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Abstract: We present results for the electronic and magnetic structure of Mn and Fe clusters on
Nb(110) surface, focusing on building blocks of atomic chains as possible realizations of topological
superconductivity. The magnetic ground states of the atomic dimers and most of the monatomic
chains are determined by the nearest-neighbor isotropic interaction. To gain physical insight, the de-
pendence on the crystallographic direction as well as on the atomic coordination number is analyzed
via an orbital decomposition of this isotropic interaction based on the spin-cluster expansion and the
difference in the local density of states between ferromagnetic and antiferromagnetic configurations.
A spin-spiral ground state is obtained for Fe chains along the [110] direction as a consequence of
the frustration of the isotropic interactions. Here, a flat spin-spiral dispersion relation is identified,
which can stabilize spin spirals with various wave vectors together with the magnetic anisotropy.
This may lead to the observation of spin spirals of different wave vectors and chiralities in longer
chains instead of a unique ground state.

Keywords: magnetism; Ab initio; spin model; isotropic interaction; embedded cluster; adatom;
dimer; monatomic chain; Mn; Fe; Nb

1. Introduction

Over the past decades, the exploration of exotic magnetic patterns in nanostructures
has become an active research field. Beside significant advances in molecular metallic
chains, so-called single chain magnets [1–3], this area has recently extended towards the
investigation of magnetic-superconducting heterostructures, which may find applications
in quantum computing. The presence of magnetic impurities on a superconducting surface
leads to the emergence of so-called Yu–Shiba–Rusinov (YSR) states [4–9], due to the cou-
pling of the localized magnetic moment to the Cooper pairs. In atomic chains, hybridized
YSR states develop into bands [10,11], that can give rise to topological superconductivity
and consequently to the appearance of Majorana bound states [12–16]. In a recent study by
Beck et al. [7], an Mn adatom and Mn dimers on Nb(110) were investigated in the super-
conducting state. The experimental results supported by tight-binding model calculations
based on density functional theory (DFT) data demonstrated that the YSR states hybridize
not only for ferromagnetic but also for antiferromagnetic dimers, as a consequence of the
spin–orbit coupling (SOC) present in the system.

In atomic chains, the magnetic structure has a profound effect on the emergence of
topological superconductivity, with a spin-spiral ground state having been identified as
a key element in finding the Majorana bound states at the ends of the chain [17–20]. The
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spin spiral state may be formed by the Dzyaloshinskii–Moriya interaction [21,22] or by the
frustration of the isotropic interactions, as it has been found in magnetic thin films [23,24]
and atomic chains [25] based on ab initio calculations.

Taking into account the frustration of isotropic interactions necessitates going beyond
a nearest-neighbor approximation, and they are often essential for determining the ground
state of spin systems, a very recent example is shown for Mn atomic chains on W(110) [26].
In [24], the second-nearest-neighbor (2NN) interactions play an important role in the wave
number and also in the tilting of the spin-spiral ground state of the Re/Co/Pt(111) system.
Even longer-ranged interactions—up to fifth neighbors—are necessary to be taken into
account for Fe chains on Re(0001) for finding the spin-spiral ground state [25]. If the
Fourier transform of the isotropic interactions has pockets with flat dispersion relation
in the Brillouin zone, magnetic domains with different wave vectors can form. This was
recently demonstrated by Kamber and coworkers [27] on the (0001) surface of crystalline
Nd. Together with the aging effect—where the magnetic state depends on its history, this
points toward the formation of a spin glass state, usually observed in disordered materials
rather than crystalline systems with long-range periodicity.

As discussed above, determining the magnetic configuration is of crucial importance
to explain the subgap fermionic states in magnetic-superconducting hybrid systems. In the
present paper, we investigate the magnetic properties of Mn and Fe adatoms, dimers,
and monatomic chains on Nb(110) along different crystallographic directions. Mn and Fe
adatoms, Mn dimers, and Mn chains have already been studied on Nb(110) [7,8,14,28],
the magnetic properties of which are now systematically investigated from the theoretical
side. Determining the magnetic properties of atomic chains from first principles is a
long-standing challenge [25,29–32]. The calculations here are carried out in the non-
superconducting state, assuming that superconductivity does not affect the magnetic
pattern; this is supported by the fact that the magnetic interactions are usually at least
two orders of magnitude stronger than the superconducting gap. We also explore the
connection between the local density of states and the decomposition of the isotropic
Heisenberg exchange interaction into atomic orbitals, for different relative alignments
and coordination numbers of the atoms. While most chains are found to be collinear
ferromagnetic or antiferromagnetic, Fe chains on Nb(110) along the [110] direction exhibit a
spin-spiral ground state with a flat dispersion relation due to the frustration of the isotropic
couplings, similar to the foundings for Nd in [27].

The paper is organized as follows. In Sections 2.1 and 2.2, the details of the ab
initio calculations are discussed, performed using the Vienna Ab initio Simulation Package
(VASP) [33–35] to determine the equilibrium atomic geometry, and the embedding technique
within the Korringa–Kohn–Rostoker (KKR) method [36], respectively. In Section 2.3, the
classical spin model is introduced. The results for magnetic adatoms, dimers, and chains
are discussed in Sections 3.1–3.3, respectively. The results are summarized in Section 4.
Some analytical methods for determining the ground state angle of magnetic dimers are
given in Appendix A.

2. Computational Details

The electronic and magnetic structure of the considered and similar metallic systems
can usually be well described by using the local density approximation (LDA) [9,10,26,27]
or the generalized gradient approximation (GGA) [8] within DFT.

2.1. VASP Calculations

The lowest-energy atomic geometries of the Mn and Fe adatoms on the Nb(110)
surface were determined separately by using the Vienna Ab initio Simulation Package
(VASP) [33–35]. The considered supercells included a single Mn or Fe adatom deposited in
a hollow position on a four atomic layer-thick Nb slab, with 7× 7 atoms in each layer in
the bcc(110) geometry ensuring a minimal distance of 2 nm between the magnetic adatoms
in repeating supercells to avoid artificial interaction among them. The bulk lattice constant
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of aNb = 330.04 pm was considered. The GGA for the exchange-correlation potential was
used as parametrized by Perdew, Burke and Ernzerhof [37] similarly as in [8], and the
Brillouin zone was sampled by the Γ point only, due to the large size of the supercell.
A vacuum region of more than 1 nm was considered in the surface normal [110] direction to
avoid unphysical interactions between artificially repeated slabs inherent to the supercell
method. During the calculations, the Nb atoms in the top layer and the magnetic adatom
were allowed to relax in the vertical direction only, keeping their lateral positions. The
equilibrium atomic positions were found by minimizing the total energy. As a result, for
the Mn/Nb system, the average vertical distance between the atoms in the two highest
Nb layers decreased to 227.49 pm from the bulk value of aNb

√
2/2 = 233.37 pm, and the

Mn adatom relaxed even further, to a vertical distance of 198.68 pm measured from its
nearest-neighbor (NN) Nb atoms. The spin magnetic moment of the Mn adatom was found
to be 3.60 µB. Note that the geometry of the Mn adatom is identical to the one used in [7].
For the Fe/Nb system, the average vertical distance between the atoms in the two highest
Nb layers decreased to 225.42 pm, and the Fe adatom relaxed to a vertical distance of
174.95 pm measured from its NN Nb atoms (170 pm in [8]). The spin magnetic moment of
the Fe adatom was found to be 2.14 µB (2.2 µB in [8]). These atomic geometries were used
in the subsequent KKR calculations, where the vertical distance between the NN Nb and
the respective magnetic adatom was also considered between the first two vacuum layers.

2.2. KKR Calculations

We used the Green’s function embedding technique based on the KKR multiple
scattering theory [36] to determine the electronic and magnetic properties of the Mn and
Fe atomic clusters. The Nb(110) surface has been modeled as an interface region between
semi-infinite bulk Nb and vacuum, consisting of eight atomic layers of Nb and four
atomic layers of empty spheres (vacuum). The energy integrals were performed using
16 points along a semicircle contour in the upper complex semi-plane. A sampling of
up to 1012~k points in the Brillouin zone was used to do the self-consistent field (SCF)
calculations and for the adatoms, and 7812~k points were used to calculate the Green’s
function of the host for magnetic dimers and chains. The Ceperley–Alder-type of exchange-
correlation functionals [38] as parametrized by Vosko, Wilk, and Nusair [39], and an angular
momentum cut-off of lmax = 3 were considered in the KKR calculations. A single Mn or
Fe adatom, dimers and chains consisting of 5, 10, and 15 Mn or Fe atoms were calculated
by embedding them in the first vacuum layer with the layer relaxations described in
Section 2.1.

We used the spin cluster expansion (SCE) [40–42] to investigate the magnetic in-
teractions in the systems, similarly to the work in [43]. The spin model is discussed in
Section 2.3. Alternatively, some of the model parameters may be estimated by calculating
energy differences between specific magnetic configurations. In the spirit of the magnetic
force theorem (MFT) [44], these were determined with fixed electronic potentials based on
the band energy, which is obtained in two ways: either via direct integration of the local
density of states (LDOS), or by using Lloyd’s formula [45,46].

First, we performed self-consistent calculations for the Mn and for the Fe adatom on
the top of the Nb(110) substrate with the embedded cluster KKR technique. We considered
clusters of different atoms and concluded that the spin magnetic moment of Mn and
Fe changes by less than 0.5% when increasing the size of the cluster from 15 lattice sites
including four Nb atoms and ten empty spheres in the 2NN shell to 52 lattice sites including
the first five neighbor shells around the adatom. The anisotropy energy of the adatom
between out-of-plane and in-plane orientations also changes by less than 4% between
the two cluster sizes. The local density of states (LDOS) was calculated using 68 meV
imaginary part of the complex energy in our KKR calculations, while moving along the real
energy axis. We projected the LDOS onto real spherical harmonics in the absence of SOC.
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2.3. Spin Model

Relying on the adiabatic decoupling of the electronic and spin degrees of freedom
and on the rigid-spin approximation [47], the thermodynamic potential of a magnetic
system is characterized by a set of unit vectors, {~e} = {~e1,~e2, . . . ,~eN}, corresponding
to the orientations of the local magnetic moments. The grand potential Ω({~e}) then
defines a classical spin Hamiltonian which can be used in numerical simulations. Instead
of calculating the grand potential directly, a straightforward idea is to map it onto a
generalized Heisenberg model of the form

Ω({~e}) = Ω0 +
N

∑
i=1

~eiKi~ei −
1
2

N

∑
i,j=1
i 6=j

~ei Jij
~ej, (1)

where Ω0 is a constant, Ki are the second-order single-ion anisotropy matrices, and J
ij

are

the tensorial exchange interactions, which can be decomposed into three parts:

J
ij
=J I

ij I + JS
ij
+ JA

ij
, (2)

where

Jij =
1
3

Tr
(

J
ij

)
(3)

is the isotropic exchange interaction,

JS
ij
=

1
2

(
J

ij
+ JT

ij

)
− Jij I, (4)

with T denoting the transpose of a matrix, is the traceless symmetric part of the matrix
which is known to contribute to the magnetic anisotropy of the system (two-ion anisotropy),
and the antisymmetric part of the matrix,

JA
ij
=

1
2

(
J

ij
− JT

ij

)
(5)

is related to the Dzyaloshinskii–Moriya (DM) interaction,

~ei JA
ij
~ej = ~Dij

(
~ei ×~ej

)
(6)

with the DM vector, Dα
ij =

1
2 εαβγ Jβγ

ij , εαβγ being the Levi–Civita symbol.
The site-resolved effective anisotropy matrix, including single-ion and two-ion contri-

butions, can be defined as [25]

Ai,FM/AFM = Ki −
1
2

N

∑
j=1

JS
ij
(±1)i+j, (7)

where the sign of (+1) and (−1) has to be used for dimers and chains with (NN) ferromag-
netic (FM) and antiferromagnetic (AFM) couplings, respectively.

The ground state of the magnetic clusters is determined by subsequent low-temperature
Metropolis Monte Carlo (MC) and zero-temperature Landau–Lifshitz–Gilbert (LLG) spin
dynamics simulations. This procedure is especially important for Fe chains along the [110]
crystallographic direction to avoid local energy minima because they have spin spiral
ground states with tiny energy difference between the states with opposite chiralities, as
discussed in Section 3.3. The details of the MC simulations can be found in [43]. The
accuracy of the ground state can be improved by the LLG spin dynamics simulations
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containing the damping term only, and starting from the final state of the MC simulations.
For each system, ten runs with random initial configurations were performed, where we
assumed that the actual ground state has been found if at least eight out of the ten runs
resulted in the same final state with the lowest energy.

3. Results and Discussion
3.1. Mn and Fe Adatom

The SCF calculations for the Mn and Fe adatoms embedded into the first vacuum layer
were performed containing atomic positions inside the radius of 331 pm (see Figure 1),
which means beyond the adatom the cluster also contained four Nb atoms from the top Nb
layer, and 10 vacuum positions.

2

1

1

2

3

4

5

1 2

adatom

u-1NN dimer

x-2NN dimer

y5 chain
x

y

Figure 1. Illustration of the atomic clusters. Red balls represent the magnetic atoms at hollow
positions on the bcc(110) surface, and gray balls represent the top Nb atoms. The clusters were
calculated one by one, and contained the atoms inside the black curves. Crystallographic directions:
x = [110], y = [001], u = [111].

First, let us consider the Mn adatom. The spin magnetic moment of the Mn atom
is 3.70 µB, close to the 3.60 µB value obtained from VASP (cf. Section 2.1). The induced
spin moment of the NN Nb atom is 0.23 µB, the 2NN Nb moment is again one order of
magnitude smaller, which supports the assumption that farther atomic sites do not need to
be included in the self-consistently treated cluster.

In the spirit of the magnetic force theorem, the magnetocrystalline anisotropy energy
(MAE) was determined based on band energy differences between magnetic orientations.
In order to avoid the ambiguity in the size and orientation of the induced moments, during
the calculation of the MAE the initial local exchange field on the sites with induced magnetic
moments was set to zero. We obtained 0.31 meV for the MAE between the [110] (x, in-plane)
and [110] (z, perpendicular) crystallographic directions. The MAE between the [001] (y,
in-plane) and [110] (z) directions is 0.16 meV, meaning that the easy and medium directions
are the z and y directions, respectively. Note that the band energy difference between the
x and the z directions is 0.29 meV, and 0.16 meV between the y and the z directions if the
induced moments are also considered, meaning that switching off the exchange field at
sites with induced magnetic moments causes less than 7% error. The main benefit of doing
so is that we can easily compare the magnetic energy of complex magnetic structures.

The LDOS on the Mn adatom is shown in Figure 2a, where the LDOS is projected
onto the real spherical harmonics of the d orbitals. To visualize both spin channels, the



Nanomaterials 2021, 11, 1933 6 of 19

LDOS of the minority spin channels is multiplied by −1. It can be seen that the in-plane d
orbitals, dxy and dx2−y2 , typically display sharper peaks than the other d orbitals, because
they hybridize less with the surface Nb atoms. Note that due to the C2v symmetry of the
system, the dz2 and dx2−y2 orbitals are hybridized with each other, displaying peaks at
the same energies. The peak in the dyz channel is located at the lowest energy, which can
be explained by the fact that the closest two Nb atoms are located in the y-z plane, and
with the hybridization these states may gain the most energy. The large hybridization
of this orbital with the substrate can be seen in the broad LDOS profile in the minority
spin channel.

−1.5
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−0.5

0.0

0.5

1.0

1.5

2.0

−4 −2 0 2 4

(a) Mn adatom
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x2 − y2
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(b) Fe adatom
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Figure 2. Local density of states of magnetic adatoms. Spin-resolved LDOS of the (a) Mn (cf. the work in [7]) and of the
(b) Fe adatoms as projected onto the d orbitals. Positive values: LDOS of majority spin channel; negative values: LDOS of
minority spin channel multiplied by −1. The Fermi energy is denoted by a vertical black line at E = 0.

The Fe adatom was also calculated self-consistently with similar conditions as the
Mn adatom, except for the different perpendicular relaxation described in Section 2.1. The
spin magnetic moments of the Fe atom and of the NN Nb atom are 2.34 µB (2.14 µB from
VASP) and 0.22 µB, respectively, while the other induced moments are less then 0.02 µB.
The MAEs are equal to Axx − Azz = 0.24 meV and Ayy − Azz = 0.70 meV, meaning that
z is the easy and x is the medium direction. The LDOS of the Fe adatom is shown in
Figure 2b, where the more structured profiles indicate that most of the orbitals hybridize
with the substrate more than in the case of the Mn adatom, which can be well understood
by the larger relaxation. The Fe atom has one more electron than the Mn atom nominally
possessing a half-filled d band, which leads to a higher occupation of the minority spin
channel in the Fe adatom, indicated by a shift of the minority spin orbitals in the LDOS
towards smaller energies. This also decreases the spin moment of Fe. Overall, the LDOS
of the Fe adatom in Figure 2b seems to be in a good agreement with that reported in [8]
without orbital decomposition.

3.2. Mn and Fe Dimers

We calculated magnetic dimers on the Nb(110) surface with different distances be-
tween the magnetic atoms and positioned along various crystallographic directions, with
the x, y and u directions denoting the [110], [001] and [111] crystallographic directions,
respectively. The dimers are labeled by a letter and a number together (α-dNN), where
α ∈ {x, y, u}, and dNN labels the distance of the two adatoms (see Figure 1 for an illustra-
tion), meaning the d-th-nearest neighbor. The environment was fabricated by the following
procedure: first a chain with d + 1 atoms was created with a 2NN environment, then the
magnetic atoms were inserted to both ends of the d + 1-atom-long chain; finally, Nb and
vacuum atoms were inserted to the proper positions in the cluster. Thus, for example, in
a x-2NN dimer, the atomic position between the two magnetic atoms, where a vacuum
sphere was embedded, and its 2NN environment have also been included in the cluster



Nanomaterials 2021, 11, 1933 7 of 19

(see Figure 1). During the SCF iterations, we used ferromagnetic (FM) ordering of the spins
along z, assumed to be the easy direction; while the induced moments were relaxed.

The spin model parameters for the Mn and Fe dimers are collected in Table 1. In both
cases, the u-1NN dimer has the largest isotropic interaction J I

12 in absolute value. The main
tendency of the isotropic interactions is that they decrease as the distance between the
magnetic atoms is increased. Due to the C2 symmetry of the dimers, the z component of
the DM interaction Dz

12 vanishes. For the dimers along the x and y directions, the DM
vector component perpendicular to the mirror plane that exchanges the two magnetic
atoms also has to be 0. The MAE is similar as for the adatom, so the easy axis is close to
the z direction, while the medium axis points nearly along the y (x) direction for the Mn
(Fe) dimers, respectively. The anisotropy matrices A have finite off-diagonal components,
which are not explicitly listed in Table 1 but indicated by the deviation of the dimers from
the collinear alignment, discussed below. This is because the C2 symmetry of the u-1NN,
u-2NN, and u-3NN dimers does not determine the anisotropy directions to be parallel
to the principal Cartesian axes. In the case of dimers along the x and y directions, the
C2v symmetry determines one of the anisotropy axes to point along a Cartesian direction,
namely, along y for the x dimers and along x for the y dimers, as a consequence of the
mirror plane leaving the magnetic atoms invariant.

Table 1. Spin model parameters in units of meV and ground state spin angles in degrees for the
Mn and Fe dimers. The isotropic interactions J I

ij (positive and negative values mean FM and AFM

coupling, respectively), DM interaction vectors ~Dij and anisotropy matrix elements A are shown.
Note that A also includes the two-site anisotropy. Dz

12 = 0 holds for all the dimers. ϑSD is the ground
state angle based on spin dynamics simulations, and ϑAD is the approximate ground state spin angle
calculated using the spin model parameters (see Appendix A). The ϑSD angles of the Mn u-1NN, Mn
x-1NN, and Mn y-2NN dimers were reported in [7].

J I
12 Dx

12 Dy
12 Axx − Azz Ayy − Azz ϑSD ϑAD

Mn x-1NN −7.13 0.00 0.01 0.29 0.16 179.93 179.90
Mn x-2NN −1.90 0.00 −0.02 0.28 0.14 179.04 179.04
Mn x-3NN −0.45 0.00 0.03 0.28 0.14 178.16 178.18
Mn y-1NN 31.93 0.22 0.00 0.38 0.18 0.36 0.37
Mn y-2NN −1.04 −0.17 0.00 0.28 0.16 172.24 172.13
Mn y-3NN −0.10 −0.01 0.00 0.28 0.14 178.04 178.05
Mn u-1NN −33.00 0.10 0.32 0.34 0.24 179.46 179.46
Mn u-2NN 5.92 0.08 −0.55 0.28 0.12 5.24 5.27
Mn u-3NN −1.32 0.15 −0.08 0.28 0.12 172.90 172.88

Fe x-1NN −4.35 0.00 −0.15 0.32 0.70 178.04 178.04
Fe x-2NN −2.92 0.00 −0.06 0.29 0.67 178.93 178.93
Fe x-3NN −0.74 0.00 0.11 0.28 0.68 173.94 173.93
Fe y-1NN 33.30 0.07 0.00 0.29 0.73 0.05 0.07
Fe y-2NN 10.61 0.02 0.00 0.27 0.68 0.01 0.02
Fe y-3NN −0.73 0.14 0.00 0.29 0.68 174.67 174.72
Fe u-1NN 49.66 1.39 −3.24 0.45 0.70 4.00 4.01
Fe u-2NN 9.85 0.00 −0.85 0.36 0.77 4.95 4.98
Fe u-3NN −3.91 0.15 −0.03 0.29 0.68 177.60 177.59

The ground state spin angle between the spin moments of the dimer atoms was
determined by spin dynamics simulations, listed as ϑSD in Table 1. Due to the hierarchy
of the parameters, where the isotropic interaction is the largest, the ground state spin
angle is close to 0◦ (FM alignment) or 180◦ (AFM alignment), determined by the sign of
the isotropic interaction, where the positive (negative) sign corresponds to the FM (AFM)
coupling. The DMI, preferring a perpendicular alignment of the spins, causes a deviation
from the collinear alignment. The deviation of the easy anisotropy axis from the z direction



Nanomaterials 2021, 11, 1933 8 of 19

discussed above contributes to this effect, as the easy direction is not parallel on the two
adatoms, rather connected by a C2 rotation. Although the ground-state angle cannot be
expressed in a closed form using the interaction parameters, an approximate method of
finding it is discussed in Appendix A. These values are given as ϑAD in the table, and agree
with the numerically calculated values ϑSD within 0.1◦ accuracy. The AFM ground states
of the Mn u-1NN and Mn y-2NN dimers agree well with scanning tunneling spectroscopy
experiments [7], but the Mn x-1NN dimer exhibits experimentally a FM ground state
contrary to the AFM state obtained from our calculations. This may be caused by the
limitations of the simulation techniques, e.g., the angular momentum cut-off, or additional
structural relaxations that are not taken into account in the KKR calculations.

For further analysis, in the non-relativistic case (without SOC), we calculated the
orbital decomposition of the isotropic interaction for the closest (1NN) dimers along the
different directions, J I

12,nr, which can be seen in Table 2. The main contributions come from
the d orbitals. The dz2 orbital has a significant contribution in all dimers but the Fe u-1NN
case, as it can hybridize with the underlying Nb surface. The in-plane components, dxy
and dx2−y2 , are more relevant for the closer dimers, indicating a direct hybridization of
these orbitals between the magnetic atoms. Note that the dyz orbital contributes to J I

12,nr
most strongly in the case of the y-1NN dimers, possibly mediated by the Nb atom located
below the center of the magnetic atoms along that direction. Interestingly, the dxz orbital
contributes most strongly in the case of the u-1NN dimers. Its contribution to J I

12,nr in the
x-1NN dimers is rather weak, which may be attributed to the large distance between the
atoms along the x direction.

Table 2. Orbital decomposition of the isotropic exchange interaction in the 1NN Mn and Fe dimers. All values are given in
meV units. Note that the SOC is turned off so the J I

12,nr values slightly differ from the J I
12 parameters given in Table 1.

J I
12,nr s p dxy dyz dz2 dxz dx2−y2 f

Mn x-1NN −7.27 −0.12 0.26 0.45 0.55 −7.18 −0.38 −0.87 0.02
Mn y-1NN 31.75 0.16 −0.55 2.47 18.66 12.15 0.87 −1.99 −0.02
Mn u-1NN −33.19 −2.75 3.18 −12.08 2.22 −14.16 15.71 −25.76 0.45

Fe x-1NN −4.59 −0.05 0.11 1.41 1.47 −7.05 −0.70 0.20 0.01
Fe y-1NN 33.53 0.59 −0.65 3.17 5.26 6.06 −1.53 20.63 −0.01
Fe u-1NN 50.01 −0.26 0.12 16.82 1.44 0.33 15.74 15.81 0.02

The orbital-decomposed isotropic exchange interactions are possible to trace back to
the LDOS of the dimers, illustrated for the Mn u-1NN dimer in Figure 3a. To get more
accurate results, we recalculated the SCF potentials with an AFM alignment of the spins,
while the orientations of the induced moments were relaxed. The LDOS was also calculated
in an AFM alignment. Compared with the Mn adatom in Figure 2a, the main LDOS features
are the same, the positions of the peaks do not visibly shift, but due to the adjacency of the
Mn atoms, the curves become flatter. Note that a FM ordering of the spins would cause
more considerable changes in the LDOS, because in that case the same spin channel of
the two Mn atoms in the same energy range could hybridize, while in the AFM case the
majority spin channel of either atom and the minority spin channel of the other atom are
shifted in energy, leading to much less hybridization.

The orbital decomposition of the LDOS can also be applied to the band energy. To have
a deeper look on the role of the orbital contributions to the isotropic exchange interaction,
we introduce the band energy difference between AFM and FM configurations as

∆Eγ
band,D(EF) = EAFM,γ

band,D(EF)− EFM,γ
band,D(EF), (8)
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Figure 3. Local density of states and band energy differences of the Mn u-1NN dimer. (a) Spin-resolved LDOS in an AFM
configuration as projected onto the d orbitals. (b) Spin-resolved band energy differences between AFM and FM alignments
as a function of energy according to Equation (9). The Fermi energy is denoted by a vertical black line at E = 0.

where D indicates that it is obtained from the LDOS, and γ stands for the atomic orbital.
The band energy difference can directly be calculated from the change of the LDOS,

∆Eγ
band,D(E) =

∫ E

−∞
dε(ε− EF)

(
LDOSAFM,γ(ε)− LDOSFM,γ(ε)

)
, (9)

where EF is the Fermi energy. ∆Eγ
band,D as a function of energy is shown in Figure 3b, where

we performed the energy integration parallel to the real energy axis, with 68 meV imaginary
part of the energy. In the majority spin channel larger oscillations can be seen than for
the minority spin channel, but its contribution averages out if the integral is evaluated
up to the Fermi energy. It can be concluded that the magnetic orientation modifies the
sharpness of the LDOS, but does not affect the positions of the peaks, so in the case of fully
occupied states, only tiny contributions to the band energy difference can be observed.
This is also true for the minority spin channel when the whole bandwidth is considered but
at the Fermi energy those orbitals are only partially occupied, leading to relatively large
band-energy differences.

Instead of calculating the band energy along the line parallel to the real energy axis,
we integrated it using the same semicircle contour that was used in the SCF calculations to
get more accurate results. EAFM,γ

band,D and EFM,γ
band,D were calculated using the original, FM SCF

potentials, with the initial local exchange field set to zero on the sites with induced magnetic
moments. The band energy differences for the whole cluster divided by the number of
magnetic atoms is denoted by ∆Eband,L in Table 3, where the L subscript indicates that
Lloyd’s formula has been applied instead of Equation (9). In terms of a spin model, the
energy difference between the AFM and FM configurations is expected to be ∆Eband = J.
Indeed, we find that ∆Eband,L agrees with the non-relativistic isotropic exchange coupling,
J I
12,nr, in Table 2 up to a precision of 0.5 meV, which verifies the SCE spin model calculations.

In most of the cases, a semiquantitative agreement can be concluded between the orbital-
decomposed isotropic spin interactions (Table 2) and the orbital-decomposed band energies
restricted to a single magnetic atom (Table 3), where the signs and the relative magnitudes
of the decomposed parameters are the same. Note that the sum of the orbital contributions
does not equal ∆Eband,L, mainly because the latter also includes band energy differences
on the neighboring Nb atoms in the cluster. The closest agreement between the sum and
the total band energy difference is found for the u-1NN dimers, because in this case the
magnetic atoms are closer to each other and the direct scattering between the magnetic
atoms is more relevant than that mediated by the Nb atoms.
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Table 3. Band energy differences between AFM and FM configurations in the 1NN Mn and Fe dimers.
The band energy difference calculated for a single magnetic atom in the cluster is decomposed into
atomic d orbitals according to Equation (9), and the majority and minority components are summed.
The band energy differences of the whole self-consistently treated clusters between AFM and FM spin
configurations divided by the number of magnetic atoms are also given based on Lloyd’s formula
(∆Eband,L). All reported values are in meV units.

∆Exy
band,D ∆Eyz

band,D ∆Ez2

band,D ∆Exz
band,D ∆Ex2−y2

band,D ∆Eband,L

Mn x-1NN 0.19 0.46 −2.13 0.07 −0.32 −7.13
Mn y-1NN 3.24 11.40 7.32 0.26 −0.39 31.99
Mn u-1NN −20.96 2.84 −13.95 10.56 −18.50 −33.06

Fe x-1NN 1.08 0.65 −2.20 0.42 0.66 −4.13
Fe y-1NN 5.39 −1.37 4.51 −0.84 17.59 33.74
Fe u-1NN 10.78 1.35 0.50 13.80 21.18 49.94

3.3. Mn and Fe Chains

In the following, monatomic NN-distanced Mn and Fe chains containing 5, 10, and
15 magnetic atoms along the x, y, and u directions are considered. Similarly as for the
dimers, a second-neighbor environment was included in the self-consistently treated
clusters, see Figure 1 for the y5 chain as an example. The spin model parameters for the
chains were determined, and the parameters at the end (edge atom) and in the middle
(center atom) of the 15-atom-long chains are reported in Table 4.

Table 4. Spin model parameters of the 15-atom-long chains in meV units. i = 1 and 8 denote the
edge atom (at the end) and center atom (in the middle) of the chains, respectively. For the notation of
the spin model parameters see Table 1. Here, the 2NN isotropic exchange interactions, J I

i(i+2), are
also reported.

i J I
i(i+1) Dx

i(i+1) Dy
i(i+1) J I

i(i+2) Axx
i − Azz

i Ayy
i − Azz

i

Mn x15 1 −6.87 −0.00 0.07 −1.28 0.31 0.16
Mn x15 8 −6.70 0.00 0.11 −1.15 0.34 0.18
Mn y15 1 29.09 0.24 0.00 2.31 0.41 0.23
Mn y15 8 27.14 0.30 0.00 2.14 0.57 0.32
Mn u15 1 −35.56 0.38 −0.55 2.71 0.39 0.26
Mn u15 8 −38.15 0.45 −1.50 2.58 0.49 0.40

Fe x15 1 −3.41 −0.00 −0.04 −2.02 0.32 0.71
Fe x15 8 −2.56 −0.00 0.01 −1.74 0.36 0.76
Fe y15 1 25.42 −0.19 0.00 10.00 0.23 0.73
Fe y15 8 18.57 −0.41 −0.00 9.64 0.18 0.77
Fe u15 1 34.11 0.82 −2.52 1.54 0.45 0.74
Fe u15 8 18.00 0.53 −1.68 3.80 0.51 0.72

The NN isotropic interactions can directly be compared with the values obtained for
the NN dimers. The interactions at the ends of the chains agree within 8% with the dimer
values for the Mn systems, but vary much more for the Fe systems. The NN isotropic
interaction is homogeneous along the Mn chains, e.g., 29.09 and 27.14 meV for the Mn
y15 chain at the end and in the middle of the chain, respectively. This value is much more
sensitive to the coordination number in the case of the Fe chains, where the same quantities
are 25.42 and 18.57 meV for the Fe y15 chain. In order to explain why the isotropic exchange
interaction varies more strongly from the dimer through the chain’s end to the middle
of the chain in Fe systems compared to Mn ones, we calculated the LDOS at sites 1 and
8 of the Fe y15 chain, shown in Figure 4. For the edge atom, the order of the peaks and
their shape is similar to the LDOS of the adatom in Figure 2b, but the widths of the peaks



Nanomaterials 2021, 11, 1933 11 of 19

differ: the dxy and dx2−y2 peaks in the majority spin channel become wider, but the dyz
peak in the majority channel and the dxy peak in the minority channel are sharper. Note
that the LDOS of the dx2−y2 orbital in the minority spin channel splits into two peaks. All
the changes become stronger as we move toward the middle of the chain, the sharper
peaks get even sharper, the splitting of the minority dx2−y2 peak is larger too, and now
the majority dxy peak also splits. Despite the increased number of neighbors of the center
atom, the sharper features in the LDOS may be attributed to the fact that the center atom
occupies a position with C2v symmetry where only the dz2 and the dx2−y2 orbitals hybridize.
At the end of the chain, only a mirror symmetry on the y-z plane is preserved, leading
to a hybridization between the dz2 , dx2−y2 , dyz and dxy, dxz orbitals, respectively. Because
of the higher filling of the minority band of Fe compared to Mn, the small changes in
the shapes of the different orbitals below the Fermi level are expected to have a more
pronounced effect on the magnetic interactions, similar to what was demonstrated for a
dimer in Figure 3b. To characterize the influence of the atomic environment, we calculated
the band energy differences between AFM and FM magnetic configurations similarly to the
case of the dimers, ∆Ei

band,D, where i denotes the atomic site in the chain. When compared
to the atomistic spin model, it is expected that ∆Ei

band,D is approximately equal to the sum
of the NN isotropic exchange interactions of site i, J I

i(i−1) + J I
i(i+1), as these parameters

have by far the largest magnitude in Table 4. This approximation is further supported by
the fact that J I

i(i+2) does not contribute to ∆Ei
band,D, as the 2NNs are parallel both in the

FM and in the AFM configuration, and the interactions with farther neighbors are even
weaker. ∆E1

band,D can directly be compared with the isotropic coupling, because the first
site has a single NN only, but needs to be divided by 2 for the center atom, where J I

87 = J I
89.

We obtained ∆E1
band,D = 21.04 meV and ∆E8

band,D/2 = 16.13 meV for the Fe y15 chain,
while ∆E1

band,D = 33.15 meV, ∆E8
band,D/2 = 20.07 meV for the Fe u15 chain. These band

energy differences divided by the coordination number are very close to the corresponding
J I
i(i+1) values in Table 4. This way, we validated the inhomogeneity of the NN isotropic

exchange interactions in the Fe chains by two examples, because these features are also
present in the change of the LDOS.
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Figure 4. Local density of states of the Fe y15 chain. Spin-resolved LDOS of (a) the edge and (b) the center atom. Positive
and negative values correspond to majority and minority spin channels, respectively. The Fermi energy is denoted by a
vertical black line at E = 0.

Carrying on with the discussion of Table 4, due to the C2v symmetry of the chains
along x and y, the DM vector components have to vanish in the mirror plane that leaves
the position of the magnetic atoms unchanged, corresponding to the z component along
both directions and the x and the y components for chains along the x and y directions,
respectively. For chains along the u direction with C2 symmetry, the z component of the
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DM vector between sites connected by the 180◦ rotation also has to be zero. Dz
i(i+1) takes a

finite value on the order of 0.1 meV at the ends of the u15 chains, which is still weaker than
the other spin interaction parameters listed in Table 4 for these pairs. The DM interactions
are stronger if the atoms are located closer to each other in the chains, but overall they are
relatively weak compared to the isotropic exchange interactions.

The values of the anisotropy tensor elements at the ends of the chains are similar to
those obtained for the NN dimers, e.g., Axx − Azz = 0.29 meV for the Mn x-1NN dimer
and 0.30 meV for the first site (edge atom) in the Mn x15 chain. This difference is below
7% for all the anisotropy parameters, so one can conclude that the anisotropy is mostly
determined by the local environment, which is similar at the end of NN chains and in the
case of the NN dimers. Moving toward the middle of the chain, the anisotropy of Mn
chains, interestingly, is more sensitive to the coordination number than that of Fe chains, in
the opposite manner that was observed for the isotropic couplings.

The ground state of all the Mn chains and of the Fe chains along y and u directions is
determined by the sign of the NN isotropic interaction: if it is positive (negative), then the
ground state is the FM (alternating AFM) configuration. The spins point along ±z, with
some deviation at the ends of the chains due to the DM interaction, and due to the small
changes in the easy direction along the chains, based on similar symmetry arguments to
how the ground-state angle in the dimers was determined in Section 3.2. Based on scanning
tunneling spectroscopy measurements, FM and AFM ground states were found for Mn
u13 and for Mn y15 chains, respectively [28], in agreement with our results.

We obtain a spin spiral ground state for the Fe chains along the x direction, see Figure 5.
This ground state can be well understood based on the Fourier transform of the spin model
parameters of the x15 chain shown in Figure 6,

Jk(q) =
k

∑
j=1

J I
8(8+j) cos(jaq), q ∈

[
− π

ax
,

π

ax

]
, (10)

and

Dk(q) =
k

∑
j=1

Dy
8(8+j) sin(jaq), q ∈

[
− π

ax
,

π

ax

]
, (11)

where ax =
√

2aNb = 466.74 pm. These formulae describe a harmonic spin spiral state
rotating in the x-z plane, as the DM interaction only contributes to the energy of spin spirals
in this plane. k = 1 in Figure 6 represents a simple harmonic. Due to the frustration of the
2NN isotropic interaction which is also AFM, starting from k = 2 we find local minima
at positive and negative wave numbers, corresponding to opposite chiralities. If at least
four shells are taken into account in the summation, we obtain a flat dispersion relation,
which, together with the anisotropy, can stabilize spin spirals with several different wave
vectors. While the DM interaction prefers a clockwise rotation of the spins (see Figure 5),
we confirmed by Landau–Lifshitz–Gilbert dynamics simulations that the relatively large
anisotropy also stabilizes the opposite rotational sense as a metastable state. This suggests
that in very long chains, sections with different spin spiral periods and even opposite
chiralities may alternate at finite temperature if the system is unable to find the global
energy minimum. Such a state would be similar to the spin glass state recently investigated
on the (0001) surface of Nd in [27]. If all the interactions are taken into account up to the 7th
neighbor of the middle spin, the maximum of Jk(q)+Dk(q) is obtained at qmax = 0.59 π/ax,
meaning that the wavelength of the spin spiral should be 3.39 ax. The ground state spin
angle between sites 8 and 9 is 107◦ in the simulations, which translates to a spin spiral
wavelength of 3.35 ax, being in excellent agreement with the value determined from the
Fourier transform.
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x
z

Figure 5. Side view of the ground state of the Fe chains along the x direction. The spin configurations of the Fe x5, x10, and
x15 chains are shown. With increasing x coordinate, a clockwise rotation of the spins is observed for all chain lengths.
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Figure 6. Fourier transform of the magnetic interactions for the Fe x15 chain. The isotropic and the
DM interactions in Equations (10) and (11) are summed up.

4. Summary

Motivated by recent interest in so-called single chain magnets as well as in magnetic
adatoms, dimers and atomic chains on superconducting surfaces, we performed first-
principles calculations for Mn and Fe clusters on Nb(110) in order to determine their
electronic and magnetic properties. We determined the magnetic interactions using the
spin cluster expansion and compared the isotropic exchange interactions to band energy
differences between the ferromagnetic and antiferromagnetic configurations. Based on
the orbital decomposition of the isotropic exchange interaction, we concluded that the
in-plane dxy and dx2−y2 orbitals, describing direct exchange, have the strongest relative
contribution if the magnetic atoms are closely packed along the u direction. The dz2 orbital
mediating the exchange through the substrate Nb atoms has a significant contribution for
dimers along all considered crystallographic directions, while the dyz orbital influences the
isotropic exchange stronger if the dimer is oriented along the lobes of this orbital. These
contributions can be quantitatively traced back to the different hybridization of the atomic
orbitals between ferromagnetic and antiferromagnetic spin configurations observable in
the LDOS. The fully occupied majority spin channels have been demonstrated to contribute
less to the magnetic interactions than the partially occupied minority spin channels in
the dimers. The higher occupation of the minority band in Fe compared to Mn leads to a
larger variation of the NN isotropic exchange interaction with the local environment, i.e.,
by going from a dimer through the end of a chain to the middle of a chain along the same
crystallographic direction.

The ground state of the dimers is mainly determined by the sign of the isotropic
interaction, where other spin model parameters, namely, the DM interaction and the tilting
of the easy direction, only slightly perturb the FM or AFM alignment of the spins in the
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dimers. The same argument holds for the Mn and Fe chains along u and y directions,
where the ground state is the FM or the alternating AFM configuration if the NN isotropic
interaction is FM or AFM, respectively, with slight deviations at the ends of the chains.
This was attributed to the relatively weak SOC in the Nb substrate. The Fe chains along
the x=[110] direction display a spin spiral ground state caused by the frustration of the
NN and 2NN AFM isotropic couplings, and the wavelength of the spin spiral in the Fe
x15 chain is quantitatively well reproduced by the Fourier transform of the isotropic and
DM interactions. A flat spin spiral dispersion relation is identified in this chain, which,
together with the magnetic anisotropy, can stabilize spin spirals with various wave vectors
and chiralities. Due to this, segments with different periods and chiralities may coexist in
longer chains.
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Appendix A. Dimer Spin Model Ground State

Here, we describe how the angles ϑAD in Table 1 were determined. Consider Hamilto-
nian Equation (1), for the dimer N = 2,

H = −J I(~e1~e2)− ~D(~e1 ×~e2)−~e1 JS
12
~e2 +~e1K1~e1 +~e2K2~e2, (A1)

and assuming C2 symmetry which holds for all considered dimers. The following equation
for the on-site anisotropy has to be true for any~e1 and~e2 vectors:

~e1K1~e1 +~e2K2~e2 =



−e2x
−e2y
e2z


K1



−e2x
−e2y
e2z


+



−e1x
−e1y
e1z


K2



−e1x
−e1y
e1z


, (A2)

because after the C2 rotation around the z axis the following spin vector components
are exchanged:

e1x ↔ −e2x

e1y ↔ −e2y

e1z ↔ e2z.

(A3)
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From Equation (A2), the following relations for the K components can be read down:




Kxx
1 = Kxx

2 Kxy
1 = Kxy

2 Kxz
1 = −Kxz

2
Kyx

1 = Kyx
2 Kyy

1 = Kyy
2 Kyz

1 = −Kyz
2

Kzx
1 = −Kzx

2 Kzy
1 = −Kzy

2 Kzz
1 = Kzz

2


 (A4)

There is no constraint on the isotropic interaction.
The DM vector is transformed into

~D(~e1 ×~e2) = ~D





−e2x
−e2y
e2z


×



−e1x
−e1y
e1z




 = −~D(~e2 ×~e1), (A5)

from which Dz = 0, but the other two components need not vanish.
The symmetric part of the exchange tensor takes the form

~e1 JS~e2 =



−e2x
−e2y
e2z


JS



−e1x
−e1y
e1z


 = ~e2 JS~e1 ⇒ JS =




JS,xx JS,xy 0
JS,xy JS,yy 0

0 0 JS,zz.


 (A6)

The consequence is that in general 11 parameters describe the Hamiltonian of the
system: J I , two DMI components (Dx and Dy), three two-site anisotropy parameters (due
to Js being traceless), and five on-site anisotropy parameters. Minimizing the energy with
respect to the spin directions in the general case is not possible in a closed form. However,
after some simplifications the directions can be well approximated.

First of all, taking into account only J I and D, the spins will be confined to the plane
perpendicular to the DM vector. The ground state (GS) angle (ϑ) between the spins can be
determined analytically:

E = −J I cos ϑ− D sin ϑ = −
√

J I2 + D2

(
J I

√
J I2 + D2

cos ϑ +
D√

J I2 + D2
sin ϑ

)

= −
√

J I2 + D2 sin(ϑ + β),

(A7)

where β = arccos
D√

J I2 + D2
, so the GS angle in the FM case:

ϑD = 90◦ − arccos
D√

J I2 + D2
= arcsin

D√
J I2 + D2

, (A8)

and in the AFM case
ϑD = 180◦ − arcsin

D√
J I2 + D2

. (A9)

Now, consider only the isotropic interaction and the effective anisotropy. Note that
the easy directions do not have to be parallel to each other at the sites, because Ai is not
diagonal in the basis of the global Cartesian directions in general. The ground state will be
determined as a function of two anisotropy parameters: the easy-axis anisotropy A and
half of the angle between the easy directions at the two sites α. To minimize the energy
of the system, the spins have to lie in the plane determined by the easy axes on the two
sites. Then, the orientation of the spins can be described with the angle variables ϑ1 and ϑ2
shown below.
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1 2

ϑ1 ϑ2

FM dimer: 1 2

ϑ1

ϑ2

AFM dimer:

E = −
∣∣∣J I
∣∣∣ cos(ϑ1 + ϑ2)− A

(
cos2(ϑ1 − α) + cos2(ϑ2 − α)

)
(A10)

From minimizing the energy one can easily conclude that in the ground state
ϑ1 = ϑ2 ≡ ϑA/2, where we define ϑA to be the GS angle of the spins. The energy ex-
pression can be transformed to

E =−
∣∣∣J I
∣∣∣ cos ϑA − A cos(ϑA − 2α) + c = −J I cos ϑA − A(cos ϑA cos 2α + sin ϑA sin 2α) + c

=
(
−
∣∣∣J I
∣∣∣− A cos 2α

)
cos ϑA − A sin 2α sin ϑA + c, (A11)

where c is a constant term. This can be minimized in the very same way as in Equation (A7),
and the GS angle is

ϑFM
A = arcsin

A sin 2α√
(|J I |+ A cos 2α)

2
+ (A sin 2α)2

, ϑAFM
A = 180◦ − ϑFM

A . (A12)

Note that while A is assumed to be positive, the tilting angle of the spins from the
equilibrium direction is determined by the sign of α, analogously to the sign of D for the
DMI. This means that not only the DMI, but also anisotropy, prefers a chiral alignment of
the spins in the dimer.

Finally, consider the following set of parameters: J I , Am > 0, Ah > 0, αx, αy, Dx, and
Dy, and assume that the isotropic interaction dominates. Am and Ah are the anisotropy
energies of the medium and hard directions relative to the easy direction, respectively. The
easy direction is tilted from z by αx towards the x and by αy towards the y direction; see
the ex and ey components of the easy direction for the considered dimers in Table A1. As
the easy direction is close to the z axis in all dimers, and the main anisotropy axes are
perpendicular to each other due to the matrix being symmetric, we will assume that the
medium and hard axes lie approximately in the y-z and x-z planes, respectively. The energy
can be written as

E =−
∣∣∣J I
∣∣∣ cos(ϑ1 + ϑ2)± Dx sin

(
ϑ1y + ϑ2y

)
∓ Dy sin(ϑ1x + ϑ2x)

− Am

(
cos2(ϑ1y − αy

)
+ cos2(ϑ2y − αy

))
− Ah

(
cos2(ϑ1x − αx) + cos2(ϑ2x − αx)

)
,

(A13)

where ϑx/y labels the tilting angle of the spin towards x/y from z, and the upper and
the lower signs of D correspond to the FM and AFM cases depending on the sign of
J I . Due to the isotropic interaction dominating in the system, small perturbations of
the collinear configuration are assumed, and the effect of {Ah, Dy} and {Am, Dx} can be

decomposed. For small angles, the tilting angle may be written as ϑFM ≈
√

ϑ2
x + ϑ2

y. The

parameters {Ah, Dy} describe a canting in the x-z plane, where again a minimum is found
for ϑ1x = ϑ2x ≡ ϑADx/2. This leads to the energy expression

E = −
∣∣∣J I
∣∣∣ cos ϑADx − Ah cos(ϑADx − 2αx)∓ Dy sin ϑADx + c, (A14)

which can be rewritten as

E =
(
−J I − Ah cos 2αx

)
cos ϑADx − (Dy + Ah sin 2αx) sin ϑADx + c. (A15)



Nanomaterials 2021, 11, 1933 17 of 19

Table A1. Ground state spin angles in degree units from SCE spin model of Mn and Fe dimers. The easy direction unit
vector components are given for the first spin, which always has smaller x or y coordinate. The direction on the second spin
may be obtained by a C2 rotation. ϑSD is obtained from numerical spin dynamics calculations; the other angles represent
different levels of approximations discussed in Appendix A.

ϑSD ϑD ϑA ϑADx ϑADy ϑAD ex
e1 ey

e1 ez
e1

Mn x-1NN 179.93 179.94 179.84 0.10 0.00 179.90 −0.0355 0.0000 0.9994
Mn x-2NN 179.04 179.29 179.66 0.96 0.00 179.04 −0.0231 0.0000 0.9997
Mn x-3NN 178.16 176.55 179.69 −1.82 0.00 178.18 −0.0072 0.0000 1.0000
Mn y-1NN 0.36 0.40 0.03 0.00 −0.37 0.37 0.0000 −0.0451 0.9990
Mn y-2NN 172.24 170.44 179.55 0.00 −7.86 172.13 0.0000 −0.0293 0.9996
Mn y-3NN 178.04 171.39 178.40 0.00 −1.95 178.05 0.0000 −0.0237 0.9997
Mn u-1NN 179.46 179.41 179.90 −0.47 0.26 179.46 −0.0711 −0.0969 0.9927
Mn u-2NN 5.24 5.34 0.26 −5.25 −0.51 5.27 0.0390 −0.1049 0.9937
Mn u-3NN 172.90 172.60 179.35 2.84 6.53 172.88 0.0083 −0.0649 0.9979

Fe x-1NN 178.04 177.98 177.65 1.96 0.00 178.04 −0.0105 0.0000 0.9999
Fe x-2NN 178.93 178.76 179.94 1.07 0.00 178.93 0.0060 0.0000 1.0000
Fe x-3NN 173.94 171.73 179.94 −6.07 0.00 173.93 0.0020 0.0000 1.0000
Fe y-1NN 0.05 0.12 0.04 0.00 −0.07 0.07 −0.0000 −0.0177 0.9998
Fe y-2NN 0.01 0.09 2.03 0.00 −0.02 0.02 −0.0000 −0.0104 0.9999
Fe y-3NN 174.67 169.13 179.60 0.00 5.28 174.72 0.0000 0.0073 1.0000
Fe u-1NN 4.00 4.06 0.09 −3.75 −1.43 4.01 0.0482 −0.0841 0.9953
Fe u-2NN 4.95 4.91 0.32 −4.95 0.52 4.98 0.0534 −0.0590 0.9968
Fe u-3NN 177.60 177.73 179.66 0.14 2.40 177.59 0.0296 −0.0294 0.9991

Then, similarly to previous cases, the GS angle becomes

ϑADx,FM/AFM = arcsin
±Dy + Ah sin 2αx√

(|J I |+ Ah cos 2αx)
2
+ (±Dy + Ah sin 2αx)

2
, (A16)

where + (−) signs stand for the FM (AFM) case, and

ϑADy,FM/AFM = arcsin
∓Dx + 2Am sin 2αy√(

|J I |+ Am cos 2αy
)2

+
(
∓Dx + Am sin 2αy

)2
(A17)

for the parameters {Am, Dx}. One can sum up the two effects via

ϑFM
AD =

√
ϑ2

ADx,FM + ϑ2
ADy,FM, ϑAFM

AD = 180◦ −
√

ϑ2
ADx,AFM + ϑ2

ADy,AFM. (A18)

Table A1 contains the obtained GS angles and the easy directions as unit vector
components. Depending on the dimer, the chiral contributions from the DMI and the
orientation of the easy axis may be constructive or destructive; the latter case can be
observed when ϑD or ϑA deviates from the collinear alignment more than ϑAD. In all
considered dimers, the approximate value of θAD taking both the anisotropy and DMI into
account agrees well with the value θSD determined from numerical simulations.
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