all PAOs) Jyy
12 (d PAOs)

0.1 12.4/9.9 625 154
1 10.2/7.5 516 154
10 7.7/5.2 260 130
20 7.0/4.6 143 109
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TABLE IV. Jyy
12 for the isolated Cr trimer studied in Sec. V B for

the same first-ζ PAO radii (R1
s = 10.2 bohrs, R1

d = 7.5 bohrs) and
different split norms, a variable that controls the cutoff radii R2

s,d of
the second-ζ PAO.

Split Norm R2
s,d (bohrs) Jyy

12 (all PAOs) Jyy
12 (d PAOs)

0.05 8.8, 4.4 596 163
0.10 7.8, 3.6 555 156
0.15 7.3, 3.1 507 155
0.20 6.9, 2.7 494 154
0.25 6.6, 2.5 494 154

first-ζ PAO if all the PAOs are included in the infinitesimal
perturbation. In contrast, the change is much smaller if only
the magnetic d orbitals are taken into account. Table IV shows
that the radii of the second ζ on J has in contrast a very small
impact on Jyy

12 .
The calculated exchange and anisotropy parameters for the

atom pair (1,2) are shown in Table V. The diagonal exchange
interactions between the Cr atoms are antiferromagnetic as ex-
pected, leading to the well-known geometric frustration of the
chromium trimer. The intra-atomic anisotropy Kxx

i − Kzz
i 


Kyy
i − Kzz

i is sizable and positive (
14 meV).

C. Cr trimer deposited on a Au(111) surface

We have simulated a heterostructure consisting of four
atomic layers of gold atoms stacked along the (111) direction.
The simulation box includes 5 × 5 gold atoms in each layer.
Periodic boundary conditions are applied in each direction,
where we have added enough vacuum space along the z
axis to detach the heterostructure from its periodic images.
We have used an LDA functional, and have set the lattice
constant equal to a2D = 2.885 Å. The k grid in the DFT simu-
lation has been restricted to just the � point. We have then
placed the chromium trimer onto the top gold layer at the
hollow sites, as indicated in Fig. 3(b). Here, the chromium
intra-atomic distance has been set to match with gold lattice
constant (we note that the lattice mismatch is actually very
small). We have, however, placed the trimer at three different
heights h to check the impact of vertical strain of the exchange
and anisotropy constants. These are (a) the ideal fcc(111)
interlayer distance, h =

√
6

3 a2D = 2.36 Å, (b) h = 2.83 Å that
corresponds to an outward relaxation of 20, %, and (c) h =
2.06 Å that corresponds to an inwards relaxation of 13% and it
is the optimum height obtained by relaxing the forces towards
the gold substrate. We have simulated a ferromagnetic spin
configuration with spins pointing along the z axis. We have

TABLE V. Exchange and anisotropy constants of the atom pair
(1,2) of an isolated equilateral Cr trimer. The table shows the results
obtained using both the local projection and the onsite projection. All
quantities are measured in meV.

Jxx
12 Jyy

12 Jxy,S
12 Dz

12 Kxx
1 − Kzz

1

Local projection 155 155 0 -14 14
Onsite projection 134 134 0 -14 16

TABLE VI. JH , Dz
12, and Dx

12 for the equilateral Cr trimer de-
posited on top of a Au(111) surface, for the three different heights
shown in Fig. 3. The table shows the results calculated with both the
local projection and the onsite projection, using the format LP or OP.
All data are given in units of meV.

h (Å) JH Dz
12 Dy

12

2.83 177/157 -3/-2.5 0.8/0.6
2.36 159/143 0.1/0.3 -1.9/-2
2.06 145/131 1.2/0.8 -7.2/-7

then rotated VXC and verified that the spin moments do not
change. Hence, spin rotations do not change the magnetic
multiplet in this case. The single-site sum rule allows us to
extract only the off-diagonal matrix elements Kxz

i and Kyz
i ,

but not Kxy
i . The second-order single-site variations allow us

to determine the diagonal matrix elements Kxx
i and Kyy

i . The
double-site second-order energy variation allows us to gain
access to all the exchange tensor matrix elements Jαβ

i . The
missing matrix element Kxy

i can be found by performing an
additional rotation about a unit vector lying in the XY plane
that is not collinear neither to x nor to y. Alternatively, we can
exploit the symmetries among the three chromium atoms, that
allow us to relate Kxx

2 , Kyy
2 to Kxy

1 and so on, by performing
2 π/3 rotations around the z axis on each K̃i matrix.

We discuss first our results for the ideal fcc(111) inter-
layer spacing, h = 2.36 Å. We have found here that the spin
moment of each Cr atom is 4.709 μB and that the orbital
moment is very small, 0.003 μB. The reduction of the spin
moment with respect to the isolated Cr trimer is attributed to
the hybridization between the Cr and Au d orbitals.

We have found that the three diagonal components of
the exchange tensor are equal to each other, within a mar-
gin of ±0.3 meV. Furthermore, they are equal for the three
chromium atoms within the same margin, so we denote them
simply JH . The symmetric exchange matrix elements have
values smaller than 0.3 meV. Table VI shows JH , together with
the DM vector components Dz

12 and Dy
12 of the atom pair (1,2).

We have checked that the DM vectors for the pairs (2,3) and
(3,1) obtained via rotations of D12 by 120◦ and 240◦ around
the z axis, respectively, agree with the direct calculations.
The table shows that the estimates provided by the onsite
projection differ from those obtained by the local projection
by 10% for JH and 20%–25% for the DM vectors.

The intra-atomic anisotropy matrix for atom 1 obtained
using the onsite projection is

K̃1 =

⎛
⎜⎝−0.06 Kxy

1 −0.8

Kxy
1 −0.10 1.6

−0.8 1.6 0

⎞
⎟⎠ meV. (102)

We have determined that Kxy
1 = −0.0346 meV by rotating K̃2

by an angle 2 π/3 around the z axis.
Table VI shows how decreasing or increasing the trimer

height reduces or increases JH , which can again be ascribed to
the change in the localization character of the eigenstates with
dominant Cr-d orbital contribution. We find an interesting
and intriguing rotation of the DM vectors when the height is
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TABLE VII. Calculated isotropic Heisenberg interactions JH
CN

for the five nearest-neighbor Mn-Mn pairs in the Mn/W(110) het-
erostructure. All data are given in units of meV.

JH
C1 JH

C2 JH
C3 JH

C4 JH
C5

Local projection 83.4 −38.3 −11.1 22.4 −17.1
Onsite projection 73.0 −46.0 −13.0 22.9 −12.9
KKR 88.0 −60.4 −4.2 28.1 −11.8

changed as shown in Fig. 3: for the largest height, the DM
vectors point almost perpendicular to the plane of the triangle
as in the isolated Cr trimer; the DM vectors rotate gradually
towards the surface plane and point outwards from the triangle
center as the height is reduced

We have chosen the trimer height h = 2.36 Å to be able
to benchmark our results against the established embedded
cluster KKR Green’s function technique [52] and the rela-
tivistic torque method [29]. We have used here a cutoff of
�max = 3 for the partial waves in multiple scattering, an LDA
functional, and the atomic sphere approximation for the po-
tentials. We have found here that all diagonal components
are similar among them and for all three pairs, with small
differences of about 0.3 meV, in agreement with the results
of our approach. We have calculated that JH = 143 meV, that
agrees very well with Table VI. In contrast, we have found
a larger disagreement for the DM vectors since KKR finds
Dz

12 = −0.95 meV and Dy
12 = 1.2 meV. This discrepancy puts

forward the large sensitivity of the DM vectors against the de-
tails of electronic structure. The observed differences might in
particular be due to the fact that the KKR calculations avoided
using a supercell approach by employing a semi-infinite
Au(111) substrate and setting the Fermi level from truly bulk
calculations.

D. Mn monolayer on W(110)

We analyze now a heterostructure where large DM vectors
have been found to generate a spin spiral ground state [53,54].
The heterostructure is depicted schematically in Fig. 4(a),
and consists of a W(110) surface where a Mn monolayer has
been deposited. We assume that the Mn monolayer grows
epitaxially on the bcc(110) surface of the W substrate with
a lattice constant along the y axis of a = 3.165 Å. We have
modeled the system by a supercell containing 10 atomic layers
of W and the Mn monolayer on top. We have chosen an LDA
exchange- correlation functional. We have obtained a Mn spin
moment of 3.52 μB and a small orbital angular moment of
0.007 μB. These values are in good agreement with those
obtained from the KKR approach (3.43 μB).

We have found that the Heisenberg exchange JH
c1 gives

the largest contribution by a factor of 2 orders of magni-
tude so we only discuss this exchange constant. Table VII
shows the calculated JH constants for the five nearest Mn-Mn
neighbors, for the local projection, the onsite projection, and
for the KKR approach. We find that the three sets of data
agree reasonably well with each other. We find that JH shows
an oscillatory pattern with nearest-neighbor antiferromagnetic
couplings.

FIG. 4. (a) Top view of the simulated Mn monolayer deposited
onto a W(110) slab. Orange (gray) spheres correspond to Mn (W)
atoms. Note that the W atoms below the Mn atoms occupy sites
in the subsurface W layer. The DM vectors referred to the central
Mn atom (labeled by the letter c) are depicted in green color. All
the DM vectors lie within the surface plane. Their moduli from the
first to the fifth nearest neighbor are 3.7, 2.5, 1, 2, and 0.7 meV.
(b) PDOS projected onto the Mn atom, obtained from a collinear
spin calculation. The top (bottom) panels refer to spin-up (-down)
projections, respectively. Black, red, and blue lines refer to results
from the codes KKR (�max = 3), SIESTA, and VASP.

The symmetric exchange tensor for nearest-neighbor pairs
is

JS
c1 =

⎛
⎝ 0.6 −0.3 0

−0.3 −0.4 0
0 0 −0.2

⎞
⎠ meV (103)

while the diagonal intra-atomic anisotropy matrix elements
are Kxx

c = −1.4 meV and Kyy
c = 0.2 meV. This result is con-

sistent with earlier KKR calculations [54] where the easy and
hard axes were found to lie along the x (110) and z (110)
directions, respectively.
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The DM vectors are drawn in Fig. 4(a). We have checked
that they satisfy the sum rule in Eq. (61). The figure shows
that they lie within the surface plane, and that show a vor-
texlike pattern. A very similar vortex pattern has also been
obtained previously using the KKR approach [54], with small
discrepancies. The source of those discrepancies lies in the
fact that the DM vectors depend sensitively on the details of
the electronic structure. We plot in Fig. 4(b) the density of
states projected onto the Mn atoms (PDOS) as computed from
SIESTA, KKR, and VASP [55]. We have found that the PDOS
obtained from SIESTA and VASP agree remarkably well with
each other, while KKR has peaks that show slight upwards
energy shifts. These can be attributed to the semi-infinite slab
geometry used here, in contrast to the supercell approach used
in the SIESTA and VASP calculations. These differences can also
explain why the values obtained for JH , albeit qualitatively
similar, have discrepancies of about 10%, but that can reach
30% for the worst cases.

VI. IMPACT OF STRAIN ON THE MAGNETIC GROUND
STATE OF T-CrTe2

In this section we investigated the impact of biaxial strain
on the exchange parameters of the 1T phase of the magnetic
van der Waals material CrTe2, whose lattice structure is de-
picted schematically in Fig. 5(a). The material has attracted
strong interest [56–59] because the Kanamori-Goodenough-
Anderson rules [60–62] indicate that its antiferromagnetic
ground state could be switched to a ferromagnetic state by the
application of biaxial strain that changes the angle subtended
by each Cr-Te-Cr bond. The mechanism is rationalized as
follows: for short Cr-Cr distances the direct AFM exchange
coupling dominates, however, when the distance between Cr
atoms increases and Cr-Te-Cr angle approaches 90◦ the FM
Cr-Cr superexchange interaction mediated by the intermediate
Te atom increases and eventually becomes dominant [57,63].

We have performed DFT simulations of a 1T-CrTe2 mono-
layer using SIESTA and the PBE GGA functional. We found a
theoretical lattice constant a = 3.78 Å, that agrees fairly well
with the experimental estimates [64,65]. We also found that
the distance between the Te and Cr planes is 1.68 Å. We
have used a simple unit cell containing one chromium and
two tellurium atoms. Therefore we have not analyzed charge
density wave distortions, that require a larger unit cell [56].
We calculated a spin (orbital) moment of 3.344 (0.034μB).

We have then used our approach to determine the exchange
and anisotropy tensors of the monolayer. Figure 5(b) shows
the variation of the isotropic exchange constants JH as a func-
tion of the lattice constant for the first few neighboring atomic
shells. Importantly, the figure shows how the dominant first-
neighbors exchange constant switches from antiferromagnetic
at the equilibrium lattice constant to ferromagnetic starting
with a strain slightly larger than 1%. We have found that the
moduli of the DM vectors are negligible, of the order of a few
µeV. In contrast, the intra-atomic anisotropy is three orders
of magnitude larger and prefers an in-plane direction of the
magnetization: Kzz − Kxx = Kzz − Kyy = 1.2 meV. Finally,
Kyy − Kxx is again negligible.

FIG. 5. (a) Top and side views of the T-CrTe2 crystal structure.
Red (gray) colors correspond to Cr (Te) atoms. First, second and third
neighbors relative to the central c atom are marked as 1, 2, and 3,
respectively. (b) Isotropic exchange coupling JH for first, second, and
third neighbors as a function of the lattice constant are plotted with
black, red, and blue solid (dotted) lines. corresponding to the local
(onsite) projection, respectively. The angle α subtended by the Cr-
Te-Cr bonds is plotted at the top x axis.

Finally, we have simulated a T-CrTe2 bilayer with AA
stacking. We have found that the interlayer Cr-Cr distance
is 6.62 Å, and that the magnetic moments are very simi-
lar to the monolayer case. We have also found a somewhat
reduced easy-plane intra-atomic anisotropy of Kzz − Kxx =
Kzz − Kyy = 0.7 meV. The intralayer Heisenberg exchange
constants with respect to the atom labeled as “c” in Fig. 5(a)
are JH

c1 = 1.9 meV, JH
c2 = −4.4 meV, and JH

c1 = −1.2 meV.
The symmetric intralayer exchange tensors measured in meV
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are

JS
c1 =

⎛
⎝−0.1 −0.2 −0.3

−0.2 0.1 0.5
−0.3 0.5 0.1

⎞
⎠,

JS
c2 =

⎛
⎝−0.1 0 0.1

0 0 0
0.1 0 0

⎞
⎠,

JS
c3 =

⎛
⎝ −0.1 0.02 −0.003

0.02 −0.1 −0.003
−0.003 −0.003 0.1

⎞
⎠, (104)

where the atoms 1, 2, and 3 are also labeled in the same
figure. The interlayer symmetric exchange tensors turned out
to be proportional to the identity matrix, with Heisenberg con-
stants JH

cc = −2.2 meV, JH
c1 = −1.2 meV, and JH

c2 = 0.8 meV,
meaning that the interlayer coupling is mainly ferromagnetic.
The calculated intralayer DM vectors are larger than for
the monolayer compound, with moduli of about 0.2 meV.
Figure 6 shows the pattern of DM vectors Dci where i de-
notes the neighboring shells. We found that the interlayer DM
vectors are very small, with moduli in the µeV range again.

VII. CONCLUSIONS

We have discussed in detail an approach to map the energy
of magnetic systems within density functional theory using a
nonorthogonal pseudoatomic basis set to generalized Heisen-
berg Hamiltonians. We have proposed the definition of a local
operator that is suitable for both orthogonal and nonorthog-
onal basis sets. We have demonstrated that a correct LKAG
method involves performing infinitesimal rotations only on
the exchange field, instead of full Hamiltonian. We have also
shown that the rotations must be applied only to PAOs involv-
ing localized degrees of freedom. We have established two
sum rules that must be respected by the exchange parameters.
We have also found a quantum analog of the Steiner theorem,
that relates off-site to onsite matrix elements of the orbital
angular momentum.

To test and benchmark our method, we have first investi-
gated isolated platinum dimers and chromium trimers, where
several stringent tests could be performed. We have then an-
alyzed the same chromium trimer deposited on a Au(111)
substrate. Here, we have found that the direction of the DM
vectors sensitively changes by varying the surface-trimer dis-
tance. We have also computed the exchange parameters of
a manganese monolayer deposited epitaxially on a W(110)
substrate, where the DM vectors follow a vortexlike pattern.
We have benchmarked these last two heterostructures against
the more established KKR approach, and have found good
agreement, especially for the isotropic exchange interactions
and the anisotropies. We established that some numerical
disagreements most likely occur due to the differences in
the calculated electronic structure, rather than due to the
differences between the two methodologies. We have finally
analyzed a 1T-CrTe2 monolayer and a bilayer, where we
have found easy-plane anisotropy, ferromagnetic interlayer
coupling and have confirmed an antiferromagnetic transition
controlled by the application of strain of the order of 1%, that
can be achieved experimentally.

FIG. 6. (a) Top and (b) side views of the lower monolayer of a
T-CrTe2 bilayer, where only the Cr atoms are drawn for clarity. We
show the DM vectors up to the third neighbor. The largest moduli
correspond to the first neighbors and are of the order of 0.2 meV.

We have analyzed the differences between our method-
ology and those presented in the reference article of the
PAO-based TB2J approach [39] by implementing the lat-
ter one in our code. We have found that our methodology
is currently superior in the following number of theoretical
and practical aspects: (1) The LKAG approach relies on the
application of infinitesimal rotations to the angular momen-
tum present in the Hamiltonian. We show in Sec. IV C that
those rotations must be applied to the exchange field in the
KS Hamiltonian. However, the TB2J implementation applies
infinitesimal rotations to the full KS Hamiltonian. We have
tested those two types of rotations for small atomic clusters
and found that the TB2J rotation delivers non-negligible en-
ergy variations when rotating the spin around the quantization
axis, which should not happen as we checked in Sec. V A and
it is shown in Fig. 2. In contrast, our approach does not show
any of these deficiencies. (2) The projection proposed in this
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paper fulfills the sum rules. In contrast, the onsite projection
used by the TB2J implementation fails to fulfill. We have
found a failure of about 14% for the case of a platinum dimer.
(3) PAO basis sets span the Hilbert space in terms of localized
functions whose angular parts have s, p, d , and f symmetry,
and whose radii parts go to zero at a different cutoff radius
Rc,i for each PAO. Those radii can be shown to be variational
parameters in the PAO approaches. We have tested the impact
of Rc variation and energy optimization on the magnitude of
the exchange parameters. We have found it crucial to restrict
the infinitesimal rotations to the PAOs representing localized
degrees of freedom, in line with the argumentation laid down
above. Otherwise, the exchange parameters can change even
by factors of 4, 5, or orders of magnitude. Furthermore, appli-
cation of the variational principle does not lead to improved
estimates of those parameters, and cannot be used as a guiding
principle. The current TB2J applies infinitesimal rotations to
all PAOs or Wannier functions. (4) The approach presented
in this paper allows us to determine all the matrix elements
of the intra-atomic anisotropy tensor. TB2J implementation
can determine only the diagonal matrix elements. (5) The
determination of all the matrix elements of the exchange and
anisotropy tensors requires in the LKAG approach performing
rotations around three perpendicular quantization axes. The
TB2J approach can only perform simulations where the quan-
tization axis is aligned in the z direction as stated in Ref. [39].
As a consequence, the TB2J method requires performing three
different DFT simulations where the lattice instead of the

quantization axis must be rotated. This contrasts to our fully
noncollinear approach where a single DFT simulation needs
to be performed and then the exchange field can be extracted
and rotated.
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