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Műegyetem rkp. 3, H-1111 Budapest, Hungary

E-mail: nyari.bendeguz@ttk.bme.hu

Received 3 July 2022, revised 10 September 2022
Accepted for publication 23 September 2022
Published 29 September 2022

Abstract
Incommensurate magnetism in CrB2 is studied in terms of a spin model based on density
functional theory calculations. Heisenberg exchange interactions derived from the paramagnetic
phase using the disordered local moment (DLM) theory show significant differences compared
with those resulting from the treatment of the material as a ferromagnet; of these two methods,
the DLM theory is found to give a significantly more realistic description. We calculate strongly
ferromagnetic interactions between Cr planes but largely frustrated interactions within Cr
planes. Although we find that the ground state ordering vector is sensitive to exchange
interactions over a large number of neighbour shells, the q-vector of the incommensurate spin
spiral state is satisfactorily reproduced by the theory (0.213 compared with the known ordering
vector 0.285× (2π)/(a/2) along Γ–K). The strong geometric frustration of the exchange
interactions causes a rather low Néel temperature (about 97K), also in good agreement with
experiment.

Keywords: incommensurate spin spiral, disordered local moment, ab initio, frustration,
Heisenberg exchange

(Some figures may appear in colour only in the online journal)

1. Introduction

Beside geometric frustration stemming from an incompatibil-
ity of the underlying lattice withmagnetic interactions, frustra-
tion caused by competing exchange couplings is also known to
lead to non-collinear magnetic ordering. Not only can it cause
spin spiral ground states in atomic chains [1, 2] and surfaces
[3], it can also contribute to the stabilization of skyrmions
[4, 5] and induce an effective attractive interaction between
them [6]. Frustrated interactions may even lead to incommen-
surate magnetic ordering in bulk systems, for which a typical
example is the long-wavelength helical order of Mn3Sn [7].

∗
Author to whom any correspondence should be addressed.

Among transition metal diborides CrB2 is another challen-
ging example of an itinerant antiferromagnetic (AFM) metal
possessing incommensurate magnetic ordering. It crystallizes
in the hexagonal AlB2 (or C32) crystal structure with space
group P6/mmm [8], in which honeycomb layers of boron
alternate with triangular chromium layers, see figure 1. The
magnetic structure was determined experimentally by neut-
ron scattering by Funahashi et al [9], revealing that the Cr
moments order antiferromagnetically with an incommensur-
ate spin spiral in the Cr planes with ordering vector 0.285×
(2π)/(a/2) along the ⟨110⟩ direction, i.e. a fraction of 0.86
along the distance from Γ to K (the directionΛ), and with Néel
temperature 88K; this description has been extended by recent
experiments [10], where the spin-wave spectrum was meas-
ured across a large (q,ω)-window. A detailed investigation
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Figure 1. Crystal structure of CrB2. (Left) The direct lattice, where large (top and bottom layers) and small (middle layer) spheres denote
Cr and B atoms, respectively. The lattice parameters a and c are also indicated. (Right) The hexagonal two-dimensional Brillouin zone for
qz = 0. Corresponding to C3v symmetry the irreducible wedge is bounded by the Γ–K–M triangle.

into the nature of magnetic ordering in CrB2 was provided
by Kaya et al [11], which confirmed that Cr moments form
a simple helix structure, rotating in the plane formed by the
c-axis and ⟨110⟩ (the propagation direction). An examination
of the temperature-dependent conductivity of CrB2 around the
Néel temperature by Bauer et al [12] included the determin-
ation of the susceptibility, showing Curie–Weiss susceptibil-
ity with a large, negative ΘCW indicative of strong frustration,
together with a Cr moment of∼2 µB, in contrast to early neut-
ron scattering experiments which indicated a Cr moment of
∼0.5 µB [9].

The electronic structure of CrB2 has been examined theor-
etically in a number of works based on band theory using the
local density approximation or generalized gradient approxim-
ation (GGA) for the exchange-correlation in density functional
theory. Early calculations using non-self-consistent poten-
tials [13] have been supplemented by linear muffin-tin orbital
(LMTO) [14, 15] and later full-potential augmented plane-
wave calculations. Of these more accurate GGA calcula-
tions, application of the generalized Bloch theorem (i.e. ‘spin-
spiral’ calculations) showed ordering along q≈ 0.3q110 and
Cr moment 1.3 µB as part of detailed description of the de
Haas–van Alphen effect [16].

The present work is aimed at extending our understand-
ing of the magnetism in CrB2 in terms of the Heisenberg
exchange interactions leading to incommensurate ordering,
both in the low-temperature limit, which we model as a fer-
romagnet (FM), and in the high-temperature limit where the
local Cr moments are treated as fully disordered. First, we
give brief details of the computational methods we used: the
electronic structure calculations are based on Green’s func-
tion (GF) multiple scattering formalism which facilitates the
evaluation of magnetic exchange interactions and the study
of the paramagnetic phase using the disordered local moment
(DLM) method [17]. Then we present our results for the
exchange interactions in both the FM and DLM states and give
mean-field estimates for the wave vector q0 of the spin spiral

ground state and the Néel temperature TN. These values are
recalculated by spin dynamics and Monte Carlo simulations,
respectively. We conclude that the DLM based spin models
give more realistic description of the magnetism of CrB2 than
the spin model derived from the ordered (FM) state.

2. Details of calculations

Calculations have been performed using the screened
Korringa–Kohn–Rostoker (SKKR) method [18] in the atomic-
sphere approximation (ASA). The ASA describes the crystal
potential by a sum of overlapping atomic spheres, neglecting
the interstitial region; this approximation is appropriate for
close-packed structures like AlB2 materials including CrB2.
The ASA constraint, that the sum of sphere volumes equals
the unit cell volume, does not determine the relative size of
Cr and B spheres. We have experimented with sphere sizes
obtained by minimizing the average sphere overlap and by
scaling up touching spheres defined by the first maximum of
the electrostatic potential and found that both configurations
give closely similar results. For all calculations we assumed
an in-plane lattice parameter of a= 2.972Å and c= 3.066Å
according to experiments [8]. The resulting ASA radii are
therefore SCr = 1.580Å and SB = 0.929Å.

All calculations used an angular momentum cut-off of
ℓmax = 2 and the GGA exchange-correlation parameterization
as formulated by Perdew et al [19]. Sixteen energy points were
used for complex contour integrations in energy, with 546 k-
points in the two-dimensional Brillouin zone (2D BZ) for self-
consistent-field calculations and up to 20 000 near the Fermi
energy for computing exchange interactions. Ferromagnetic
self-consistent calculations were combined with the relativ-
istic torque method (RTM) to derive exchange interactions
using infinitesimal rotations of the spins [20]. For the paramag-
netic phase, the relativistic development of the DLM theory
was used [17, 21], from which the adiabatic magnetic energy
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surface was mapped onto a spin model using the spin-cluster
expansion (SCE) [22].

The classical spin model we extract with the abovemethods
is of the form

H=−1
2

∑
i ̸=j

SiJijSj+
∑
i

SiKiSi , (1)

where i and j both run over all Cr atoms and Si stands
for classical spins of unit magnitude. Both the RTM and
the SCE methods allow the extraction of the full J

ij
tensor, encompassing the isotropic exchange interaction, the
Dzyaloshinskii–Moriya interaction and the two-site exchange
anisotropy [20], the latter two ones originating from spin–orbit
interaction. In the convention used in equation (1) a positive
isotropic interaction corresponds to FM coupling. Note that
the Dzyaloshinskii–Moriya interaction is absent due to inver-
sion symmetry present between any two Cr atoms. The mag-
netic anisotropy is uniaxial, favouring out-of-plane Cr order-
ing. However, since the spin–orbit interaction is very weak
in this system, the exchange anisotropy and the on-site aniso-
tropy related to the matrix K are also very small, in the order
of 10µRy, and thus are not expected to significantly affect the
ground state ordering.

We have repeated our calculations using the tight-binding
LMTO GF method, as implemented in the Questaal code
[23]. Compared with the SKKR calculations, the LMTO cal-
culations use the same ASA construction, but were scalar-
relativistic and used a 3rd order parameterization of the poten-
tial function, without inclusion of the combined correction for
the potential overlap. Self-consistent LMTO-GF calculations
involved integration on an elliptical energy contour with 35
points and a BZ mesh of 49× 49× 41 points, by sampling.
We found that the results of the two methods are in very good
agreement.

The spin model of equation (1) has been studied using
Monte Carlo and spin dynamics methods assuming classical
statistics [24]. We used Landau–Lifshitz–Gilbert spin dynam-
ics simulations at zero temperature as a means of energy min-
imization for a ground-state search. For this we first verified
that the ground-state spin configuration has qz = 0, then used
a 64× 64 Cr atom 2D lattice with free boundary conditions
in-plane and periodic boundary condition perpendicular to the
plane. Free boundary conditions are necessary in the plane in
order not to impose spurious spatial modulation on a system
that we expect to have incommensurate magnetic order, but the
periodic boundary condition perpendicular to the plane allows
us to restrict the phase space of the energy minimization to
states that have qz = 0. The simulations were converged in
energy to below 10−8 Ry per Cr atom. For the temperature-
dependence of the specific heat we used Metropolis Monte
Carlo simulations on a 32× 32× 32 Cr atom lattice with free
boundary conditions in order to estimate the Néel temperat-
ure. The last 3× 109 Monte Carlo time steps (corresponding to
random single-spin flip attempts) were considered for thermal
averaging out of 5× 109 total time steps.

3. Results

First we performed self-consistent calculations by using the
SKKR method in the FM and DLM states. For the FM state
we obtained 1.564 µB spin moment for the Cr and 0.045 µB

for the B atoms. In the DLM self-consistent calculation the
Cr spin moment decreased to 1.344 µB, and there was no
moment induced on the B sites due to the vanishing Weiss
field in the paramagnetic state. This also justifies the softening
of the Cr spin moment in the DLM state as compared to the
FM state. LMTO (scalar-relativistic) Cr moments are 1.577
and 1.301 µB for the FM and DLM configurations, respect-
ively. The FM spin moment is significantly larger than in
earlier spin-spiral calculations of Brasse et al [16] which can
be explained by the larger volume of the atomic sphere defin-
ing the atomic moment than the non-overlapping spheres used
in full-potential methods.

We derived parameters for the spin model defined in
equation (1) in terms of the SKKR method by using the RTM
for the FM configuration and using the SCE for the DLM
state. Within the scalar relativistic LMTO method the calcu-
lation of only the isotropic exchange interactions was pos-
sible by using the method of infinitesimal rotations [25, 26]. A
comparison of the resulting isotropic Heisenberg couplings is
shown in figure 2. The two magnetic reference configurations
produce broadly similar spatial distributions of spin model
parameters, with the two nearest neighbour (NN) shells vis-
ibly dominating the interaction landscape. In both cases the
parameters obtained with SKKR and LMTO are in excellent
agreement. The main feature we note is that the exchange
couplings obtained using the FM reference are about twice
as large as those for the DLM, which can partially be related
to the larger magnitude of the Cr moment in the FM state.
Though the first two NN shells correspond to almost the same
interatomic distances, the respective interactions remarkably
differ in size. This can be explained by the fact that the local
neighbourhoods around the corresponding bonds are very dis-
tinct, e.g. the first NN bond is surrounded by four B atoms
arranged in a rectangle, whereas the second NN bond goes
through a ring of six B atoms.

With the definition in equation (1) in mind, it can be shown
that the mean-field paramagnetic spin susceptibility can be
related to the J(q) lattice Fourier transform of the exchange
tensors. In particular, the mean-field estimate predicts a mag-
netic ordering with highest critical temperature at the q0 wave
vector for which the maximal eigenvalue J(q) of the matrix
J(q) is the highest within the BZ; the corresponding ordering
temperature is equal to J(q0)/(3 kB). For a detailed derivation
of this mean-field estimate see e.g. the appendix of [27].

The ordering wave vector from the mean-field estimates
turned out in each case to lie along the Γ–K line connecting
the centre of the hexagonal BZ with one of the vertices with
qz0 = 0. We have found that despite the apparent dominance of
the first two FM NN couplings there is enough frustration in
the system to push magnetic ordering away from the Γ point.
The competition of these strong FM couplings with AFM fur-
ther neighbours results in a delicate balance ultimately giving
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Figure 2. Isotropic Heisenberg couplings vs. interatomic distance. Parameters obtained with the SKKR (orange) and LMTO (blue) methods
are compared for the FM (top) and DLM (bottom) reference states separately. Square and circle markers represent in-plane and out-of-plane
neighbours, respectively.

rise to the incommensurate spin spiral ground state possessed
by CrB2.

In order to demonstrate this complex interplay of spin
model parameters we computed the mean-field estimates
while taking into consideration gradually more interacting
neighbour shells. Figure 3 shows the dependence of the
obtained mean-field ordering wave vectors as a function of
this distance cut-off. Despite the magnitude of the first two
NN couplings the mean-field theory shows that pairs as far as
2.8 lattice constant units (12 shells) are necessary to achieve
convergence in the DLM state. This is even more so the case
with the FM reference state, following the common observa-
tion that magnetic interactions tend to be shorter ranged in the
DLM state due to spin disorder. We computed exchange inter-
actions in the FM state via SKKR for up to nine lattice constant
units to trace all distant interactions, and about 4.2a distance is
necessary in order to achieve convergence. This extreme sens-
itivity to otherwise small exchange interactions is strong evid-
ence for frustration.

We note that the sudden jumps in the mean-field q0 estim-
ate might first seem at odds with the fact that the correspond-
ing distant interactions are small. However, these jumps are
merely the result of small changes along a nearly degenerate
line of the J(q) function along the Γ–K line. When two local
maxima of the function have a crossing (with respect to their

function values), the mean-field estimate for the ordering wave
vector will abruptly jump from one maximum to the other. It is
clear in the bottom of figure 3 presenting the mean-field Néel
temperatures that there are no sudden changes beyond a cut-
off of 2 a, where the last group of larger Heisenberg couplings
are located.

The specific mean-field estimates are collected in table 1.
Concerning the magnitude of the ordering vector there is some
disagreement between the LMTO and SKKR calculations for
the FM reference state. This can easily happen due to the delic-
ate interplay of frustrated interactions we have demonstrated.

The J(q) surfaces for these two spin models plotted in the
entire 2D BZ in figure 4 reflect the frustrated nature of the
exchange interactions. In both cases there is a nearly degen-
erate line along Γ–K, and this degeneracy is especially pro-
nounced in case of the LMTO spin model. While the over-
all structure of the two surfaces is very similar, the numerical
maximum is at an inner point of the Γ–K line for the SKKR
couplings, whereas it is pushed out into the K point for the
LMTO couplings. This is the reason for the difference in the
mean-field ordering vectors seen in table 1.

Furthermore, considering the respective maximum J(q)
values, the mean-field Néel temperature is unreasonably high
compared to experiments, even with accounting for the expec-
ted overestimation. Despite minor differences for some of the
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Figure 3. (Top) Magnitude of the mean-field ordering wave vector. q= 0 corresponds to the Γ point, whereas q= 1
32 π/(a/2), marked by

the dashed line, corresponds to the K point of the BZ. (Bottom) Mean-field Néel temperature as a function of interatomic cut-off.

Figure 4. J(q) surface for qz = 0 in the 2D BZ for a FM reference state (left) using LMTO and (right) using SKKR-derived exchange
interactions. The colourbars use mRy units. The vertices of the hexagonal 2D BZ (the K points) correspond to a triangular Néel state. The
numerical maxima along a Γ–K line are indicated with orange circles.

largest exchange interactions derived in the DLM state, the
mean-field value of the ordering vector is nearly the same in
the two ab initio methods. Remarkably, the mean-field estim-
ates for the Néel temperature from the DLM spin models are
less than half of those from the FM spin models.

In order to verify the mean-field estimates and
to obtain a realistic temperature scale we performed

Landau–Lifshitz–Gilbert spin dynamics simulations at zero
temperature to find the ground-state spin configuration, and
Monte Carlo simulations at finite temperature to locate the
Néel transition. As shown in table 1, the spatial modulation
of the ground state estimate from spin dynamics is in perfect
agreement with the mean-field guess. With exception of the
FM LMTO spin model, the magnitude of this wave vector of
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Table 1. Estimates for the magnetic ordering. MF refers to the
mean-field theory, while SD and MC refer to Landau–Lifshitz–
Gilbert spin dynamics and Monte Carlo simulations, respectively.
Calculated Néel temperatures are in K, ordering vectors are
expressed in units of 2π/(a/2) along Γ–K (such that K is at 1/3).
The Monte Carlo critical temperature is estimated from an inverse
power-law fit to the peak of the specific heat from the left and right
side, and the uncertainties are estimated from the disagreement
between the temperatures obtained from the pair of fits for a given
method. The experimental ordering vector occurs at qexp0 = 0.285;
the experimental ordering temperature is 88K [9].

Reference Method qMF
0 TMF

N qSD0 TMC
N

FM LMTO 0.333 475 0.330 187 (±3)
SKKR 0.208 439 0.210 221 (±2)

DLM LMTO 0.210 204 0.210 93 (±1)
SKKR 0.213 197 0.213 97 (±1)

Figure 5. Specific heat in Boltzmann’s constant units as a function
of temperature obtained from Monte Carlo simulations in a system
of 32× 32× 32 spins.

about 0.21× (2π)/(a/2) is significantly smaller than seen in
experiments and [16].We attribute this inaccuracy to the signi-
ficant frustration in this system; the combination of exchange
interactions causing the spin-spiral ground state is quite del-
icate and depends sensitively on details of the theory, e.g. the
exchange-correlation model. We note also that our calcula-
tions for the ordering vector are based on a bilinear spinmodel,
missing higher-order multi-site exchange interactions, while
methods based on total energy calculations, i.e. spin-spiral
calculations [16], do not involve this restriction.

The temperature dependence of the specific heat from the
Monte Carlo simulations of the DLM derived spin models is
shown in figure 5. The sharp maximum of cV clearly indicates
the position of the transition temperature. The about 97KNéel
temperature we obtained is in good agreement with experi-
mental findings. This agreement is not surprising since the
DLM theory describes by construction the magnetic interac-
tions at the critical temperature, whereas the exchange inter-
actions derived by the torque method at the FM state are
essentially to describe the low-temperature spin-wave spectra.

Indeed, the FM SKKR spin model resulted in a much too high
Néel temperature of 221K.

We note an interesting feature of our four spin models,
namely that there is a striking 2.5 factor difference between
the mean field estimate and the Monte Carlo result for the
FM LMTO couplings, whereas for the other three spin models
there is an almost exact factor of 2 instead. This dichotomy
can probably be explained by the difference in ordered mag-
netic states: the triangular Néel structure (for the FM LMTO
spin model) and a spin spiral with about 0.21 2π/(a/2) wave
number (for the other three spin models) may have different
excitations, and thus significantly different fluctuations near
the transition temperature.

4. Conclusions

In this work we presented Heisenberg exchange parameters
describing the magnetism of CrB2, which is known to have
an incommensurate spin-spiral ground state. By modelling the
system in the paramagnetic phase using the DLM theory as
implemented in the SKKR and LMTO GF methods of density
functional theory, we have reproduced the essential magnetic
properties of the system without making any assumptions as
to the nature of the magnetic ordering at lower temperature.
In particular, the Néel temperature obtained with this theory is
very close to that which is experimentally observed. The order-
ing direction is correctly reproduced by the spin model, but
the wavelength of the ordering is underestimated. We demon-
strate also that using the ferromagnetic state as reference res-
ults in significantly different exchange interactions which are
substantially poorer than those derived in the paramagnetic
phase. These conclusions are supported by rigorous testing
with respect to the number of interacting shells of magnetic
atoms.

Previous full-potential methods using the spin-spiral
approach have found minimum energy configurations in bet-
ter agreement with the experimental ordering vector [16]. This
difference might be attributed either to the fundamental dif-
ference between our spin model based on mapping the band
energy in the spirit of the force theorem [22, 25, 26] and
the spin-spiral method based on total energy calculations or
to the imprecision caused by the simplified representation
of the Kohn–Sham potential in the ASA GF methods used
here. In return for the modest loss of precision inherent in
the ASA, the methods employed here allow a detailed map-
ping of the exchange interactions over many neighbour shells
and highlight the complex frustration driving incommensurate
ordering in this material. The resulting spin model correctly
describes the thermodynamics of the spin system, despite the
relatively small moment and small ordering temperature. It is
possible that an improvement could be achieved by perform-
ing the RTM calculations with a non-collinear reference state
that closely resembles the ground state of the system, how-
ever there is a strong debate still in the literature on the cal-
culation of spin models from non-collinear reference states
[28–31].
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