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Electrically driven singlet-triplet transition in triangulene spin-1 chains
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Recently, graphene triangulene chains have been synthesized, and their magnetic response has been analyzed
by scanning tunneling microscopy methods by Mishra et al. [Nature (London) 598, 287 (2021)]. Motivated by
this study, we determine the exchange bilinear and biquadratic constants of the triangulene chains by calculating
two-spin rotations in the spirit of the magnetic force theorem. We then analyze open-ended, odd-numbered
chains, whose edge states pair up forming a triplet ground state. We propose three experimental approaches that
enable us to trigger and control a singlet-triplet spin transition. Two of these methods are based on applying
a mechanical distortion to the chain. We finally show that the transition can be controlled efficiently by the
application of an electric field.

DOI: 10.1103/PhysRevB.107.035432

I. INTRODUCTION

Simple spin models have played a key role in the formula-
tion and comprehension of the basic principles of magnetism
and statistical mechanics since the early days of quantum
theory [1,2]. The interest in these models and in the systems
realizing them persists today due to their connection to many
topological properties of matter [3,4], as well as their potential
to become the building blocks of viable and robust quantum
computers [5,6]. Infinite quantum antiferromagnetic (AFM)
spin-1 chains have a singlet ground state and a gap in their
excitation spectrum [3]. This is because each atomic spin
fractionalizes into two spin- 1

2 states, and each spin- 1
2 state

entangles with another one at a neighbor site forming a singlet.
The spin-1 chain therefore decomposes into a set of singlet
dimers [7,8]. Further numerical work [8–10] on the open-
ended bilinear-biquadratic (BLBQ) nearest-neighbor model

ĤBLBQ = J
N−1∑

i=1

[Ŝi · Ŝi+1 + β(Ŝi · Ŝi+1)2] (1)

has shown that a spin- 1
2 edge excitation appears at each of the

two ends, whose energy lies inside the Haldane gap. These
edge states entangle into a singlet and a triplet, whereby the
singlet (triplet) is the ground state for even (odd) N chains,
and the singlet-triplet energy splitting �EST = E (S = 1) −
E (S = 0) decays exponentially with the chain length.

Theoretical and experimental works have explored already
the potential of the singlet-triplet transition of these edge
modes for storage and manipulation of quantum information

[5,11–13]. However, efforts to realize unequivocally quantum
spin-1 chains have been hindered by a variety of factors,
among which the magnetic anisotropy arising from the spin-
orbit interaction is possibly the most relevant one. Recently,
graphene triangulenes (GTs) have been synthesized as sin-
gle molecules [14,15], or forming chains [16], where due to
Lieb’s theorem [17,18] each triangulene block is characterized
by a robust spin-1 magnetic moment. Because the constituent
carbon atoms have a negligible spin-orbit interaction, GT
chains are faithful realizations of the open-ended spin-1 quan-
tum AFM chain model embodied in Eq. (1).

We propose in this paper three experimental approaches
to trigger and control a singlet-triplet transition for odd-
numbered AFM spin-1 GT chains. The proposals are based on
the experimental bottom-up approach of Mishra et al. [16] that
leads to chains of many different lengths and shapes. Specif-
ically, horseshoe-shaped chains of different lengths were
synthesized; see the example sketched in Fig. 1(a). Because
increasing the length N of the chain increases its ductility,
the two ends of the chain can be brought in close proximity,
which in turn introduces an exchange coupling J1N between
the two magnetic degrees of freedom localized at the edges.
Since the ground state of odd-numbered chains is a triplet,
while that of a cyclic chain is a singlet, there must be a critical
Jc

1N separating the two ground states, as depicted in Fig. 1(b).
The experimental feasibility of the proposals is ensured

by the ability to manipulate and measure spectroscopically
graphene nanostructures by scanning tunneling microscopy
(STM) methods [15,16,19,20]. We establish first the re-
quirements for a triplet-singlet level crossing via exact
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FIG. 1. (a) Sketch of a horseshoelike N = 5 GT chain, where
the spins at each triangulene pair are coupled by the same exchange
constants J and β, and where the two end GT spins are coupled by
a smaller exchange constant J1N . (b) A singlet-triplet crossing occurs
at a finite value of J1N/J smaller than 1.

diagonalization. We then use a first-principles approach to
map GT chains to one-dimensional spin-1 Heisenberg chains
and extract the corresponding exchange constants. The main
prediction of our study is that the critical interedge constant
Jc

1N can be reached by experimentally feasible mechanisms,
especially, by the application of an external electric field.

II. METHOD

A. Exact diagonalization

We compute here the energy spectrum of the Hamiltonian

Ĥ = ĤBLBQ + J1N ŜN · Ŝ1 (2)

for odd-N chains from N = 3 to N = 15. Our calculations for
J1N = 0 show that a singlet edge state and a triplet edge state
lie inside the Haldane gap as expected, the triplet being the
ground state.

We search for the critical value Jc
1N of the exchange

constant that renders a fourfold degenerate ground state.
Figure 2(a) shows that Jc

1N/J decays exponentially with N .
Figure 2(b) demonstrates that larger values of β facilitate
reaching the critical Jc

1N . All in all, we find that the singlet-
triplet crossing happens at reasonably small values of J1N/J ∼
0.01–0.2 if N is larger than 7 and for values of the biquadratic
parameter β relevant for the GT chains extracted both exper-
imentally [16] and in the first-principles mapping presented
below.

The exponential decay of Jc
1N with N means that the

singlet-triplet energy splitting �EST also decays with N . We

FIG. 2. (a) Jc
1N/J as a function of N for several values of β.

(b) Jc
1N/J as a function of β for chains having different lengths.

find that values of �EST larger than about 1 meV require ex-
change constants J1N/J > 0.1 (calculations with many values
of N are shown in the Supplemental Material [21]). We show
in the next section that the energy scale of the singlet-triplet
splitting can be tuned on the order of a few meV, so that it
should be easily resolved experimentally using spectroscopic
methods.

B. Ab initio simulations of GT chains

We have carried out density functional theory (DFT) simu-
lations of GT chains having an odd number of GTs, as shown
in Fig. 1(a). Each GT contains 22 carbon atoms and has zigzag
edges where each edge carbon atom has been passivated with
hydrogen. We have used the DFT package SIESTA [22], with
the generalized gradient approximation [23]. We have used
established pseudopotentials for carbon and hydrogen and
strict accuracy tolerances such as a real-space grid cutoff of
500 Ry. We have first confirmed that the total spin of a single
isolated GT is s = S/h̄ = 1 via a Mulliken analysis. We have
then simulated odd-numbered chains possessing AFM spin
alignment. We have found that the total charge and spin of
each GT in the chain are the same as those of an isolated
GT up to four to five decimal digits. We therefore conclude
that charge fluctuations among GTs are frozen and that the
low-energy sector of the Hilbert space of each GT corresponds
to that of a quantum spin-1 degree of freedom.

C. Mapping to the BLBQ model

We can extract the bilinear (J) and biquadratic (β) con-
stants that couple the spin-1 degrees associated with GTs,
by making use of the fact that in the absence of spin-orbit
coupling any collinear state is either stable or metastable. The
energy cost of infinitesimal rotations of the spins from their
collinear reference states at two different GTs (n �= m) in a
chain can be expanded to second order as [21]

δE (2)
nm = D(2)

nmδSn · δSm, (3)

where

D(2)
nm = Jnm(1 + 2βnm(Sn · Sm)). (4)

We apply the generalization of the Liechtenstein-Katsnelson-
Antropov-Gubanov (LKAG) formula to the case of a
nonorthonormal basis set [24] to determine D(2)

nm, in the spirit
of the magnetic force theorem [25–27]. We compute D(2)

nm
for both the ferromagnetic (FM) and AFM reference spin
configurations to solve for Jnm and βnm. This yields

Jnm = 1

2

(
D(2),FM

nm + D(2),AFM
nm

)
, (5)

βnm = 1

2

D(2),FM
nm − D(2),AFM

nm

D(2),FM
nm + D(2),AFM

nm

. (6)

Our results for the nearest-neighbor constants of an infinite
GT chain and a GT dimer are shown in Table I. We have
also written in the table the values obtained experimentally
in Ref. [16], where STM data were used to fit the spectrum of
Eq. (1). Albeit our procedure gives somewhat higher values
for both J and β, the agreement between our parameter-
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TABLE I. Nearest-neighbor J and β constants for a GT dimer,
for an infinite GT chain obtained from Eqs. (5) and (6), and from the
fit to STM experiments performed in Ref. [16].

Dimer Infinite chain Experiment

J (meV) 17.7 19.75 18
β 0.03 0.05 0.09

free first-principles approach and the experimental fittings of
Ref. [16] is remarkable.

Our method allows us to determine the exchange constants
between any two GT sites n and m in the chain. We have
therefore computed the next-nearest-neighbor constants Jn n+2

and βn n+2 and found that they are three to four orders of mag-
nitude smaller than the nearest-neighbor parameters J and β,
providing compelling evidence of the accurate realization of
open-ended and cyclic nearest-neighbor quantum AFM chains
by the GT chains synthesized in Ref. [16].

III. CONTROL OVER THE SINGLET-TRIPLET
TRANSITION

Our first two proposals are based on the assumption that
the exchange constant J1N can be modified by manipulating
the distance between the ends of the GT chains. To achieve

FIG. 3. (a) Lowest-lying energy states as a function of dH-H for
a N = 11 chain. The plot shows that the singlet and triplet edge
states lie inside the Haldane gap. Inset: Blowup of the energy axis to
highlight the singlet-triplet energy splitting. (b) J1N/J as a function
of dH-H. The horizontal line identifies the critical J1N separating the
regions where the ground state is a triplet (pink) or a singlet (violet).
Inset: Sketch of the horseshoe chain end where the distance dH-H is
defined.

FIG. 4. (a) and (b) Same as in Fig. 3, but where the horseshoe
chain is linked by a sulfur atom.

realistic values for Jc
1N , we select horseshoelike chains of

lengths in the range N ∈ [7, 15]. We have chosen to demon-
strate numerically our proposals for a N = 11 chain, because
in this case the singlet-triplet splitting is of the order of a few
meV, so that it should be measurable by spectroscopic STM
methods [16,19,20]. We have hence checked whether we can
increase J1N by bringing the ends of the horseshoe chain suf-
ficiently close. We have found that J1N ∼ Jc

1N requires forces
of the order of 100 meV/Å, which may be realized in STM
experiments [16,20].

Within the first proposal, we assume that the distance dH-H

between the closest hydrogen atoms at the two chain ends can
be changed in a controlled way [see the inset in Fig. 3(b) for a
graphical definition of dH-H]. We have therefore computed J1N

as a function of dH-H. As expected, J1N increases exponentially
with decreasing dH-H. Consequently, the energy difference
between the triplet and singlet states decreases, and as seen
in Fig. 3(b), the N = 11 horseshoe GT chain experiences
a singlet-triplet level crossing at dH-H ∼ 1.6 Å. The force
needed to bring the two dimers in Fig. 3 to dH-H ∼ 1.6 Å is
about 0.1 eV/Å. To achieve a splitting �EST of about 1 meV,
we need to reduce the distance further to dH-H ∼ 1.45 Å,
which requires the application of higher forces of about
0.5 eV/Å. This is a lower bound to the full required force
that does not take into account the tensile stress caused by
the deformation inside the full horseshoe chain. However, we
expect that this contribution should not dominate for chains as
long as N = 11.

Linking atoms such as nitrogen, sulfur, phosphorous, or
oxygen to metallic surfaces or to graphene edges is routinely
done in areas such as molecular electronics [28].
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FIG. 5. (a) and (b) Same as in Fig. 3, but where in addition to
a linking sulfur atom, an electric field E is being applied along the
chain main axis.

Our second proposal is similar to the first one, but now
both closest hydrogen atoms at the GT ends are replaced by a
single sulfur atom that links the ends of the chain as illustrated
in the inset of Fig. 4(b). Our DFT simulations show that the
sulfur atom does not change the magnetic moment of the
two adjacent GTs. We then compute J1N as a function of the
distance �d relative to the equilibrium distance of the two
edges. Our results, depicted in Fig. 4(b), demonstrate that the
singlet-triplet level crossing can be triggered by closing the
structure by about 0.3 Å. We find forces now of order 0.7
eV/Å for �d ∼ −0.4 Å, where �EST ∼ 1.5 meV.

The third proposal is based on the observation that the
sulfur atom introduces an electric dipole at the chain weak
link that renders J1N susceptible to an external electric field E .
Our first-principles simulations confirm that this is the case, E
being most effective when pointing along the symmetry axis
of the horseshoe-shaped GT chain. We plot in Fig. 5 the en-
ergies of the singlet and triplet states, as well as the exchange
constant J1N as a function of Ey. Indeed, we find that there is a
level crossing from singlet to triplet at about Ey ∼ 0.1 V/Å.

We find a threshold coupling Jc
1N ∼ 0.06J that agrees well

with the estimates from our exact diagonalization studies for
N = 11 and β = 0.05, shown in Fig. 2(a). Our numerical
study provides strong evidence that the single-triplet transition
can be sensitively controlled by an electric field.

To clarify the physical origin of the electric-field-based
mechanism, we have first checked that the spin of each GT
remains equal to 1 and that the exchange constant J between
the GTs in the chain changes only by about 1–2 meV even
for the largest simulated fields. We have also checked that the
electric field does not affect the chain geometry even around
the sulfur atom. We have then investigated the redistribution
of atomic Mulliken charges at the terminating GTs when the
sulfur atom is present at the junction. We have then found that
the combined influence of the sulfur atom and the electric field
induces an internal dipole in those GTs. Further calculations
in the Supplemental Material [21] show that J1N is linearly
proportional not only to the external electric field but also to
the electric dipole moment at the junction.

IV. CONCLUSIONS

We have demonstrated that GT chains are faithful realiza-
tions of the nearest-neighbor spin-1 AFM chain by combining
spin-model simulations with first-principles calculations. We
have advanced three proposals for experiments that may trig-
ger and control the singlet-triplet transition of odd-numbered
chains, thus opening the door for their future use as quantum
devices. Our calculations indicate that the application of an
external electric field is particularly feasible.
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