
Fully relativistic spin-polarized description of magnetic interface coupling:
Fe multilayers in Au„100…

L. Szunyogh
Institut für Technische Elektrochemie, Technische Universita¨t Wien, Getreidemarkt 9/158, A-1060, Wien, Austria

and Institute of Physics, Technical University Budapest, Budafoki u´t 8, H-1521, Budapest, Hungary
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The spin-polarized fully relativistic screened Korringa-Kohn-Rostoker method is applied to calculate mag-
netic interface coupling energies~MICE’s! for Fe multilayers in Au~100!, separated by up to 16 spacer layers
of Au. With respect to the antiparallel as well as to a perpendicular relative orientation of the magnetization in
the Fe slabs the MICE’s as calculated~a! in terms of total energies,~b! within the force theorem approxima-
tion, and ~c! within the frozen potential approximation are discussed using the concept of layer-resolved
quantities. In particular the comparison between the total energy and the force theorem approach is presented
in some detail because of possible implications for anab initio description of transport properties in multilayer
systems.@S0163-1829~96!01733-X#

I. INTRODUCTION

An experimental study of magnetic interface coupling
typically is based on a sample setup consisting of a magnetic
whisker as a substrate, a nonmagnetic spacer wedge, and a
magnetic overlayer, whereby the whisker can also be re-
placed by a reasonably thick layer of a magnetic metal well
grown on a suitable substrate and the magnetic overlayer can
have a cap. Scanning the thickness of the wedge and mea-
suring simultaneously, for example, the orientation of the
magnetic field in the magnetic overlayer eventually shows
the by-now famous oscillations for the orientation of the
magnetic field. For example for Fe/Au/Fe multilayers it was
found1 that the orientation of the magnetization is in the
plane of the overlayer and that by fitting the observed oscil-
lations to a model for bilinear coupling two periods of oscil-
lations could be extracted. Quite clearly, possible surface re-
constructions and different growing conditions do matter;
however, at least the periods of oscillations seem to be quite
reproducible.

In order to describe theoretically the magnetic interface
coupling~see, e.g., Ref. 2 and references therein!, three main
aspects should be observed: Namely,~1! the experimental
measurements are performed only for truely semi-infinite
systems, ~2! microscopic interdiffusion and macroscopic
roughness can occur, and last but not least~3! in principle
the actual orientation of the magnetization has to be taken
into account. The first aspect implies that for any system
under consideration~at best! only two-dimensional transla-
tional invariance applies. The second aspect invokes in par-
ticular experimental guidance, since at least typical concen-
tration profiles in the vicinity of the occurring interfaces are
needed. Nevertheless, theoretical studies to describe the ef-
fect of surface roughness are already on the way.3 It is now

generally accepted that in the asymptotic limit the experi-
mentally observed oscillatory behavior of the coupling is
governed by the spacer Fermi surface.4 But there still remain
a few questions concerning the role of relative orientations,
sometimes referred to as ‘‘biquadratic coupling.’’5 This as-
pect, however, is of purely theoretical nature: Only in a
~fully ! relativistic description can an orientation of the mag-
netization be defined. There is also little known about other
physical quantities — like charges, induced moments, etc. —
in the limit of small spacer thicknesses, which in turn might
be of crucial importance for transport properties. Quite
clearly a study of these properties requires self-consistent
calculations and an analysis of corresponding results to fro-
zen potential and force theorem calculations frequently
found in the literature.

In the present paper the spin-polarized fully relativistic
screened Korringa-Kohn-Rostoker~KKR! method for two-
dimensional translational-invariant systems6 is applied in or-
der to calculate magnetic interface coupling energies
~MICE’s! for Fe multilayers in Au~100! corresponding to
antiparallel and to perpendicular global orientations of the
magnetization in the Fe layers separated by Au spacer layers.
Particular emphasis will be given to ‘‘traditional’’ approxi-
mations for the MICE’s such as the frozen potential approxi-
mation and the force theorem approximation, and their pos-
sible implications for transport properties.

II. THEORETICAL CONSIDERATIONS

In general, in a relativistic spin-polarized multiple scatter-
ing theory the system is described by an effective Kohn-
Sham-Dirac Hamiltonian7,8

H~r !5ca–p1bmc21I 4V~r !1bs–Beff~r !, ~1!
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where the a i ( i51,2,3! and b are Dirac matrices,s i
( i51,2,3! Pauli matrices,I 4 is a 434 unit matrix, and
V(r ) andBeff(r ) usually are chosen to be of muffin-tin form8

V~r !5(
i
Vi~r i !, Vi~r i !5HVi~r i !, r i<Si ,

const, otherwise,
~2!

Beff~r !5(
i
Bi
eff~r i !, Bi

eff~r i !5HBi
eff~r i !, r i<Si ,

const, otherwise,
~3!

Bi
eff~r i !5Bi

eff~r i !êi . ~4!

Here theRi specify the positions of the scattering sites,
r i5r2Ri , r i5ur i u, Si is the corresponding muffin-tin radius,
and the sum extends over all scattering sitesi . For a chosen
set of orientations$êi% the potentialsVi(r i) and effective
exchange fieldsBi

eff(r i) are determined self-consistently and
the total energies are then compared to each other. A direc-
tion êi can be given, e.g., by the direction of the correspond-
ing in-plane projectionêi ,i and by an azimuthal angleu i
defining the projection onto thez axis~normal to the planes!.
Furthermore, by choosing an in-plane vectorn̂, a rotation
around thez axis,Ri , can be defined for each layeri such
that êi ,i5Ri n̂.

9 Consequently,$êi% is uniquely characterized
by the symbol

$n̂;~R1 ,u1!,~R2 ,u2!,~R3 ,u3!, . . . %. ~5!

It should be emphasized that the very weak dependence of
physical quantities on the choice ofn̂ is usually referred to as
magnetocrystalline anisotropy.

Figure 1 describes the particular geometrical setup in the
present calculations. As one can see there are three regions.
The left and right ones are semi-infinite with all physical
properties identical to those of bulk Au. The intermediate
region is further partitioned into a left and a right part such
that each of these individual parts containsn layers of Fe,
whereby the two Fe slabs are separated bym layers of Au,
often referred to as the ‘‘spacer.’’ The spacer layers are then
attributed symmetrically to the left~right! Fe slab to form the
left ~right! part of the intermediate region. In order to treat
the outer interfaces realistically, a buffer of a few Au layers

~two in the present calculations! between the left~right! Fe
slab and the corresponding left~right! semi-infinite Au was
included in the intermediate region. Throughout this paper
only in-plane (u i50,; i ) orientational configurations are
considered with theparticular choiceof n̂5 x̂. Keeping the
orientations in the left part of the interface region uniformly
fixed to x̂5Ex̂, whereE denotes the identity rotation, and
specifying a uniform in-plane orientation in the right part of
the intermediate region~see Fig. 1!:

$x̂;E,E, . . . ,E,R,R, . . . ,R%, ~6!

a particular orientational configuration can be labeled simply
byR. For the present case of a~100! interface of a parent fcc
lattice ~one atom per unit cell! we considered the cases
R5E, C4

1 , andC2. Quite clearly,R5C4
2 would display a

situation identical toR5C4
1 . In the spirit of the above, a

labelE refers to a ferromagnetic configuration; i.e., both in
the left and the right halves of the intermediate region the
magnetization is pointing along thex-axis, a labelC2 to an
antiparallel and labelC4

1 to a perpendicular configuration.
In order to calculate the magnetic interface coupling en-

ergy~MICE’s!, namely, the energy difference between a par-
ticular configurationR and the ferromagnetic one, three lev-
els of sophistication can be applied; all three of them are
more or less frequently used in the by-now vast literature on
magnetic interface coupling. It should be noted that for in-
plane orientations of the magnetization as in the present case
of a fcc ~100! interface no contributions to the MICE’s due
to magnetostatic dipole-dipole interactions arise.6

A. Total energy calculations

Let De i(R) denote the following difference of layer-
resolved total energies for a given arrangement ofn layers of
Fe andm layers of the spacer:

De i~R!5e i~R!2e i~E!, ~7!

where i specifies a particular layer; then the MICEDe(R)
for a given configuration (R) is given by a summation over
all layers in the interface region:

De~R!5(
i

De i~R!. ~8!

The advantages of a direct calculation of the MICE in terms
of total energies are obvious; namely, simultaneously one
obtains correct layer-resolved charges and magnetic mo-
ments~charge densities and magnetization densities!, which
can be of quite some importance for a description of physical
properties other than the MICE such as, for example, trans-
port properties. Furthermore, the MICE can formally be par-
titioned into contributions arising from the magnetic layers,
the spacer, and the buffer~see also Fig. 1!,

De~R!5DeFe~R!1Despacer~R!1Debuffer~R!. ~9!

Unfortunately the disadvantage of this kind of approach is
also obvious: Calculations tend to be extremely lengthy.

FIG. 1. The interface region and orientation of the magnetiza-
tion.
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B. Force theorem approximation

Suppose for one particular arrangement ofn layers of Fe
and m layers of the spacer the layer-dependent potentials
Vi(r i) and effective fieldsBi

eff(r i) are calculated self-
consistently for the ferromagnetic configuration (E); then the
MICE is approximated within the force theorem approxima-
tion as the following difference of band energies~see, e.g.,
Ref. 6!:

De~R!'DeFT~R!5eband~R!2eband~E!, ~10!

such that

Vi~r i ;R!5Vi~r i ;E!

Bi
eff~r i ;R!5Bi

eff~r i ;E!J ; i . ~11!

If the band energy is not calculated using the Lloyd formu-
lation for the integral density of states, but in terms of layer-
resolved densities of states, then alsoDeFT(R) can be split
up into contributions from the spacer and from the magnetic
slabs.

C. Frozen potential approximation

Within the frozen potential approximation the MICE is
again defined in terms of the differences of band energies,

De~R!'DeFP~R!5eband~R!2eband~E!; ~12!

however, the layer-dependent potentials in the interface re-
gion are constructed by replacing the potentials of the spacer
by the corresponding bulk potential and using anad hoc
potential for the layers corresponding to the magnetic slabs;
i.e., for the system under consideration,

Vi~r i ;R!5Vi~r i ;E![ HVbulk~r i !, iPspacer,
VFe~r i !, iPFe multilayer,

~13!

Bi
eff~r i ;R!5Bi

eff~r i ;E![ H0, iPspacer
BFe~r i !, iPFe multilayer.

~14!

In the present calculations whenever the frozen potential ap-
proximation is used,VFe(r ) andBFe(r ) are the potential and
effective fields of a single layer of Fe in Au~100!, while
Vbulk(r ) is the fcc bulk potential of Au. Frequently the po-
tentials in the magnetic slabs are simply constructed by using
a bulk potential of the magnetic metal adjusted to the Fermi
level of the bulk metal corresponding to the spacer.

III. COMPUTATIONAL DETAILS

The spin-polarized relativistic version6 of the screened
Korringa-Kohn-Rostoker~KKR! method,10,11 was used self-
consistently within the local spin density approximation
~LSD! and the atomic sphere approximation~ASA!. Energy
integrations were performed along a semicircular contour us-
ing a 15-point Gaussian sampling on an asymmetric~loga-
rithmic! mesh. All values ofDeFT(R) andDeFP(R), if not
stated differently, correspond to lattice Fourier transforma-
tions using 325ki points in the irreducible wedge of the
surface Brillouin zone, while all values ofDe(R), if not
specified differently, refer to a mesh of 45ki points. The

parent fcc lattice corresponds to a lattice constant of 7.6813
a.u. ~bulk Au!.

IV. RESULTS

Figure 2 shows the convergence of the MICEDe(C2) and
DeFT(C2) with respect to the number ofki points used in the
irreducible wedge of the surface Brillouin zone for two dif-
ferent cases, namely, for single layers of Fe separated by~a!
three layers of Au and~b! nine layers of Au. The first case
corresponds to a system with a thin spacer, while the second
is representative for a system with a medium thickness of the
spacer. These two systems were in particular investigated in
all necessary details, since they also bracket situations of
large and small MICE’s. Inspecting first Fig. 2~a!, one can
see thatDe(C2) and DeFT(C2) are well converged; how-
ever, DeFT(C2) is by about a factor of 7 smaller than
De(C2). This indeed is not surprising, since for thin spacers
the effect of self-consistency has to be expected to be much
larger than for thick spacers. Fig. 2~b! illustrates that in the
case of small MICE’s@De(C2),DeFT(C2), 0.1 mRy# the
ki convergence is a much more subtle problem. It is rather
reassuring that on the averageDe(C2) differs from
DeFT(C2) by less than about 0.05 mRy. As compared to the
converged value ofDeFT(C2), the value ofDe(C2) as cal-
culated using only 45ki points gives a reasonably good ac-

FIG. 2. Convergence of the MICEDe(C2) with respect to the
number ofki points used: single layers of Fe separated by~a! three
layers of Au and~b! nine layers of Au. Squares, total energy cal-
culation; circles, force theorem calculation@DeFT(C2)#.
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count for the MICE. This in turn shows thatDe(R) values
based on the use of a minimal grid of 45ki points provide at
least a convincing qualitative correct behavior.

In Fig. 3 the layer-resolved MICE’s,De i(C2) correspond-
ing to differently denseki grids are displayed for the case of
single layers of Fe separated by three layers of Au. As one
can see the minimal grid results give a qualitatively correct
behavior, namely, that there are peaks corresponding to the
central layer of the interface region and to the buffer layer
neighboring the Fe layers. Summing over all corresponding
De i(C2) values then yields the values ofDe(C2) shown in
Fig. 2~a!. Quite clearly, the layer resolution as shown in Fig.
3 gives a very detailed description of the MICE.

In order to show the oscillatory behavior of the MICE
with respect to increasing spacer thickness, in Fig. 4~a!
DeFP(R), R5C2 ,C4

1 @see Eqs.~8! and ~9!# is shown for
single layers of Fe, separated bym layers of Au. For
R5C2 we also cross-checked the results of the fully relativ-
istic calculations with the predictions of a scalar relativistic
theory. As expected, the MICE from both approaches@see
open and solid squares in Fig. 4~a!# compare well to each
other, supporting the common believe that the MICE is
mainly governed by the nonrelativistic exchange coupling,
while additional effects related to relativity, i.e., spin-orbit
coupling, play a minor role only. To confirm this we also
investigated the dependence of the MICE with respect to the
choice ofn̂ @see Eq.~5! and the comment below# and found
that as compared to the case ofn̂5 x̂ differences in corre-
sponding MICE are within the present accuracy of calculat-
ing magnetic anisotropy energies; i.e., changes in the MICE
caused by a different choice ofn̂ are of the order of 5%.

As can be seen from this figure,DeFP(R) is distinctly
negative form55,8,10,13,15. These peaks are exactly at po-
sitions seen in the experiment1 for Fe/Au/Fe multilayers. A
short period of about 2.5 layers, which was found theoreti-
cally also by Bruno and Chappert,12 can be directly read off
from Fig. 4~a!. It is also apparent from Fig. 4~a! that the
amplitudes corresponding to a perpendicular arrangement
(C4

1) are in general smaller than those corresponding to an

antiparallel alignment (C2). This implies that the ground
state of the system corresponds either to a parallel or an
antiparallel relative orientation of the magnetic field. Figure
4~b! illustrates the preferred relative orientation as a function
of spacer thickness and for different numbers of Fe layers. In
principle Fig. 4~b! can be directly compared to experimental
data.1

Of considerable theoretical interest is the relation of the
frozen potential approximation with respect to the force
theorem approximation and a direct calculation of MICE in
terms of total energies. In order to illustrate the regimes of
applications of these three approaches, in Fig. 5 the MICE
differences

DE~R!5H DeFP~R!2DeFT~R!,

DeFP~R!2De~R!
~15!

are shown with respect to a restricted number of spacer lay-
ers for single, double, and triple layers of Fe. As one can see
from Fig. 5~a!, for single layers the force theorem approxi-

FIG. 3. Convergence of the layer-resolved MICEDe i(C2) with
respect to the number ofk points used for singles layers of Fe
separated by three layers of Au. Squares, 45; triangles, 171; circles,
253 ki points. The positions of the Fe layers are marked as solid
symbols.

FIG. 4. ~a! Frozen potential calculations of the MICE
(DeFP(R)) with respect to the spacer thicknessm single layers of
Fe. Open squares:C2 fully relativistic approach; full squares:C2

scalar relativistic approach; circles:C4
1 fully relativistic approach.

~b! Frozen potential calculations: preferred relative orientation of
the magnetization as a function of spacer thickness for single,
double, and triple layers of Fe.
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mation becomes virtually identical to the frozen potential
approximation form.6. For double and triple layers of Fe
@see Figs. 5~b! and 5~c!# this seems to be the case for
m.10. Rather interesting is the behavior ofDE(R) for
single and in particular for triple layers form.10, since for
R5C4

1 the total-energy-related values show about the same
deviations from the frozen potential approximation as the
force theorem~FT! values, while forR5C2 the deviations
are of the order of about 0.1 mRy. Inspecting Fig. 5~b! only,
one might argue that form516 theki integration starts to
become insufficient, which, however, in view of theC4

1 re-
sults for single and triple layers of Fe is unlikely to be the
case.

From Table I, listing componentlike contributions to the
MICE, it is obvious that forR5C2 in the case of single
layers of Fe form.12 the contribution from the spacer is
increasing quite a bit, while the contribution from the Fe
layers is only slightly decreasing. For triple layers of Fe
Table I reveals that forR5C2 the contribution of the spacer
starts to oscillate form.8, which in turn gives rise to the
peculiar shape of the corresponding difference curve in Fig.
5~c!. For double layers atm516, both contributions, namely,
from the Fe layers and the spacer, seem to matter. Table I is
also interesting for two further reasons; namely~i! one
clearly can read off from the buffer contribution the impor-
tance of the outer interfaces for systems with thin spacers
and~ii ! for a variety of systems the importance of the spacer
contribution to the MICE is documented in a consistent man-
ner. It should be recalled that all values in this table refer to
a mesh of 45ki points.

In order to discuss these componentlike contributions in a
more quantitative way, in Fig. 6 their convergence with re-
spect to the appliedki mesh is shown for single layers of Fe

FIG. 5. Difference of the MICE with respect to the frozen po-
tential calculations,DE(R), for ~a! single layers,~b! double layers,
and ~c! triple layers. Squares, force theorem; circles, total energy
calculation; solid symbols,C2; open symbols,C4

1 .

TABLE I. Component-resolved contributions to the MICE
@mRy# for FenAumFen~001! multilayers. The first line corresponds
to C2, the second line toC4

1 . For comparison the total MICE as
obtained by means of the force theorem is also listed.

n m Fe Spacer Buffer FT Layers

1 3 0.302 0.430 0.700 0.105 9
0.064 -0.010 0.080 0.033

1 6 -0.116 0.200 0.020 0.083 12
-0.050 0.060 0.000 0.04

1 9 0.116 0.030 -0.020 0.088 15
0.094 -0.020 -0.040 0.042

1 12 0.017 0.050 0.000 -0.014 18
-0.011 -0.040 -0.010 -0.007

1 15 -0.010 0.120 0.020 -0.049 21
-0.028 0.030 0.000 -0.028

2 1 -0.100 -0.020 -0.540 -0.327 9
-0.022 0.010 -0.190 -0.132

2 4 0.404 0.080 -0.220 0.577 12
0.148 0.060 -0.040 0.278

2 7 -0.006 -0.150 0.040 -0.034 15
-0.002 -0.090 0.000 -0.012

2 10 -0.158 0.020 0.020 -0.090 18
-0.092 -0.020 0.000 -0.050

2 13 0.037 -0.080 -0.040 -0.010 21
0.034 -0.060 -0.060 -0.004

2 16 -0.070 -0.080 0.000 0.018 24
-0.024 -0.120 0.020 0.007

3 2 -0.658 -0.300 0.220 -1.034 12
-0.302 -0.180 0.110 -0.498

3 5 -0.217 -0.390 0.000 -0.552 15
-0.152 -0.230 0.040 -0.283

3 8 -0.079 0.080 0.010 0.009 18
-0.045 0.000 -0.010 0.009

3 11 0.024 -0.140 0.020 0.076 21
0.038 0.050 -0.020 0.031

3 14 0.004 -0.080 0.000 0.023 24
0.012 0.000 -0.020 0.014

6434 54SZUNYOGH, ÚJFALUSSY, WEINBERGER, AND SOMMERS



separated by three and by nine layers of Au. From Fig. 6~a!
one can see that although the MICE’sDe(C2) is well con-
verged, the difference between the last two values being less
than 0.020 mRy, there are still changes in the Fe contribu-
tion, which are mostly compensated by respective changes in
the buffer contribution. The shape ofDe(C2) as a function
of the ki mesh clearly resembles that of the Fe contribution.
For the case of nine spacer layers@Fig. 6~b!#, the changes in
the Fe contribution are mostly compensated by opposite
changes in the spacer contribution. The differently shaped
oscillations in the componentlike contributions are obviously
also the main reason for the rather ‘‘bumpy’’ convergence of
DeFT(C2) in Fig. 2~b!. From Fig. 6~a! one safely can con-
clude that~1! the biggest contribution arises from the buffer
and ~2! the contributions from the Fe layers and the spacer
layers are about the same. For large enoughki points the
contributions from the Fe layers and the spacer layers to the
MICE of the nine-spacer-layer system are again about the
same while the contribution from the buffer is smaller. It
should be noted that in the case of nine spacer layers
De(C2) is an order of magnitude smaller than in the case of
three spacer layers.

While MICE and even the componentlike contributions to
these energies are basically global quantities, layer-resolved
quantities offer a remarkable characterization of the differ-

ence between the force theorem approximation and the total
energy approach. In Fig. 7 theDe i(R)’s and the correspond-
ing differences for the charges and magnetic moments,

DQi~R!5Qi~R!2Qi~E!, ~16!

Dmi~R!5mi~R!2mi~E!, ~17!

are displayed in comparison with the corresponding force
theorem results for the case of double layers of Fe separated
by 13 layers of Au andR5C2. For this particular system the
force theorem calculation and the total energy calculation of

FIG. 6. Convergence of the componentlike contributions of the
MICE De(C2) with respect to the number ofki points: single layers
of Fe separated by~a! three layers of Au and~b! nine layers of Au.
Squares, total MICE; circles, Fe contribution; up-triangles, Au
spacer contribution; down-triangles, Au buffer contribution. For a
comparison alsoDeFT(C2) is shown~solid squares!.

FIG. 7. Layer-resolved differences with respect to the ferromag-
netic orientation for the case of double layers of Fe separated by 13
layers of Au:~a! total energies,~b! charges, and~c! magnetic mo-
ments. Squares, total energy calculation; circles, force theorem. The
positions of the Fe layers are marked as solid symbols.
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the MICE differ only by 0.009 mRy. As one can see from
Fig. 7~a! the force theorem approximation yields a very
smooth variation of the MICE with respect to layers, while
the total energy approach yields comparatively large values
of De i(R) for the two Fe layers and in the regime of the
spacer. This strikingly different behavior becomes obvious
looking at Fig. 7~b!, showing the layer-resolved charges, Eq.
~16!. Now the force theorem values are rather large in the
vicinity of the Fe layers. These difference charges in turn
would cause differences in the layer-resolved Madelung po-
tentials ~see Ref. 10! in a self-consistent procedure, which
ultimately are responsible for the oscillatory behavior of
De i(R) in Fig. 7~a!. Finally in Fig. 7~c! the differences of the
magnetic moments, Eq.~11!, are displayed. Quite clearly the
force theorem values ofDmi(R) differ substantially from the
corresponding values obtained within the total energy ap-
proach. Although the calculated MICE is almost identical in
both calculations, local quantities such as layer-resolved
charges and magnetic moments are remarkably different. It
should be noted that in all cases investigated the same char-
acteristic differences between the force theorem and the total
energy calculations occur. This kind of difference one has to
keep in mind when it comes to calculating transport proper-
ties, i.e., once attempts are made to calculate the giant mag-
netoresistance~GMR! in multilayer systems. It very well
might turn out that in order to describe the GMR reasonably
well, corresponding input data for a Kubo-Greenwood type
description13,14 have to be derived from a total energy ap-
proach.

V. CONCLUSION

In principle a spin-polarized relativistic approach is ca-
pable of describing correctly any noncollinear magnetic
structure by providing automatically the appropriate symme-

try constraints. It should be noted that by applying, for ex-
ample, the torque method~see, e.g., Ref. 5! ~i.e., by using a
tensorial representation of spin and configuration for the
Hamiltonian or the Green’s functionwithout spin-orbitcou-
pling! rotations around thez axis ~perpendicular to the
planes! are infinitesimal. Such an approach, although quite
useful in expressing the MICE in powers of the cosine of a
relative angle, suffers from a lack of physical significance of
the involved quantities, since such an angle neither refers to
a well-defined relative spin orientation nor to a well-defined
relative orientation of the magnetization.

In the present paper, which deals with simple configura-
tions of different orientations of the magnetization in differ-
ent layers of a multilayer system in terms of the spin-
polarized relativistic screened KKR method, even a global
relative angle describing relative orientations of the magne-
tization is physically meaningful and well defined. Further-
more, by using layer-resolved quantities very detailed infor-
mation about the MICE can be obtained, which by going
beyond the frozen potential or force theorem approximation
hopefully will permit one to perform also direct calculations
of the giant magnetoresistance and/or the magneto-optical
properties.
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