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In our previous Letter [Phys. Rev. B 103, L140408 (2021)], we presented a discussion of the fundamental
physical properties of the interactions parametrizing atomistic spin models in connection to first-principles
approaches that enable their calculation for a given material. This explained how some of those approaches
can apparently lead to magnetic interactions that do not comply with the expected physical properties, such
as Dzyaloshinskii-Moriya interactions which are nonchiral and independent of the spin-orbit interaction, and
which we consequently termed “improper.” In the preceding Comment by Cardias et al., Phys. Rev. B 105,
026401 (2022), the authors present arguments based on the distinction between global and local approaches
to the mapping of the magnetic energy using first-principles calculations to support their proposed nonchiral
Dzyaloshinskii-Moriya interactions and their dismissal of our distinction between “proper” and “improper”
magnetic interactions. In this Reply, we identify the missing step in the local approach to the mapping and
explain how ignoring this step leads to the identification of magnetic interactions which do not comply with
established physical principles and that we have previously termed “improper.”
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Context. The main issue being addressed in our previ-
ous Letter [1] and the subsequent Comment [2] concerns
the mapping of density functional theory (DFT) calculations
to atomistic spin models and the corresponding interpreta-
tion. This is an intricate and somewhat subtle issue, so it
is important to carefully define the quantities involved and
to give them informative names, and to relate the mag-
netic interactions to fundamental microscopic models, as we
stressed in our Letter. In the Comment, the authors first
present an overview of mapping approaches, highlighting
the prominent role played by the Liechtenstein-Katsnelson-
Antropov-Gubanov (LKAG) approach [3,4] and how its
extension to noncollinear magnetic states leads to what is
therein termed the nonrelativistic or nonchiral Dzyaloshinskii-
Moriya interaction (DMI). In contrast to many other known
magnetic interactions which are achiral, the original DMI
[5,6] which is familiar to the magnetism community is chiral
and originates from spin-orbit coupling (SOC). This is fol-
lowed by a discussion of the content of the corresponding
LKAG-type formulas based on the form of the Kohn-Sham
Hamiltonian for noncollinear magnetic systems, which recaps
arguments given in Refs. [7,8]. The parametrization of atom-
istic spin models using the noncollinear LKAG approach is
then compared to our parametrization given in Ref. [1], which
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is based on the spin cluster expansion, listing the correspond-
ing advantages and disadvantages. The essential differences
between the noncollinear LKAG approach and the spin cluster
expansion are finally discussed in terms of local versus global
approaches to the mapping of the magnetic energy, pointing
to the recent Ref. [9], with a final remark arguing in favor
of the name “nonrelativistic or nonchiral DMI.” Overall, we
find the Comment very constructive and a valuable contri-
bution to the scientific discussion of the important problem
of parametrizing the magnetic energy of real materials using
DFT approaches. However, it is our view that the authors
have overlooked important aspects of the mapping between
first-principles calculations and atomistic spin models using
LKAG-type approaches which are central to the interpretation
of the calculations in terms of magnetic interactions. These
aspects were discussed in Ref. [1] and here we expand upon
them in connection to the preceding Comment.

Mapping from DFT to a spin model. Within DFT, the
central quantities describing the energetics of a given material
are the electronic charge and spin densities, n(r) and m(r),
respectively, while an atomistic spin model is specified in
terms of classical or quantum spins Si. The mapping that we
are discussing is then represented by

E [n(r), m(r); S1, . . . , SN ] −→ E (S1, . . . , SN ). (1)

The mapping indicated by the arrow comprises three aspects:
(i) how to define the total energy functional for a target spin
configuration, E [n(r), m(r); S1, . . . , SN ], (ii) how to find the
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parameters for the atomistic spin model E using the DFT total
energy functional E , and (iii) under what conditions is the
mapping meaningful. We will focus on the relation between
(ii) and (iii).

LKAG-type approaches to the mapping. The LKAG ap-
proach to point (ii) consists in expanding the total energy
of the magnetic material with respect to small deviations
of the orientations of the magnetic moments from a chosen
reference magnetic state. This was the ferromagnetic state in
the original publications [3,4] and was later generalized to
noncollinear reference magnetic states [7,8,10–15]. Thus the
LKAG approach is to be understood as a Taylor expansion of
the magnetic energy that gives a local view of the magnetic
energy landscape, as also advocated in the Comment and in
Ref. [9].

Considering the mapping expressed in Eq. (1) and
deviations of a reference state written as Si = S0

i + δSi, we
not only need to Taylor expand the DFT total energy,

E [{Si}] = E [{S0
i }] +

∑
i

∑
μ

δE [{S0
i }]

δSμ
i

δSμ
i

+ 1

2

∑
i, j

∑
μ,ν

δ2E [{S0
i }]

δSμ
i δSν

j

δSμ
i δSν

j + ... , (2)

where i, j label the spin sites and μ, ν = x, y, z the spin
components, but also the atomistic spin model E[{Si}]. The
mapping in Eq. (1) then becomes a mapping between the
matching coefficients of the respective Taylor expansions,

δE [{S0
i }]

δSμ
i

−→ δE[{S0
i }]

δSμ
i

,
δ2E [{S0

i }]
δSμ

i δSν
j

−→ δ2E[{S0
i }]

δSμ
i δSν

j

· · · .

(3)

To establish this mapping, the form of E[{Si}] must be spec-
ified a priori. In Ref. [1] we showed that applying these
ideas to a model including isotropic four-spin interactions
results in a Taylor expansion that contains DMI-like terms
and other anisotropic terms if the reference magnetic state
{S0

i } is noncollinear [see, e.g., Eq. (8) in Ref. [1]]. This is a
counterexample against the direct interpretation of the terms
of the Taylor expansion of the magnetic energy as magnetic
interactions, as in this case the interactions were given a priori
and their contributions to the LKAG-type expansion could be
traced term by term.

Interpretation of the Taylor expansion. What is discussed
in the Comment and in Refs. [7,8,16] is the microscopic
origin of the different coefficients in the Taylor expansion
of the magnetic energy for a noncollinear magnetic state,
by relating the electronic Green’s functions to charge and
spin currents. We find this very interesting, noting existing
interpretations of the DMI in terms of spin currents [17,18],
and we highlight the strong parallel with the linear response
theory of electronic transport in magnetic materials, which
has a similar interpretation. Quantities such as anomalous or
topological Hall conductivities are theoretically obtained by
perturbing a reference magnetic state with an electric field,
and a strong emphasis is placed in their variation with a
change of the magnetic state (e.g., rotation of the magnetic
moments with respect to the lattice or change in their relative

alignment), as this offers clues concerning the different under-
lying physical mechanisms (SOC, emergent magnetic fields,
etc.) and is experimentally feasible. Both the conductivities
and the coefficients in the LKAG-type expansion of Eq. (2)
are thus expected to depend on and change with the choice of
reference magnetic state {S0

i }, and the precise nature of these
variations is what contains information about the underlying
interactions.

Explicit and implicit constructions of the spin model. The
connection in Eq. (3) is needed to interpret the magnetic
interactions obtained from the Taylor expansion of the DFT
total energy, which in turn requires the form of the atom-
istic spin model E[{Si}], i.e., which magnetic interactions it
contains. This can be established in several ways, using phe-
nomenological arguments based on symmetry or by explicit
construction starting from a microscopic electronic model,
as mentioned both in our Letter and in the Comment. These
constructions produce magnetic interactions that comply with
general requirements such as invariance under time reversal
and compliance with the spatial symmetries of the material.
The microscopic approach has the advantage of also identify-
ing the mechanism behind each type of magnetic interaction.
For instance, Refs. [19–21] derive systematically the magnetic
interactions from a Hubbard model without considering SOC,
and find isotropic four-spin interactions but no nonchiral DMI.
The Kramers-Anderson superexchange theory employed by
Moriya also required SOC in order to generate the DMI [6].

As an alternative, we can extract the implicit form of the
atomistic spin model directly from Eq. (2). Adopting the
electronic Hamiltonian given in Eq. (1) of the Comment and
splitting the spin-independent (H0) from the spin-dependent
parts while omitting the spatial arguments,

Hel = H0 +
∑

i

Bxc
i Si · σ. (4)

Here, we neglect SOC and make explicit the dependence of
the exchange-correlation magnetic fields on the directions of
the spin moments, with Bxc

i the local magnitude of the fields
and σ the vector of Pauli matrices. The second-order coef-
ficients of the Taylor expansion in Eq. (2) follow from the
general LKAG-type expression [3,4,7–15,22–25], here given
for a pair of magnetic moments:

δ2E12 = − 1

π
Im Tr

∫ EF

dE Bxc
1 δS1 · σG12 Bxc

2 δS2 · σG21.

(5)
The trace is over spin and orbital degrees of freedom and
G(E ) = (E − Hel )−1. We follow the strategy of Ref. [26] in
order to extract the dependence of the coefficients on the refer-
ence magnetic state: Introduce G0(E ) = (E − H0)−1, expand
the Dyson equation relating G to G0 in the local fields Bxc

i S0
i

present in the reference state, and evaluate the spin trace. The
lowest-order contribution is found to be

δ2E (0)
12 = − 1

π
Im Tr

∫ EF

dE Bxc
1 G0

12 Bxc
2 G0

21(δS1 · δS2). (6)

It has the expected form of the isotropic Heisenberg interac-
tion and is independent of the reference magnetic state. The
next nonvanishing contributions involve the spin directions of
the reference state twice, with one example being (note that
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S0
i · δSi = 0)

δ2E (2)
12 = − 1

π
Im Tr

∫ EF

dE
(
Bxc

1 G0
12 Bxc

2 G0
21

)2

× [(
S0

1 · S0
2

)
(δS1 · δS2) − (

S0
1 × S0

2

) · (δS1 × δS2)
]
.

(7)

The first term has the form of the isotropic Heisenberg ex-
change if only the dependence on δS1 · δS2 is considered,
but together with the dependence on S0

1 · S0
2 it resembles the

isotropic biquadratic interaction. Likewise, the second term
has the form of the nonchiral DMI advocated by the authors of
the Comment if only the dependence on δS1 × δS2 is consid-
ered, but together with S0

1 × S0
2 it resembles in fact a rewriting

of the isotropic biquadratic interaction, as we discussed in the
Letter. The perturbative expansion can be easily generalized
to multiple magnetic moments and to include SOC [26], and
as we just showed it provides the form of the atomistic spin
model directly from the LKAG-type expressions. It also ex-
plains why the coefficients in Eq. (2) can vary strongly with a
change in the reference magnetic state.

The preceding discussion leads us to conclude that the
nonchiral DMI is not a fundamental magnetic interaction,
as it cannot be derived from any of those well-established
approaches. It arises from considering the coefficients of
the Taylor expansion in Eq. (2) without constructing the
associated mapping given by Eq. (3), which obscures the
dependence of the coefficients on the choice of the reference
magnetic state {S0

i }.
Global versus local mapping approaches to the magnetic

energy. We agree with the distinction between global and local
approaches to the mapping of the magnetic energy discussed
at the end of the Comment and in Ref. [9]. While local ap-
proaches characterize the energy landscape near a reference
magnetic state (in the spirit of LKAG), global approaches
parametrize models that reproduce the energies of different
magnetic states. It follows that local and global approaches
have different ranges of validity and applicability [our point
(iii) in connection to Eq. (1)]. For instance, local approaches
are suitable to compute the magnon spectrum of the magnetic
ground state, while global approaches are required to establish
the complete magnetic phase diagram in an unbiased way. As
explained in our Letter and motivated by the preceding discus-
sion, it is our view that the atomistic spin model parametrized
through a global approach is more fundamental, as it complies
with all the physical requirements that we used to define
“proper” magnetic interactions. The authors of the Comment
are correct to point out that the coefficients of the LKAG
expansion worked out and computed in Refs. [7,8,24] do not
have to comply with those physical requirements, as we ar-
gued that these coefficients should not be directly interpreted
as specific magnetic interactions.

Comparing parametrizations. On the section “Comparing
parametrizations” of the Comment, the authors write that the
global approach to the magnetic energy used in our Letter
does not have a unique mapping onto a multispin model.
This is true concerning the calculations for Mn3Sn, where the
fitted interaction parameters correspond to effective sublattice
interactions that sum over many different types of multispin
and multisite interactions. We remark that we also included

interactions among three sublattices and that this was im-
portant for a good fit to the angular dependence of the DFT
total energies. However, our global approach based on the
spin cluster expansion is unique, systematic, and complete for
the magnetic trimers, due to the finite magnetic configuration
space. Thus it was quite puzzling that we could not reproduce
the very large nonchiral DMI reported in Ref. [8] for the
Cr trimers on Au(111) using our global approach (cf. also
previous work in Refs. [27,28]). This disagreement might be
settled by comparing different parametrizations to the angular
dependence of the total energy for the case of the trimers.

Conclusions. In this Reply we addressed the various points
raised by the preceding Comment by focusing on the nature
of the mapping between DFT total energy calculations and
atomistic spin models, as indicated by Eq. (1). The local
approach to this mapping selects a given magnetic reference
state and proceeds by Taylor expanding the DFT total energy
for small spin deviations around that reference state, which
is the spirit of the LKAG approach [3,4]. Equation (3)
identifies the missing step in this approach, which demands
that the atomistic spin model be subjected to the same Taylor
expansion and the expansion coefficients matched to the ones
from the DFT total energy. In our Letter we already provided
a simple example of how the Taylor expansion of the DFT
total energy can contain coefficients that have the appearance
of improper magnetic interactions, such as the nonchiral
DMI, a puzzle which is resolved in general by the procedure
encoded in Eq. (3) and with a concrete example based on the
LKAG-type expressions in Eq. (7).

It is our understanding that the authors of the Comment
interpret the coefficients of the DFT-based LKAG expansion
in Eq. (2) directly as magnetic interactions, according to the
form of the combination of spin components involved, and
do not separately and independently specify the form of the
atomistic spin model according to a set of physical principles,
thus skipping the step given in Eq. (3). The resulting “local”
magnetic interactions have the symmetry properties of the
magnetic space group of the reference state chosen for the
Taylor expansion, in analogy with the well-known proper-
ties of electronic transport coefficients in magnetic materials,
such as the anomalous or topological Hall conductivities, and
similarly can be given microscopic interpretations in terms of
charge and spin currents, as also done recently in Ref. [16] for
three-spin interactions.

Our conclusion is that taking the coefficients of the LKAG
expansion to represent directly the magnetic interactions of a
given material needs to be reconsidered, and that the termi-
nology of “improper” versus “proper” magnetic interactions
introduced in our Letter should be retained given the issues
raised with this interpretation. In particular, we showed that
the proposed “nonchiral DMI” cannot be justified either from
fundamental microscopic models or even through the analysis
of LKAG-type expressions, and so should not be considered
as a fundamental magnetic interaction, in contrast to the orig-
inal chiral one introduced by Dzyaloshinskii and Moriya.
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