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Spin-spiral formalism based on the multiple-scattering Green’s function technique with applications
to ultrathin magnetic films and multilayers
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Based on the Korringa-Kohn-Rostoker Green’s function technique, we present a computational scheme for
calculating the electronic structure of layered systems with homogeneous spin-spiral magnetic state. From the
self-consistent nonrelativistic calculations, the total energy of the spin-spiral states is determined as a function of
the wave vector, while a relativistic extension of the formalism in first order of the spin-orbit coupling gives an
access to the effect of the Dzyaloshinskii-Moriya interactions. We demonstrate that the newly developed method
properly describes the magnetic ground state of a Mn monolayer on W(001) and that of a Co monolayer on
Pt(111). The obtained spin-spiral energies are mapped to a classical spin model, the parameters of which are
compared to those calculated directly from the relativistic torque method. In case of the Co/Pt(111) system, we
find that the isotropic interaction between the Co atoms is reduced and the Dzyaloshinskii-Moriya interaction
is increased when capped by a Ru layer. In addition, we perform spin-spiral calculations on Ir/Fe/Co/Pt
and Ir/Co/Fe/Pt multilayer systems and find a spin-spiral ground state with very long wavelength due to the
frustrated isotropic couplings between the Fe atoms, whereas the Dzyaloshinskii-Moriya interaction strongly
depends on the sequence of the Fe and Co layers.
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I. INTRODUCTION

Applications of complex magnetic structures in modern
information technology are for several decades in the fo-
cus of broad research interest [1–3]. Advanced numerical
simulations based on first principles methods [4] play an
essential role for understanding the magnetic phenomena on a
broad scale and also to design new devices. To this purpose,
classical spin models [5] are also used extensively where the
parameters of the spin models can be derived either in spirit
of the magnetic force theorem [6–8] or from the total energy
of different magnetic configurations [8].

Spin-spiral states form a reach subset of noncollinear
magnetic configurations that exist in nature, in particular, in
thin magnetic films [9] and can be studied theoretically with
analytical and computational tools. The first ab initio ap-
proach for calculating the electronic structure in the presence
of a spin-spiral magnetic state in terms of the generalized
Bloch theorem was introduced by Sandratskii [10,11] and its
implementation in the linearized muffin-tin orbital (LMTO)
method was successfully used to calculate the energies of
spin-spiral states in bulk Fe [12,13]. Using the augmented
spherical wave (ASW) technique, it was possible to study
the static nonuniform spin susceptibility of various bulk
systems [14].

The calculation of spin-spiral states was implemented in
the full-potential linearized augmented plane-wave (FLAPW)
method as combined with a constrained local moment
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treatment and used to determine the electronic structure of
spin-spiral states in bcc Fe [15]. In the spin-spiral calcula-
tions based on the LMTO, ASW, or FLAPW band structure
methods, an appropriate basis function set is used to solve
the Kohn-Sham equations. On the contrary, a nonrelativistic
multiple scattering Green’s function formalism was developed
for spin-spiral configurations in Ref. [16] and applied to
ordered and disordered solids with spiral magnetic order.

For systems with broken space-inversion symmetry,
spin orbit coupling (SOC) leads to the appearance of
Dzyaloshinskii-Moriya interactions (DMI) [17,18] that can
stabilize noncollinear chiral magnetic structures, such as spin
spirals and magnetic skyrmions. The DMI can be determined
from a collinear magnetic structure in terms of the relativistic
torque method (RTM) [19–22] or from the spin-cluster expan-
sion (SCE) technique based on the disordered paramagnetic
state [23,24]. The energy due to the DMI can also be obtained
using a first order perturbation treatment of the spin-orbit
coupling on top of a nonrelativistic spin-spiral calculation [25]
or, at least for commensurate spin spirals, employing supercell
calculations [26,27].

The total energy as a function of the wave vector of the
spin spirals can be mapped to Heisenberg model giving thus
an accurate access to the isotropic coupling parameters in
the system. The main advantage of this procedure is that the
longitudinal fluctuations of the magnetic moments, including
the induced moments, are taken into account [28], while in
case of non self-consistent approaches based on the magnetic
force theorem [6,29], such as in the RTM os SCE, these
longitudinal fluctuations are neglected. Moreover, the self-
consistent spin-spiral calculations include, in principle, all
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higher order magnetic exchange interactions. There are strong
indications that these couplings can stabilize exotic complex
magnetic states [30,31].

In this work, we present the spin-spiral formalism within
the multiple scattering Green’s function technique for both the
nonrelativistic and the relativistic cases and, as implemented
with the screened Korringa-Kohn-Rostoker (SKKR) method
[32–34], its applications to ultrathin magnetic films and mul-
tilayers. In Sec. II, a detailed description of the nonrelativistic
theory is presented, together with a first-order perturbation
technique to include spin-orbit induced effects, while we also
give details of the spin model we use for thin magnetic films.
The applications are presented in Sec. III. We calculate the
spin-spiral dispersion for a Mn monolayer on W(001) and find
that the ground state is a right-handed cycloidal spin-spiral
state according to other theoretical and experimental results
[35]. For a Co monolayer on Pt(111), we obtain that the
ground state is ferromagnetic due to the large isotropic ex-
change coupling between the Co atoms and that the preferred
rotational sense of the in-plane DM vector is left-handed,
in agreement with previous theoretical works [36–38] and
with experiment [39]. We show that a Ru overlayer reduces
the Co-Co exchange coupling and increases the in-plane DM
interaction, thus the Ru/Co/Pt layer sequence can be an
important component of the novel functional multilayer struc-
tures [40,41]. Room-temperature skyrmions were observed in
Ir/Fe/Co/Pt multilayers [42–44] and stable skyrmionic states
in 4d/Fe2/5d multilayers were predicted theoretically [45].
Motivated by these experimental and theoretical works, we
investigate Ir/Fe/Co/Pt and Ir/Co/Fe/Pt multilayer systems
and highlight that the DMI energy strongly depends on the
sequence of the Fe and Co layers. Finally, in Sec. IV, we
summarize our results and draw possible conclusions.

II. THEORETICAL BACKGROUND

A. Nonrelativistic Green’s function technique
for spin-spiral states

In this section, we present the nonrelativistic multiple
scattering formalism for homogeneous spin spirals along the
lines of Ref. [16]. Let us consider a lattice with translation
vectors Tn and basis vectors aν (ν = 1, . . . , M) defining the
inequivalent sublattices of the lattice. For layered systems Tn

are two-dimensional (2D) vectors, while aν point to different
layers. Note that for complex lattices the third (z) component
of aν should not necessarily be different for each of the layers.
In a homogeneous spin spiral the spin-magnetic moments,

Mνn = Mν Sνn, (1)

differ only in their orientations Sνn as

Sνn = R(n, φn) Sν0, (2)

where R(n, φn) (later on denoted by Rn) stands for a proper
rotation around the axis defined by the unit vector n by an
angle φn = qTn, where q is the propagation vector of the spin
spiral. If at the reference site of sublattice ν, corresponding to
T0 = 0, the direction of the spin is

Sν0 = n cos θν +[ et1 cos (ϕν ) + et2 sin (ϕν )] sin θν, (3)

x
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FIG. 1. Schematic representation of spin spirals with propaga-
tion vector q along the x axis and with different rotational axes
n. In case of (a), q ‖ n a Bloch-type spin spiral, while in case of
q ⊥ n (b) an in-plane or (c) an out-of-plane Néel-type spin spiral are
formed.

where et1 ⊥ n and et2 = n × et1, Sνn can be expressed as

Sνn = n cos θν + [et1 cos(qTn + ϕν )

+ et2 sin(qTn + ϕν )] sin θν. (4)

For layered magnetic systems, the propagation vector q
lies in the plane of the layers, usually chosen the (x, y) plane
of the global frame of reference, and the rotational axis n
is an arbitrary unit vector. Various types of spin spirals are
distinguished according to the relative direction of q and n.
Figure 1 illustrates a Bloch-type spin spiral with q ‖ n, as
well as an in-plane and an out-of-plane Néel-type spin spiral
with q ⊥ n. For these spin configurations, we choose θν =
π/2, consequently, Sνn ⊥ n, therefore, they represent flat spin
spirals.

As the charge density and the magnitude of the magnetiza-
tion density are identical for each sites in a sublattice, within
the local density approximation (LDA) of the density func-
tional theory, the effective potential V (r) and exchange field
B(r) also preserves the translational-rotational symmetry,

Vνn(r) = Vν (r), (5)

Bνn(r) = Sνn Bν (r) = Rn Sν0 Bν (r). (6)

The Kohn-Sham equation in cell n of sublattice ν can then can
be written as(−� + Vν (r) + μB

(
R−1

n σ
) · Sν0 Bν (r)

)
ψνn(r) = ε ψνn(r),

(7)

where we used atomic (Rydberg) units (h̄ = 1, 2m = 1) and
the vector σ comprises the Pauli matrices, defined as

σx =
(

0 1
1 0

)
, σy =

(
0 i
−i 0

)
, σz =

(−1 0
0 1

)
, (8)

by using ascending indices, {− 1
2 , 1

2 }, in spin space.
It should be noted that the Kohn-Sham Hamiltonian on the

left-hand side of Eq. (7) can be augmented by relativistic cor-
rections like the mass term, HM = −�2/c2, and the Darwin
term, HD = �V (r)/c2, where c = 137.036 is the speed of
light in atomic units. The usual way to include these terms
in electronic structure calculations is the scalar-relativistic
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approximation to the Dirac equation [14,46,47]. In our scalar-
relativistic calculations, we used the implementation intro-
duced by Ebert et al. [48] for the case of spin-orbit coupling
scaled down to zero.

The transformation of the Pauli matrices can be expres-
sed as

R−1
n σ = U +

n σ Un, (9)

where the unitary 2 × 2 matrix Un is given by

Un = exp

(
i

2
nσφn

)
= exp

(
i

2
(nσ )(qTn)

)
. (10)

Thus the Kohn-Sham equation for cell νn takes the form

(−� + Vν (r) + μB σ · Sν0 Bν (r))Unψνn(r) = ε Unψνn(r),

(11)

which implies that if ψνn(r) is a solution of the Schrödinger
equation in cell νn, then Unψνn(r) is a solution for cell ν0.

Within the nonrelativistic multiple scattering theory
(MST), the (�ms) = (Ls) angular momentum-spin repre-
sentation is used with the free-space solutions JLs(ε, r) =
j�(

√
εr)Y�m(r̂)φs and HLs(ε, r) = h(1)

� (
√

εr)Y�m(r̂)φs, where
j�(x) and h(1)

� (x) are the spherical Bessel functions and
the spherical Hankel functions of the first kind, respec-
tively, Y�m(r̂) are spherical harmonics, while φs denote spinor
basis functions. Introducing the vector notation, J (ε, r) =
{JLs(ε, r)} and H(ε, r) = {HLs(ε, r)}, the regular and irreg-
ular scattering solutions of the Kohn-Sham equation (11)
are normalized beyond the radius of the atomic (muffin-tin)
sphere as

Zνn(ε, r) = J (ε, r)t−1
νn (ε) − i

√
εH(ε, r) (12)

and

Jνn(ε, r) = J (ε, r), (13)

respectively, where t−1
νn (ε) is the inverse of the single-site t

matrix in the (Ls) representation.
According to Eq. (11), Un ZL s

νn (ε, r) is a solution of the
Schrödinger equation at site ν0, therefore it must be a linear
combination of the functions ZL s

ν0 (ε, r). Taking into account
the boundary condition (12), this implies

Un Zνn(ε, r) = Zν0(ε, r)U n, (14)

and similar for the functions Jνn(ε, r), together with the
transformation of the single-site t matrices,

tνn(ε) = U +
n tν0(ε)U n, (15)

where we introduced the matrix U n = {δLL′U ss′
n }.

The following matrices in composite site-angular
momentum-spin space:

t (ε) = {δνμδnmtνn(ε)} (16)

and

G
0
(ε) = {G0,νn,μm(ε)} (17)

are used to calculate the matrix of the scattering-path operator
(SPO),

τ (ε) = [
t (ε)−1 − G

0
(ε)

]−1
. (18)

In Eq. (17), G0,νn,μm(ε) = {δss′GLL′
0,νn,μm(ε)} denote the spin-

independent free-space (bare) structure constants.
Utilizing the transformation of the t matrices (15), the SPO

matrix can be expressed as

τ νn,μm(ε) = U +
n τ̃ νn,μm(ε)U m, (19)

where the τ̃ νn,μm(ε) matrices can be calculated as

τ̃ (ε) = [̃t (ε)−1 − G̃
0
(ε)]−1, (20)

with t̃ (ε) comprising t matrices that are identical within each
sublattice

t̃ (ε) = {δνμδnmtν0(ε)} (21)

and

G̃
0
(ε) = {U nG0,νn,μm(ε)U +

m}. (22)

Exploiting the lattice Fourier transform of the free-space
structure constants and Eq. (10), the above quantity can be
expressed

U nG0,νn,μm(ε)U +
m = 1

�BZ

∫
BZ

ei(Tm−Tn )k G̃0,νμ(k, ε)dd k,

(23)

where d = 2 or 3 for two-dimensional or three-dimensional
translational invariance, respectively, and written out in spin
space

G̃0,νμ(k, ε) = 1

2

(
G0,νμ

(
k+ q

2 , ε
)
(1 − nz ) + G0,νμ

(
k− q

2 , ε
)
(1 + nz ) (nx + inz )

[
G0,νμ

(
k+ q

2 , ε
) − G0,νμ

(
k− q

2 , ε
)]

(nx − iny)
[
G0,νμ

(
k+ q

2 , ε
) − G0,νμ

(
k− q

2 , ε
)]

G0,νμ

(
k+ q

2 , ε
)
(1 + nz ) + G0,νμ

(
k− q

2 , ε
)
(1 − nz )

)
,

(24)

where nx, ny, and nz are the Cartesian components of the vec-
tor n and G0,νμ(k, ε) stands for the lattice Fourier transform
of the free-space structure constants that can be obtained via
Ewald summation [49–53]. For the case of a rotational axis
parallel to the z axis (nx = 0, ny = 0, nz = 1), G̃0,νμ(k, ε)
takes the diagonal form as reported in Ref. [16].

Utilizing also the translational invariance of the t̃ matrices
in Eq. (21), the matrices τ̃ νn,μm(ε) can be evaluated as

τ̃ νn,μm(ε) = 1

�BZ

∫
BZ

ei(Tm−Tn )k τ̃ νμ(k, ε)dd k, (25)
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where τ̃ νμ(k, ε) are the blocks of the inverse of the following
matrix in sublattice-angular momentum-spin space:

M̃(k, ε) = {
δνμtν0(ε)−1 − G̃0,νμ(k, ε)

}
. (26)

The SPO-matrix can then be obtained from the transformation
Eq. (19).

The Green’s function within the MST is given as

G(r + Rνn, r′ + Rμm; ε) = Zνn(r; ε)τ νn,μm(ε)Zμm(r′; ε)×

− δνμδnm Zνn(r<; ε)Jνn(r>; ε)×,

(27)

with r< and r> denoting r or r′ with the smaller and larger
magnitudes, respectively, while the superscript × stands for
the functions when replacing YL(r̂)φs by YL(r̂)∗φ+

s in Eqs. (12)
and (13). It is straightforward to show from Eqs. (14) and (19)
that the site-diagonal Green’s function transforms as

G(r + Rνn, r′ + Rνn; ε) = UnG(r + Rν0, r′ + Rν0; ε)U +
n ,

(28)

which immediately implies that the charge and magnetization
densities are the same in each atomic cell of a sublattice
and the spin-magnetic moments rotate from site to site ac-
cording to Eq. (2). This means that the homogeneous spin-
spiral state treated in terms of generalized Bloch theorem is
consistent with the nonrelativistic density functional theory
and a self-consistent calculation for a given wave vector q
can be performed on the cost of a calculation of a periodic
collinear magnetic state. It should be noted that if Sν0 ⊥
n does not apply, i.e., in case of conical spin spirals, the
spin configuration does not correspond to a stationary state,
therefore, the self-consistent electronic structure should be
determined by exerting appropriate transversal constraint to
the local moments.

B. Relativistic correction to the spin-spiral energy

Within a relativistic theory the above formalism can not
be used for calculating the electronic structure of a spin-
spiral state. Formally, one can see this by using the fact
that, even neglecting orbital polarization effects, the operator
Wn = exp ( i

h̄ (nJ)(qTn)), J = L + S being the total angular
momentum operator, must be used to describe the rotation of
the spin moments, which precludes to express the structure
constants, G̃0,νn,μm(ε), via lattice Fourier transformation as
in Eq. (23). In more feasible terms, the magnetic anisotropy
induced by the spin-orbit coupling (SOC) differentiates be-
tween different directions of the magnetic moments in the
spin spiral, thus alters the electronic states from site to site.
It is well-known also from spin-model simulations that in
the presence of magnetic anisotropy an inhomogeneous spin
spiral is formed [54]. Consequently, when including spin-orbit
coupling, supercell calculations as based on constrained local
moments are needed to treat homogeneous spin-spiral states
self-consistently [26].

In case the strength of the SOC is small as compared to
the exchange splitting of the magnetic atoms, a perturbative
treatment of the SOC is appropriate. Such a method has
widely been used in spin-spiral calculations based on the
FLAPW method as described in Ref. [25]. For thin films and

multilayers built up of 3d magnetic and 4d-5d heavy metal
elements, the exchange splitting of the 3d transition metal el-
ements and the splitting of the d states of the heavy metal ele-
ments due to SOC can be of comparable size (∼1 eV). How-
ever, the SOC affects the magnetism of the 3d elements either
via interatomic hybridization between the 3d and 4d/5d
states [27] or via RKKY interaction mediated by conduction
electrons [55], thus it can be considered as a relatively small
perturbation with respect to the exchange splitting.

As what follows we present a numerical scheme based on
the magnetic force theorem to include the effect of SOC in
first order. Instead of calculating the total energy of the spin
spiral, we will consider the zero-temperature grand potential
of the electronic system

� =
∫ EF

−∞
dε(ε − EF )n(ε) = −

∫ EF

−∞
dεN (ε), (29)

where EF denotes the Fermi energy, n(ε) is the density of
states and N (ε) is the integrated density of states. Employing
Lloyd’s formula [56], the grand potential can be expressed
within MST as

� = − 1

π
Im

∫ EF

−∞
dεTr ln τ (ε). (30)

Introducing the difference between the inverse t matrices in
the presence of SOC, t ′(ε), and in the absence of SOC, t (ε),

�m(ε) = t ′(ε)−1 − t (ε)−1, (31)

the change of the grand potential to first order in �m(ε) can
be expressed as, see Ref. [19],

�� 	 1

π
Im

∫ EF

−∞
dε Tr(�m(ε)τ (ε)) (32)

= 1

π

∑
νn

Im
∫ EF

−∞
dε Tr(�mνn(ε)τ νn,νn(ε)), (33)

where τ νn,νn(ε) are the SPO matrices related to the spin spiral
within the nonrelativistic theory.

In the presence of SOC, we write the Hamiltonian in cell
νn as

H ′
νn = Hνn + HSOC

ν , (34)

where Hνn is the nonrelativistic Kohn-Sham Hamiltonian and,
for spherical potentials, the Hamiltonian of the spin-orbit
coupling is given by

HSOC
ν = ξν (r) LS, (35)

with

ξν (r) = 1

2m2c2

1

r

dVν (r)

dr
, (36)

where L and S denote the operators of the electron’s angular
momentum and spin, respectively. In order to evaluate the
change of the t matrix due to SOC, we use the regular
solutions

Rνn(r, ε) = Zνn(r, ε)tνn(ε), (37)

normalized beyond the radius of the atomic sphere Sν as

Rνn(r, ε) = J (r, ε) − i
√

εH(r, ε)tνn(ε), (38)
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where H(r, ε) are the Hankel-type solutions of the free-space
Schrödinger equation. The first-order (Born) approximation to
the Lippmann-Schwinger equation for R′

νn(r, ε) then reads

R′
νn(r, ε) = Rνn(r, ε) +

∫
r′<Sν

d3r′ Gνn(r, r′, ε)

× HSOC
ν (r′)Rνn(r′, ε), (39)

where Gνn(r, r′, ε) is the single-site Green’s function, which
for r > Sν and r′ < Sν can be expressed as

Gνn(r, r′, ε) = −i
√

εH(r, ε)Rνn(r′, ε)×. (40)

Inserting Eq. (40) into Eq. (39), we obtain a form like
Eq. (38) for R′

νn(r, ε) from which the change of the t matrix
can be read off,

�tνn(ε) =
∫

r<Sν

d3r Rνn(r, ε)×HSOC
ν (r)Rνn(r, ε). (41)

Using the relationship Eq. (37), �mνn(ε) can finally be ex-
pressed as

�mνn(ε) = −
∫

r<Sν

d3r Zνn(r, ε)×HSOC
ν (r)Zνn(r, ε). (42)

We have to emphasize that the regular solutions Zνn(r, ε)
and the SPO matrices τ νn,νn(ε) entering Eqs. (42) and (33),
respectively, refer to the nonrelativistic case, therefore, the
transformations (14) and (19) apply. From these, it follows
that

Tr(�mνn(ε)τ νn,νn(ε))= Tr(�mν0(ε; Sνn)τ ν0,ν0(ε; Sνn)),
(43)

where on the right-hand side we explicitly marked that at
the reference site ν0 the orientation of the magnetization
is changed from Sν0 to Sνn. Here we have to emphasize
that due to the first-order perturbation treatment of the SOC
there is no magnetic anisotropy included in the energy ��.
Consequently, such a change of the spin vector at the reference
site should not affect the contribution associated with site ν0.
We tested numerically that, within a relative accuracy of about
10−5, the different sites in a sublattice add the same amount
to the change of the energy (grand potential) due to the SOC,
thus, it is sufficient to evaluate only the term for ν0 in Eq. (33)
to obtain the energy correction per site.

We also note that it is possible to give an explicit expression
for the SOC-induced energy per site, ��. This is based on the
reformulation of Eq. (43)

Tr(�mνn(ε)τ νn,νn(ε)) = Tr(�m̂νn(ε)τ ν0,ν0(ε)), (44)

where �m̂νn(ε) is defined by taking

U +
n HSOC

ν (r)Un = ξν (r) L
(
R−1

n S
)

(45)

instead of HSOC
ν (r) in Eq. (42) with the scattering solutions

Zν0(r, ε). Averaging R−1
n S over n for a wavelength of the spin

spiral yields n(nS), where n refers to the axis of the rotation.
Thus we arrive at

�� = 1

π

∑
ν

Im
∫ EF

−∞
dε Tr(�mν (ε)τ ν0,ν0(ε)), (46)

with

�mν (ε) = −
∫

r<Sν

d3r Zν0(r, ε)×ξν (r)(nL)(nS)Zν0(r, ε).

(47)

Despite of the above closed expression for ��, we used the
ν0 term in Eq. (33) to calculate the DM energy per site of
the spin spiral, since the evaluation of the matrix in Eq. (42)
is fairly simple when working in the relativistic ( j, �, mj )
representation.

Because of the missing magnetic anisotropy �� vanishes
at q = 0 and it changes sign when reversing the wave vector,
q → −q, or, equivalently, the sense of rotation, n → −n. ��

can therefore be identified with the DM energy of the spin
spiral, EDM, which we add to the self-consistent nonrelativistic
total energy associated with the energy of isotropic spin-
spin interactions. In addition, the expression (47) should be
correlated with the fact that only the components of the DM
vectors being parallel to n contribute to the DM energy of a
spin spiral.

C. Spin-model parameters

For comparison with the results of the spin-spiral calcu-
lations as outlined above, we will use the extended classical
Heisenberg model,

H = −1

2

∑
i j

SiJi jS j −
∑

i

SiKiSi, (48)

where Si denotes the spin vector at the atomic site i, Ji j
is the exchange coupling tensor [19], and Ki is the on-site
anisotropy matrix. The exchange coupling tensor can be de-
composed into an isotropic, an antisymmetric and a traceless
symmetric parts,

Ji j = Ji j I + 1
2

(
Ji j − JT

i j

) + [
1
2

(
Ji j + JT

i j

) − Ji j I
]
, (49)

where I stands for the 3 × 3 unit matrix. The isotropic part
Ji j = 1

3 TrJi j represents the Heisenberg couplings between
the magnetic moments. According to the sign convention of
Eq. (48), Ji j > 0 and Ji j < 0 indicate ferromagnetic (FM)
and antiferromagnetic (AFM) couplings, respectively. The
antisymmetric part of the exchange tensor can be identified
with the DM vector Di j as follows:

Si
1
2

(
Ji j − JT

i j

)
S j = Di j (Si × S j ). (50)

The traceless symmetric part of the exchange tensor is related
to the two-site magnetic anisotropy, while the second term
on the right-hand side of Eq. (48) to the one-site magnetic
anisotropy. In all cases considered in this work, the symmetry
of the system implied uniaxial on-site anisotropy −∑

i KiS2
i,z.

The spin-model parameters in Eq. (48) were determined by
using the relativistic torque method as outlined in Ref. [19].
Note that, in order to obtain all the matrix elements of the 3 ×
3 exchange coupling matrices, ferromagnetic reference states
oriented along different crystallographic directions should be
used [19]. In order to produce coupling matrices that respect
the symmetry of the lattice, for these orientations, we consid-
ered the out-of plane (z) direction and, in case of C4v and C3v

point-group symmetry, two and three independent in-plane
directions, respectively.
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In order to facilitate a comparison between the spin-spiral
calculations and the spin model, Eq. (48), in case of fcc(111)
and hcp(0001) surfaces, we also determined the effective
interaction parameters from the atomic interaction parameters
derived for a large number of neighbors using RTM. Accord-
ing to Ref. [57], the effective spin-model parameters for C3v

point group symmetry are defined as

Jeff = 1

4

∑
j

Ji j
(
Ry

i j

)2
, (51)

Deff =
∑

j

Dx
i jR

y
i j, (52)

known also as the spin stiffness [58] and spiralization [59],
respectively. In the above equations, Ry

i j denotes the y com-
ponent of the lattice vector pointing from site i to site j, Ri j .
The relationship between the micromagnetic and the effective
parameters is given by

J = 1

Va
Jeff , D = 1

Va
Deff . (53)

where Va =
√

3
2 a2

2Dt is the atomic volume, a2D and t being the
in-plane lattice constant and the film thickness, respectively.
Beyond the effective and micromagnetic parameters we can
also define effective nearest-neighbor interactions, J and D,
which are related to the effective parameters as

Jeff = 3
4 a2

2DJ, Deff = 3
2 a2DD. (54)

In the present case we use the same sign convention as
in Ref. [57], namely, D > 0 corresponds to the left-handed
(counterclockwise) rotational direction, while D < 0 to the
right-handed (clockwise) rotational direction. The effect-
ive spin-model parameters can obviously determined from the
long-wavelength (small-wave-number) limit of the spin-wave
spectrum: Jeff is related to the curvature of the nonrelativistic
energy dispersion, while Deff to the slope of the SO induced
contribution at q = 0. From the calculated self-consistent total
energy of the spin spirals, we also determined the isotropic
exchange parameters for several neighbors using least-squares
fit, where the isotropic couplings from the RTM served as
initial parameters for the fitting procedure.

In our applications, we considered out-of-plane cycloidal
spin spirals implying that all the spin vectors are in the
(q, z) plane. It is well-known that in this case, the uniaxial
anisotropy gives a contribution of −Ki/2 to the energy per
site of a homogeneous spin spiral, while it adds −Ki to the
energy of the ferromagnetic state along the z direction with
respect to an in-plane direction of the magnetization. We
then approximated the missing magnetic anisotropy part to
the energy of the spin spirals by adding half of the mag-
netoscrystalline anisotropy energy (MAE) calculated for the
ferromagnetic system. We derived the MAE in the spirit of the
magnetic force theorem as a difference of the grand potential
based on the band energy between the x and z direction of the
magnetization, MAE = �x − �z [29,34,60].

In all calculations, we used the atomic sphere approx-
imation (ASA) for the effective potential with an angular
momentum cutoff �max = 2 and the local spin-density approx-
imation as parametrized by Vosko et al. [61]. The energy

TABLE I. Isotropic exchange couplings for the first five nearest
neighbors in a Mn monolayer on W(001) obtained by fitting of the
spin-spiral energies to a Heisenberg model and from the relativistic
torque method. Note that only J2 + 2J3 could be determined from
the fitting procedure. For comparison, the corresponding parameters
reported in Ref. [35] are also shown as multiplied by two according
to the spin model Eq. (48).

Method J1 J2 + 2J3 J4 J5

Spin spiral 59.62 −29.27 −1.54 −0.55
RTM 51.38 −26.23 −2.87 0. 81
Spin spiral [65] 39.4 −11.0 −1.0 −0.30

integrals were performed along a semicircle contour in the up-
per complex energy semiplane. In case of the self-consistent
calculations, we used 3300–3600 k points in the full Brillouin-
zone, while for the calculation of the DM energy, more than
12 000 k points were necessary to achieve a reliable accuracy.

III. RESULTS

A. Mn monolayer on W(001)

First we investigated the magnetic ground state of a Mn
monolayer on W(001) in terms of spin-spiral calculations as
implemented within the SKKR code for layered system. The
model system consisted of four W layers, one Mn monolayer
and three layers of empty spheres between a semi infinite W
substrate and a semi infinite vacuum region. For the W and Mn
layers epitaxial growth was assumed on a bcc(001) surface
with the in-plane lattice constant of W(001), a2D = 3.165 Å.
The interlayer distance between the Mn layer and the topmost
W layer was optimized by VASP calculations [62–64]. Relative
to the interlayer distance in bulk W we found an inward
relaxation of 12.6% for the Mn monolayer.

The total energy of homogeneous flat spin spirals, Etot

propagating along the (110) direction is shown in Fig. 2(a)
as a function of the wave number q. The magnitude of the Mn
magnetic moment remained nearly constant with a value of
3.15 μB, while the induced moments of the W atoms changed
in magnitude as a function of the wave number of the spin
spiral. Note that at the M point of the Brillouin zone, i.e., for a
row-wise AFM configuration of the Mn moments, the induced
moments of W vanishes. Apparently, as the state with lowest
energy, we obtained a spin spiral with a wave number of q =
0.3 Å

−1
, thus, with a wavelength of λ = 2.1 nm. This is in

relatively good agreement with the corresponding wavelength
of λ = 3.1 nm reported in Ref. [35] for the same system in
terms of FLAPW spin-spiral calculations. The energy gain of
this spin spiral is about 3 meV/Mn atom with respect to the
ferromagnetic state.

We fitted the calculated total energies of the spin spirals
to an isotropic Heisenberg model containing the first five
nearest-neighbor (NN) interactions. We found that the fitted
curve matched the calculated points very accurately along the
whole �M line. The fitted interactions are shown in Table I,
together with those calculated by using the RTM. It should be
mentioned that along this propagation direction of the spin
spiral, the second and third NN couplings (J2 and J3) can
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FIG. 2. (a) Calculated energies, ESS of out-of-plane homoge-
neous cycloidal spin spirals in a Mn monolayer on W(001) relative to
the ferromagnetic state, EFM, along the �M direction in the Brillouin
zone (see inset). The sum of the nonrelativistic spin-spiral total
energy, Etot and the Dzyaloshinskii-Moriya energy, EDM implies a
right-handed cycloidal spin spiral as the magnetic ground state of
the system. The dashed line represents the spin-spiral energy E (q)
determined from the spin model in Eq. (48) using just the isotropic
and DM coupling parameters calculated via the RTM. (b) The
calculated DM energy of the spin spirals, see Eq. (33), with its
decomposition into Mn and W contributions.

not be obtained independently from a fitting up to the fifth
NN interactions, since only J2 + 2J3 can uniquely be deter-
mined. We therefore present this value in Table I. Obviously,
the dominant coupling is the strong ferromagnetic nearest-
neighbor interaction, while the farther interactions are anti-
ferromagnetic and considerably smaller in size than the NN
interaction. The interactions obtained from the two methods
compare well to each other, except for the fifth NN coupling
which is ferromagnetic for the RTM and antiferromagnetic in
case of the spin-spiral fit. The isotropic interactions fitted to
spin-spiral energies calculated by the FLAPW method [65]
are also listed in Table I. Note that due to the definition of
the spin Hamiltonian in Eq. (48), the parameters given in
Ref. [65] were multiplied by a factor of two. While there is
an overall good agreement between the parameters obtained

from the two spin-spiral calculations, J1 and J2 + 2J3 from
the FLAPW method are clearly smaller in magnitude than
our calculated values. This can partly be attributed to the
considerably smaller inward relaxation of the Mn monolayer
used in the FLAPW calculations (4.7%) [66] as compared to
our calculations (12.6%).

The DM energy, EDM calculated from Eq. (33) adds an
antisymmetric term to the spin-spiral dispersion as shown
in Fig. 2(b). As a result we find the energy minimum for
a right-handed cycloidal spin spiral with a period of λ =
1.92 nm, which agrees well both with the experimental value
of λ = 2.1 nm and with the value of λ = 2.3 nm obtained
from FLAPW spin-spiral calculations including SOC [35].
Reassuringly, the W atoms exhibiting large SOC and consid-
erable spin-polarization have an overwhelming contribution
to the DM energy, while the contribution of the Mn atoms is
negligible, see Fig. 2(b). For small q values, the DM energy
of the spin spirals is proportional with q and from the slope
of the curve an effective nearest-neighbor DM interaction of
11.6 meV can be fitted, which is in good agreement with the
corresponding value of 9.2 meV reported in Ref. [35] using
our convention for the exchange interactions, see above. The
spin-spiral energies based on the spin model (48) with the ten-
sorial interactions from the RTM but excluding the anisotropy
terms are also presented in Fig. 2(a). In accordance with the
spin-spiral calculations this also prefers a right-handed spin
spiral, nevertheless with a somewhat smaller period of 1.6 nm.

We can account for the magnetic anisotropy as explained in
Sec. II C. Within the framework of magnetic force theorem,
we found an out-of plane anisotropy with value of K =
4.15 meV. This implies that the energy of the spin spirals
should be shifted upwards with respect to the energy of the
FM state by K/2 = 2.08 meV, close to the value of 1.8 meV
reported in Ref. [35]. Since this energy shift is much smaller
than the energy gain of the spin spiral due to isotropic and DM
interactions [>15 meV, see Fig. 2(a)], this spin-spiral state
remains lower in energy than the FM state.

B. Co monolayer on Pt(111)

Next we performed spin-spiral calculations for a Co mono-
layer on Pt(111). The self-consistently treated layer structure
considered in the SKKR method consisted of five Pt atomic
layers, one Co monolayer and three layers of empty spheres
between a semi-infinite Pt substrate and a semi-infinite vac-
uum region. For modeling the geometry of the system we used
the in-plane lattice constant of Pt(111), a2D = 2.774 Å, fcc
growth was assumed for the Pt layers and hcp stacking was
used for the Co monolayer. The distance between the atomic
layers were optimized in terms of VASP calculations. Relative
to the interlayer distance in bulk Pt, for the Co monolayer we
found an inward relaxation of 11%.

Considering homogeneous flat spin spirals rotating in the
xz plane (the axis x denoting an in-plane nearest-neighbor
direction), we calculated the total energy for q vectors along
the �K direction in the 2D Brillouin zone. The magnetic
moment of the Co atoms proved to be fairly independent
of q with a value of 2.13 μB and the Pt layers showed to
have induced moments changing according to the spin-spiral
wave vector. In Fig. 3(a), the calculated nonrelativistic and

134428-7



E. SIMON AND L. SZUNYOGH PHYSICAL REVIEW B 100, 134428 (2019)

FIG. 3. (a) Calculated self-consistent nonrelativistic total ener-
gies relative to the ferromagnetic state, Etot and as corrected with
the DM energy, Etot + EDM for homogeneous cycloidal spin spirals
propagating along the �K direction in the 2D Brillouin zone (see
inset) for a Co monolayer on Pt(111) with hcp stacking. The dashed
line, E (q) represents the spin-spiral energy determined from a spin
model containing isotropic and DM interactions between the Co
atoms calculated from the RTM. (b) DM energy of the spin spirals
with a decomposition into Co and Pt contributions.

relativistic dispersion of the spin spirals are shown, the latter
one obtained by adding the DM term (33) to the nonrelativistic
spin spiral energy. The spin-spiral energy calculated from
the spin model (48) with only isotropic and DM interactions
determined by RTM is also presented in Fig. 3(a).

Within the investigated range of q, the nonrelativistic spin-
spiral dispersion turned out to be fairly parabolic, thus a fit
to a Heisenberg spin model allowed us to determine the first
two nearest-neighbor interactions between the Co moments,
J1 and J2. We also calculated the effective and micromagnetic
isotropic parameters defined in Eqs. (51), (53), and (54), Jeff ,
J , and J , respectively. These parameters are listed in Table II.
The interactions derived from the RTM were previously re-
ported in Ref. [37] for hcp stacking of the Co monolayer.
For comparison, the corresponding values for J1 and J2, as
well as for the effective and micromagnetic parameters are

TABLE II. Isotropic nearest-neighbor interaction J1 and next-
nearest-neighbor interaction J2 between the Co moments, as well
as the effective nearest-neighbor interaction J , the spin stiffness
Jeff and the micromagnetic exchange parameter J for Co/Pt(111)
with hcp stacking of the Co monolayer obtained from nonrelativistic
self-consistent spin-spiral calculations and from the RTM.

J1 J2 J Jeff J
Method (meV) (meV) (meV) (meV Å

2
) (pJ/m)

Spin spiral 58.81 2.08 65.30 376.87 47.80
RTM 44.43 2.41 50.15 289.45 36.71

also presented in Table II. We find that the self-consistent
spin-spiral calculations give a NN isotropic coupling and
effective parameters by about 30% larger than the respective
parameters from the torque method. This difference can be
attributed to the ferromagnetic coupling between the Co mo-
ments and the induced moments of Pt that are included in
the self-consistent spin-spiral calculations, but not taken into
account in the Co-Co interactions obtained from the RTM.

By using Eq. (33), we calculated the DM contribution
to the spin-spiral energy and presented it in Fig. 3(b). Due
to the large SOC of Pt, the DM energy mainly originates
from the topmost Pt layer, while the Co layer has a much
smaller contribution. From the slope of the EDM curve at
q = 0 we determined the spiralization Deff , the microscopic
DM parameter D from Eq. (53) and the effective nearest-
neighbor DM coupling D from Eq. (54). We also derived
these parameters based on the previously reported in-plane
DM interactions calculated in terms of the RTM [37] and
summarized them in Table III. Most likely again due to the
strong interaction between the Co and Pt moments, the effec-
tive DM parameters turned out to be by about 50% larger in
case of the spin-spiral calculations as compared to the torque
method and in both calculations the rotational direction of the
DM vectors is left-handed (counterclockwise) in agreement
with other theoretical results [26,36,37,59]. Due to the large
ferromagnetic isotropic coupling, the energy gain from the
formation of spin-spiral states is negligible and the easy-axis
MAE of 0.57 meV (see in Ref. [37]) clearly stabilizes an
out-of-plane ferromagnetic ground state.

C. Co/Pt(111) capped by a Ru overlayer

In Ref. [57], we showed that the DM interaction is de-
creased when Co/Pt(111) is capped by a 5d monolayer. In this
section, we examine the effect of the 4d Ru overlayer on top of
Co/Pt(111) which was recently claimed to induce enhanced

TABLE III. Effective nearest-neighbor DM interaction D, spiral-
ization Deff and micromagnetic DM parameter D for a Co monolayer
deposited on Pt(111) with hcp stacking obtained from fitting to EDM

in Fig. 3(b) and directly from the RTM.

Method D (meV) Deff (meV Å) D (mJ/m2)

Spin spiral 2.84 11.82 14.99
RTM 1.84 7.65 9.71
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FIG. 4. (a) Calculated nonrelativistic self-consistent spin-spiral
total energies relative to the ferromagnetic state, Etot and the disper-
sion including the DM energy, Etot + EDM along the �K direction
in the 2D Brillouin zone for a Co monolayer on Pt(111) capped
by a Ru overlayer. The dashed line, E (q) represents the spin spiral
energy determined from isotropic and DM interactions derived from
the RTM. (b) DM energy and its contributions from the Pt layers,
from the Co and the Ru monolayers.

interfacial DMI [40]. The thin film system was modelled by
four monolayers of Pt, one Co monolayer, one Ru monolayer
and three monolayers of empty sheres between a semi-infinite
Pt substrate and a semi-infinite vacuum region. We used
the in-plane lattice constant of the Pt(111) surface, a2D =
2.774 Å. From VASP calculations we have found an inward
relaxation for the Co monolayer and for the Ru overlayer of
−8% and −15% relative to the interlayer distance in bulk Pt,
respectively. We assumed fcc growth for the Pt layers, while
hcp stacking for the Co and Ru monolayers.

Figure 4(a) shows the spin-spiral dispersion as a function
of the spin-spiral wave vector along the �K direction for the
Ru/Co/Pt(111) system. The magnitude of the Co magnetic
moment of 1.90μB was fairly the same for any q, while the
Ru and Pt layers exhibited induced moments decreasing in
size with increasing q. Similar to the uncapped Co/Pt(111)
monolayer, the nonrelativistic spin-spiral dispersion indicates

the preference of a ferromagnetic order. From a parabolic
fit of the nonrelativistic dispersion, we obtained an effective
isotropic nearest-neighbor interaction of JSS = 44.43 meV,
implying that the Ru overlayer decreased the FM coupling be-
tween the Co atoms as compared to the uncapped Co/Pt(111)
system (compare with the value of 65.30 meV in Table II).
From the RTM calculations, we determined a value of JRTM =
35.72 meV, which also reflects the reduced isotropic Co-Co
interaction.

The calculated Dzyaloshinskii-Moriya energy and its lay-
erwise composition is presented in Fig. 4(b). Apparently, the
Ru overlayer significantly contributes to EDM for larger q
values and it has the same sign as the contribution of the Pt
layers, which is slightly enhanced as compared to the case
of uncapped Co/Pt(111). In spite that the Co monolayer has
now a remarkably reduced contribution, the Ru overlayer
overall increase the DM energy. This is reflected also in the
effective NN DM interaction of DSS = 3.87 meV which is
by about 1 meV larger than for the uncapped system, see
in Table III. From the RTM method, we also found a larger
effective DM parameter, DRTM = 3.14 meV as compared to
DRTM = 1.84 meV for Co/Pt(111). The rotational direction of
the in-plane DM vectors is left-handed as in the Co/Pt(111)
system. The Ru overlayer also drastically modified the mag-
netic anisotropy, because the preferred magnetization direc-
tion became in-plane, while for the uncapped system we
obtained an out-of plane magnetization. The obtained in-plane
anisotropy energy, Ex − Ez = −0.56 meV, is larger in magni-
tude than the very small energy gain from the formation of a
spin-spiral state, indicating that the magnetic ground state is
in-plane ferromagnetic. Note that in Ref. [40], a perpendicular
magnetic anisotropy has been observed for the Co/Pt/Ru
multilayers, but this does not contradict our present result,
which refers to an overlayer system with a free surface.

D. Pt/(FeCo)/Ir multilayer systems

Finally, we investigated periodic Pt/(FeCo)/Ir
superlattices to model the [Ir(10 Å)/Fe(0–6 Å)/Co(4–6 Å)/
Pt(10 Å)]20 multilayers in which room-temperature magnetic
skyrmions have been found recently [42]. In the calculations,
we considered an Fe and a Co monolayer in both possible
sequences, sandwiched between an Ir and a Pt bilayer,
and repeated this unit periodically along the direction
normal to the planes. As what follows we will label these
multilayers by Pt/Co/Fe/Ir and Pt/Fe/Co/Ir. For the
hexagonal layers, we used the in-plane lattice constant of
Ir(111), a2D = 2.714 Å. The Pt, Ir, and Fe monolayers were
stacked in fcc geometry. For the Co monolayer, both hcp and
fcc stackings were considered, however, the self-consistent
spin-spiral calculations were performed only for the fcc
stacking of the Co layer. The interlayer distances were
optimized from VASP calculations, where we found that the
interlayer distances were independent on the stacking of the
Co layer. The calculated interlayer distances are summarized
in Table IV. These interlayer distances were used in the
self-consistent spin-spiral SKKR and RTM calculations
and the Wigner-Seitz radii of the atomic spheres in the
Co, Fe, Pt, and Ir layers were modified according to the
relaxations.
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TABLE IV. Interlayer distances for the two considered multi-
layer structures, Pt/Fe/Co/Ir and Pt/Co/Fe/Ir, after structural relax-
ations by using the VASP code. All distances are given in angstrom.

dPt-Pt dPt-Fe dFe-Co dCo-Pt dIr-Ir

Pt/Fe/Co/Ir 2.56 2.14 2.02 2.10 2.21
dPt-Pt dPt-Co dCo-Fe dFe-Pt dIr-Ir

Pt/Co/Fe/Ir 2.54 2.15 1.99 2.12 2.22

The calculated spin-spiral dispersions for the Pt/Fe/Co/Ir
and Pt/Co/Fe/Ir multilayer structures are shown in Fig. 5
for a propagation direction along the �K line in the 2D
Brillouin zone. The fairly stable moments of the Fe and
Co were mFe = 2.84 μB and mCo = 1.59 μB for Pt/Fe/Co/Ir,
and mCo = 1.83 μB and mFe = 2.43 μB for Pt/Co/Fe/Ir. The
nonrelativistic total energy dispersion curve shows a faster
increase for Pt/Fe/Co/Pt than for Pt/Co/Fe/Pt, while in both
cases. a shallow minimum can be found at small q, which
indicates the appearance of frustrated isotropic interactions.

FIG. 5. Calculated self-consistent nonrelativistic total energies
of out-of-plane cycloidal spin spirals, Etot , and as corrected with the
DM energy, Etot + EDM, along the �K direction of the 2D Brillouin
zone in case of (a) Pt/Co/Fe/Ir and (b) Pt/Fe/Co/Ir (b) multilayers
with fcc stacking of the Co monolayer. The dashed line, E(q) depicts
the energy of the spin spirals calculated by using a spin model
containing isotropic and DM interactions determined from the RTM.
The insets illustrate the layer sequence in a unit of the multilayers.

FIG. 6. Fe-Fe, Fe-Co, and Co-Co isotropic exchange interactions
Ji j as a function of the interatomic distance d for the Pt/Fe/Co/Ir
and Pt/Co/Fe/Ir multilayer systems in case of fcc-stacking of the
Co monolayer determined from the relativistic torque method. The
interactions only within a bilayer of CoFe or FeCo are shown.

We calculated the isotropic exchange interactions for the
Fe-Fe, Fe-Co and Co-Co pairs using the relativistic torque
method and plotted them in Fig. 6 as a function of the
interatomic distances in case of an fcc stacking of the Co layer.
Note that interactions are presented only within a bilayer of
CoFe or FeCo, since the interactions between the bilayers are
negligible. In both multilayer structures, the ferromagnetic
NN Fe-Fe, Fe-Co, and Co-Co interactions are dominating.
The NN Fe-Co interaction in Pt/Fe/Co/Ir is clearly enhanced
as compared to Pt/Co/Fe/Ir, being the main reason for the
steeper spin-spiral energy dispersion for Pt/Fe/Co/Ir seen in
Fig. 5. While the Fe-Co interactions remain ferromagnetic for
larger distances, the second and third NN Fe-Fe interactions,
as well as the third NN Co-Co interactions are antiferromag-
netic, which gives rise to frustration and to the stabilization of
long wavelength spin spirals as seen in Fig. 5.

The DM energy as calculated from Eq. (33) and its reso-
lution into layerwise contributions is shown in Fig. 7 for an
fcc stacking of the Co monolayer. In case of Pt/Fe/Co/Ir the
Pt layers have a dominating contribution to EDM, while the
contribution of the Ir layers is about ten times smaller and,
surprisingly, it is similar in magnitude as the contribution of
the Fe layer. Moreover, the contribution of Pt is different in
sign as those of Ir and Fe, and EDM prefers a right-handed
spin-spiral state. In case of Pt/Co/Fe/Ir structure, the con-
tribution of the Pt layers is practically unchanged, but the
contribution of the Ir layers enhances in size by a factor of
about five and becomes dominant in EDM. The contribution of
Fe considerably decreases and also reverses sign. Note that in
both cases the DM energy related to Co is negligible. As a
result, EDM for Pt/Co/Fe/Ir reverses sign as compared with
Pt/Fe/Co/Ir, thus it favors left-handed spin spirals.

From the slope of EDM at q = 0, we obtained the spiral-
ization Deff and the effective nearest-neighbor DM interac-
tion and presented them in Table V with the corresponding
parameters calculated in terms of the RTM for both the fcc
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FIG. 7. DM energy of out-of-plane cycloidal spin spirals, EDM,
propagating along the �K direction of the 2D Brillouin zone for the
Pt/Fe/Co/Ir and Pt/Co/Fe/Ir multilayer systems with fcc stacking
of the Co monolayer as calculated from Eq. (33). The contributions
of the Ir, Pt, Fe, and Co layers are also shown.

and hcp stacking of the Co monolayer. In case of fcc stacking
of the Co monolayer, by using both computational methods
the sign of the effective DM parameters is different for the
two multilayer systems indicating that the sense of rotation
of the DM vectors depends on the sequence of the magnetic
layers. On the contrary, for hcp stacking of the Co monolayer,
the sign of the DMI does not change and similar to the case
of together fcc stacking of Co, the effective DM coupling is
three times larger for Pt/Co/Fe/Ir than for Pt/Fe/Co/Ir.

By using the magnetic force theorem we also deter-
mined the magnetic anisotropy energy of the multilayer sys-
tems for both kinds of Co stacking. We have found that
the Pt/Fe/Co/Ir multilayer shows perpendicular magnetic
anisotropy in case of both the fcc and the hcp stacking of
Co, with �E = Ex − Ez = 0.76 and 0.36 meV, respectively.
In case of the Pt/Co/Fe/Ir multilayer with Co-fcc stacking,
we obtained an in-plane anisotropy with �E = −0.64 meV,
while for Co-hcp stacking an easy-axis anisotropy with �E =
0.59 meV. It is known, however, that the magnetic anisotropy
of multilayers is very sensitive to the growth conditions
[60,67,68] and, similarly as in Ref. [42], our calculated values

TABLE V. Effective nearest-neighbor DM interaction D and
spiralization Deff of the CoFe bilayers in the Pt/Fe/Co/Ir and
Pt/Co/Fe/Ir multilayers obtained from spin-spiral calculations and
from the relativistic torque method with different stackings of the Co
layer.

Stacking Method D (meV) Deff (meV Å)

Co-fcc Spin spiral −1.78 7.25
Pt/Fe/Co/Ir Co-fcc RTM −0.45 −1.83

Co-hcp RTM 1.11 4.52

Co-fcc Spin spiral 4.57 −18.60
Pt/Co/Fe/Ir Co-fcc RTM 2.66 10.83

Co-hcp RTM 3.28 13.35

of the MAE are much larger than the experimental values. Due
to the frustrated isotropic couplings between the Fe and Co
atoms and due to the large DM interaction, skyrmionic states
can then likely be stabilized in Pt/Co/Fe/Ir multilayers.

IV. SUMMARY AND CONCLUSIONS

In summary, by using the multiple scattering Green’s func-
tion technique we presented a theoretical approach to calcu-
late the electronic structure of layered systems with spiral
magnetic structure. For layered systems, the propagation di-
rection of the spin spiral is restricted to the plane of the layers,
while an arbitrary rotational direction can be chosen. The
nonrelativistic method allows for self-consistent calculations,
from which the total energy of the system can be obtained
as a function of the spin-wave vector. We employed a first-
order perturbation technique to include the effect of spin-orbit
coupling in the calculations. A particular advantage of this ap-
proach is that the energy related to the Dzyaloshinskii-Moriya
interactions can be resolved into layerwise contributions.

We performed ab initio calculations for ultrathin films
and multilayers and demonstrated that the newly developed
method gives an accurate access to the magnetism of these
systems. We found that the magnetic ground state of a Mn
monolayer on W(001) is a right-handed spin spiral in good
agreement with the experiment and calculations in Ref. [35].
From the spin-spiral dispersion we derived spin-model param-
eters, which compared well with the couplings calculated by
the relativistic torque method. We investigated the spin-spiral
states of a Co monolayer on Pt(111) with hcp stacking of
the Co monolayer and concluded that the ground state of
the system is ferromagnetic, similar to previous calculations
[36,38]. The nearest-neighbor isotropic exchange interaction
determined from the nonrelativistic spin-spiral dispersion was
found significantly larger than the corresponding interaction
from the torque method which can be attributed to the effect
of the induced moments of the Pt atoms, included inher-
ently in the spin-spiral calculations. For the Co monolayer
on Pt(111) capped by a Ru overlayer, we showed that the
isotropic coupling between the Co atoms is reduced, while
the interfacial DMI was increased. These results correlate
well with recent experiments on Pt/Co/Ru superlattices [40].
We also investigated Pt/Fe/Co/Ir and Pt/Co/Fe/Ir multilay-
ers and found that the nonrelativistic dispersion implies the
appearance of spin-spiral states with large wavelength due
to the frustrated couplings between the Fe and Co atoms.
Remarkably, the rotational sense of the DMI was opposite for
the two multilayers, which could be attributed to the largely
enhanced contribution of the Ir layer in the Pt/Co/Fe/Ir
multilayer. Moreover, we found that the effective DMI is three
times larger for Pt/Co/Fe/Ir than in case of Pt/Fe/Co/Ir
independently on the stacking of the Co layer.

Our results obtained from the presented spin-spiral ap-
proach provide thus a theoretical support to the fine-tuning of
the magnetic and nonmagnetic layers in multilayer structures
with the purpose of manipulating the interfacial DMI and
designing new building elements for spintronics applications
[42]. An obvious possibility to proceed on this way is to
consider disordered alloys in these structures that is easily

134428-11
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feasible within the Green’s function technique in terms of the
coherent potential approximation [16].
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Tran, C. K. Gan, F. Ernult, and C. Panagopoulos, Nat. Mater.
16, 898 (2017).

[43] A. Yagil, A. Almoalem, A. Soumyanarayanan, A. K. C. Tan,
M. Raju, C. Panagopoulos, and O. M. Auslaender, Appl. Phys.
Lett. 112, 192403 (2018).

[44] M. Raju, A. Yagil, A. Soumyanarayanan, A. K. C. Tan, A.
Almoalem, F. Ma, O. M. Auslaender, and C. Panagopoulos,
Nat. Commun. 10, 696 (2019).

[45] B. Dupé, G. Bihlmayer, M. Böttcher, S. Blügel, and S. Heinze,
Nat. Commun. 7, 11779 (2016).

[46] D. D. Koelling and B. N. Harmon, J. Phys. C 10, 3107 (1977).
[47] T. Takeda, Z. Phys. B Condens. Matter 32, 43 (1978).

134428-12

https://doi.org/10.1126/science.1145799
https://doi.org/10.1126/science.1145799
https://doi.org/10.1126/science.1145799
https://doi.org/10.1126/science.1145799
https://doi.org/10.1038/nnano.2013.29
https://doi.org/10.1038/nnano.2013.29
https://doi.org/10.1038/nnano.2013.29
https://doi.org/10.1038/nnano.2013.29
https://doi.org/10.1038/s41567-018-0050-y
https://doi.org/10.1038/s41567-018-0050-y
https://doi.org/10.1038/s41567-018-0050-y
https://doi.org/10.1038/s41567-018-0050-y
https://doi.org/10.1016/0304-8853(87)90721-9
https://doi.org/10.1016/0304-8853(87)90721-9
https://doi.org/10.1016/0304-8853(87)90721-9
https://doi.org/10.1016/0304-8853(87)90721-9
https://doi.org/10.1103/PhysRevB.89.214422
https://doi.org/10.1103/PhysRevB.89.214422
https://doi.org/10.1103/PhysRevB.89.214422
https://doi.org/10.1103/PhysRevB.89.214422
https://doi.org/10.1103/PhysRevB.79.144418
https://doi.org/10.1103/PhysRevB.79.144418
https://doi.org/10.1103/PhysRevB.79.144418
https://doi.org/10.1103/PhysRevB.79.144418
https://doi.org/10.1088/0953-8984/26/39/394002
https://doi.org/10.1088/0953-8984/26/39/394002
https://doi.org/10.1088/0953-8984/26/39/394002
https://doi.org/10.1088/0953-8984/26/39/394002
https://doi.org/10.1002/pssb.2221360119
https://doi.org/10.1002/pssb.2221360119
https://doi.org/10.1002/pssb.2221360119
https://doi.org/10.1002/pssb.2221360119
https://doi.org/10.1088/0953-8984/3/44/004
https://doi.org/10.1088/0953-8984/3/44/004
https://doi.org/10.1088/0953-8984/3/44/004
https://doi.org/10.1088/0953-8984/3/44/004
https://doi.org/10.1088/0305-4608/16/2/002
https://doi.org/10.1088/0305-4608/16/2/002
https://doi.org/10.1088/0305-4608/16/2/002
https://doi.org/10.1088/0305-4608/16/2/002
https://doi.org/10.1088/0953-8984/3/39/013
https://doi.org/10.1088/0953-8984/3/39/013
https://doi.org/10.1088/0953-8984/3/39/013
https://doi.org/10.1088/0953-8984/3/39/013
https://doi.org/10.1080/000187398243573
https://doi.org/10.1080/000187398243573
https://doi.org/10.1080/000187398243573
https://doi.org/10.1080/000187398243573
https://doi.org/10.1103/PhysRevB.69.024415
https://doi.org/10.1103/PhysRevB.69.024415
https://doi.org/10.1103/PhysRevB.69.024415
https://doi.org/10.1103/PhysRevB.69.024415
https://doi.org/10.1103/PhysRevB.83.144401
https://doi.org/10.1103/PhysRevB.83.144401
https://doi.org/10.1103/PhysRevB.83.144401
https://doi.org/10.1103/PhysRevB.83.144401
https://doi.org/10.1016/0022-3697(58)90076-3
https://doi.org/10.1016/0022-3697(58)90076-3
https://doi.org/10.1016/0022-3697(58)90076-3
https://doi.org/10.1016/0022-3697(58)90076-3
https://doi.org/10.1103/PhysRevLett.4.228
https://doi.org/10.1103/PhysRevLett.4.228
https://doi.org/10.1103/PhysRevLett.4.228
https://doi.org/10.1103/PhysRevLett.4.228
https://doi.org/10.1103/PhysRevB.68.104436
https://doi.org/10.1103/PhysRevB.68.104436
https://doi.org/10.1103/PhysRevB.68.104436
https://doi.org/10.1103/PhysRevB.68.104436
https://doi.org/10.1103/PhysRevB.79.045209
https://doi.org/10.1103/PhysRevB.79.045209
https://doi.org/10.1103/PhysRevB.79.045209
https://doi.org/10.1103/PhysRevB.79.045209
https://doi.org/10.1103/PhysRevB.82.100403
https://doi.org/10.1103/PhysRevB.82.100403
https://doi.org/10.1103/PhysRevB.82.100403
https://doi.org/10.1103/PhysRevB.82.100403
https://doi.org/10.1103/PhysRevB.99.104427
https://doi.org/10.1103/PhysRevB.99.104427
https://doi.org/10.1103/PhysRevB.99.104427
https://doi.org/10.1103/PhysRevB.99.104427
https://doi.org/10.1103/PhysRevB.83.024401
https://doi.org/10.1103/PhysRevB.83.024401
https://doi.org/10.1103/PhysRevB.83.024401
https://doi.org/10.1103/PhysRevB.83.024401
https://doi.org/10.1103/PhysRevB.84.224413
https://doi.org/10.1103/PhysRevB.84.224413
https://doi.org/10.1103/PhysRevB.84.224413
https://doi.org/10.1103/PhysRevB.84.224413
https://doi.org/10.1016/j.physb.2009.06.070
https://doi.org/10.1016/j.physb.2009.06.070
https://doi.org/10.1016/j.physb.2009.06.070
https://doi.org/10.1016/j.physb.2009.06.070
https://doi.org/10.1103/PhysRevLett.115.267210
https://doi.org/10.1103/PhysRevLett.115.267210
https://doi.org/10.1103/PhysRevLett.115.267210
https://doi.org/10.1103/PhysRevLett.115.267210
https://doi.org/10.1103/PhysRevB.96.024450
https://doi.org/10.1103/PhysRevB.96.024450
https://doi.org/10.1103/PhysRevB.96.024450
https://doi.org/10.1103/PhysRevB.96.024450
https://doi.org/10.1103/PhysRevB.88.134403
https://doi.org/10.1103/PhysRevB.88.134403
https://doi.org/10.1103/PhysRevB.88.134403
https://doi.org/10.1103/PhysRevB.88.134403
https://doi.org/10.1103/PhysRevB.59.4699
https://doi.org/10.1103/PhysRevB.59.4699
https://doi.org/10.1103/PhysRevB.59.4699
https://doi.org/10.1103/PhysRevB.59.4699
https://doi.org/10.1038/nphys2045
https://doi.org/10.1038/nphys2045
https://doi.org/10.1038/nphys2045
https://doi.org/10.1038/nphys2045
https://doi.org/10.1103/PhysRevLett.120.207202
https://doi.org/10.1103/PhysRevLett.120.207202
https://doi.org/10.1103/PhysRevLett.120.207202
https://doi.org/10.1103/PhysRevLett.120.207202
https://doi.org/10.1103/PhysRevB.49.2721
https://doi.org/10.1103/PhysRevB.49.2721
https://doi.org/10.1103/PhysRevB.49.2721
https://doi.org/10.1103/PhysRevB.49.2721
https://doi.org/10.1103/PhysRevB.52.8807
https://doi.org/10.1103/PhysRevB.52.8807
https://doi.org/10.1103/PhysRevB.52.8807
https://doi.org/10.1103/PhysRevB.52.8807
https://doi.org/10.1103/PhysRevB.51.9552
https://doi.org/10.1103/PhysRevB.51.9552
https://doi.org/10.1103/PhysRevB.51.9552
https://doi.org/10.1103/PhysRevB.51.9552
https://doi.org/10.1103/PhysRevLett.101.027201
https://doi.org/10.1103/PhysRevLett.101.027201
https://doi.org/10.1103/PhysRevLett.101.027201
https://doi.org/10.1103/PhysRevLett.101.027201
https://doi.org/10.1038/ncomms5030
https://doi.org/10.1038/ncomms5030
https://doi.org/10.1038/ncomms5030
https://doi.org/10.1038/ncomms5030
https://doi.org/10.1103/PhysRevB.94.214422
https://doi.org/10.1103/PhysRevB.94.214422
https://doi.org/10.1103/PhysRevB.94.214422
https://doi.org/10.1103/PhysRevB.94.214422
https://doi.org/10.1103/PhysRevB.99.214426
https://doi.org/10.1103/PhysRevB.99.214426
https://doi.org/10.1103/PhysRevB.99.214426
https://doi.org/10.1103/PhysRevB.99.214426
https://doi.org/10.1103/PhysRevB.90.020402
https://doi.org/10.1103/PhysRevB.90.020402
https://doi.org/10.1103/PhysRevB.90.020402
https://doi.org/10.1103/PhysRevB.90.020402
https://doi.org/10.1103/PhysRevMaterials.3.041401
https://doi.org/10.1103/PhysRevMaterials.3.041401
https://doi.org/10.1103/PhysRevMaterials.3.041401
https://doi.org/10.1103/PhysRevMaterials.3.041401
https://doi.org/10.1038/s41563-019-0370-z
https://doi.org/10.1038/s41563-019-0370-z
https://doi.org/10.1038/s41563-019-0370-z
https://doi.org/10.1038/s41563-019-0370-z
https://doi.org/10.1038/nmat4934
https://doi.org/10.1038/nmat4934
https://doi.org/10.1038/nmat4934
https://doi.org/10.1038/nmat4934
https://doi.org/10.1063/1.5027602
https://doi.org/10.1063/1.5027602
https://doi.org/10.1063/1.5027602
https://doi.org/10.1063/1.5027602
https://doi.org/10.1038/s41467-018-08041-9
https://doi.org/10.1038/s41467-018-08041-9
https://doi.org/10.1038/s41467-018-08041-9
https://doi.org/10.1038/s41467-018-08041-9
https://doi.org/10.1038/ncomms11779
https://doi.org/10.1038/ncomms11779
https://doi.org/10.1038/ncomms11779
https://doi.org/10.1038/ncomms11779
https://doi.org/10.1088/0022-3719/10/16/019
https://doi.org/10.1088/0022-3719/10/16/019
https://doi.org/10.1088/0022-3719/10/16/019
https://doi.org/10.1088/0022-3719/10/16/019
https://doi.org/10.1007/BF01322185
https://doi.org/10.1007/BF01322185
https://doi.org/10.1007/BF01322185
https://doi.org/10.1007/BF01322185


SPIN-SPIRAL FORMALISM BASED ON THE … PHYSICAL REVIEW B 100, 134428 (2019)

[48] H. Ebert, H. Freyer, A. Vernes, and G.-Y. Guo, Phys. Rev. B 53,
7721 (1996).

[49] P. P. Ewald, Ann. Phys. 369, 253 (1921).
[50] F. S. Ham and B. Segall, Phys. Rev. 124, 1786 (1961).
[51] K. Kambe, Z. Naturforsch. 22a, 322 (1967).
[52] K. Kambe, Z. Naturforsch. 22a, 422 (1967).
[53] K. Kambe, Z. Naturforsch. 23a, 1280 (1968).
[54] G. Hasselberg, R. Yanes, D. Hinzke, P. Sessi, M. Bode, L.

Szunyogh, and U. Nowak, Phys. Rev. B 91, 064402 (2015).
[55] A. Fert and P. M. Levy, Phys. Rev. Lett. 44, 1538 (1980).
[56] P. Lloyd, Proc. Phys. Soc. 90, 217 (1967).
[57] E. Simon, L. Rózsa, K. Palotás, and L. Szunyogh, Phys. Rev. B

97, 134405 (2018).
[58] B. Schweflinghaus, B. Zimmermann, M. Heide, G. Bihlmayer,

and S. Blügel, Phys. Rev. B 94, 024403 (2016).
[59] F. Freimuth, S. Blügel, and Y. Mokrousov, J. Phys.: Condens.

Matter 26, 104202 (2014).

[60] G. H. O. Daalderop, P. J. Kelly, and M. F. H. Schuurmans, Phys.
Rev. B 41, 11919 (1990).

[61] S. H. Vosko, L. Wilk, and M. Nusair, Can. J. Phys. 58, 1200
(1980).

[62] G. Kresse and J. Furthmüller, Comput. Mater. Sci. 6, 15
(1996).

[63] G. Kresse and J. Furthmüller, Phys. Rev. B 54, 11169 (1996).
[64] J. Hafner, J. Comput. Chem. 29, 2044 (2008).
[65] A. K. Nandy, N. S. Kiselev, and S. Blügel, Phys. Rev. Lett. 116,

177202 (2016).
[66] P. Ferriani, S. Heinze, G. Bihlmayer, and S. Blügel, Phys. Rev.

B 72, 024452 (2005).
[67] F. den Broeder, W. Hoving, and P. Bloemen, J. Magn. Mater 93,

562 (1991).
[68] G. Wu, K. H. Khoo, M. H. Jhon, H. Meng, S. Y. H.

Lua, R. Sbiaa, and C. K. Gan, Europhys. Lett. 99, 17001
(2012).

134428-13

https://doi.org/10.1103/PhysRevB.53.7721
https://doi.org/10.1103/PhysRevB.53.7721
https://doi.org/10.1103/PhysRevB.53.7721
https://doi.org/10.1103/PhysRevB.53.7721
https://doi.org/10.1002/andp.19213690304
https://doi.org/10.1002/andp.19213690304
https://doi.org/10.1002/andp.19213690304
https://doi.org/10.1002/andp.19213690304
https://doi.org/10.1103/PhysRev.124.1786
https://doi.org/10.1103/PhysRev.124.1786
https://doi.org/10.1103/PhysRev.124.1786
https://doi.org/10.1103/PhysRev.124.1786
http://zfn.mpdl.mpg.de/data/Reihe_A/22/ZNA-1967-22a-0322.pdf
http://zfn.mpdl.mpg.de/data/Reihe_A/22/ZNA-1967-22a-0422.pdf
http://zfn.mpdl.mpg.de/data/Reihe_A/23/ZNA-1968-23a-1280.pdf
https://doi.org/10.1103/PhysRevB.91.064402
https://doi.org/10.1103/PhysRevB.91.064402
https://doi.org/10.1103/PhysRevB.91.064402
https://doi.org/10.1103/PhysRevB.91.064402
https://doi.org/10.1103/PhysRevLett.44.1538
https://doi.org/10.1103/PhysRevLett.44.1538
https://doi.org/10.1103/PhysRevLett.44.1538
https://doi.org/10.1103/PhysRevLett.44.1538
https://doi.org/10.1088/0370-1328/90/1/324
https://doi.org/10.1088/0370-1328/90/1/324
https://doi.org/10.1088/0370-1328/90/1/324
https://doi.org/10.1088/0370-1328/90/1/324
https://doi.org/10.1103/PhysRevB.97.134405
https://doi.org/10.1103/PhysRevB.97.134405
https://doi.org/10.1103/PhysRevB.97.134405
https://doi.org/10.1103/PhysRevB.97.134405
https://doi.org/10.1103/PhysRevB.94.024403
https://doi.org/10.1103/PhysRevB.94.024403
https://doi.org/10.1103/PhysRevB.94.024403
https://doi.org/10.1103/PhysRevB.94.024403
https://doi.org/10.1088/0953-8984/26/10/104202
https://doi.org/10.1088/0953-8984/26/10/104202
https://doi.org/10.1088/0953-8984/26/10/104202
https://doi.org/10.1088/0953-8984/26/10/104202
https://doi.org/10.1103/PhysRevB.41.11919
https://doi.org/10.1103/PhysRevB.41.11919
https://doi.org/10.1103/PhysRevB.41.11919
https://doi.org/10.1103/PhysRevB.41.11919
https://doi.org/10.1139/p80-159
https://doi.org/10.1139/p80-159
https://doi.org/10.1139/p80-159
https://doi.org/10.1139/p80-159
https://doi.org/10.1016/0927-0256(96)00008-0
https://doi.org/10.1016/0927-0256(96)00008-0
https://doi.org/10.1016/0927-0256(96)00008-0
https://doi.org/10.1016/0927-0256(96)00008-0
https://doi.org/10.1103/PhysRevB.54.11169
https://doi.org/10.1103/PhysRevB.54.11169
https://doi.org/10.1103/PhysRevB.54.11169
https://doi.org/10.1103/PhysRevB.54.11169
https://doi.org/10.1002/jcc.21057
https://doi.org/10.1002/jcc.21057
https://doi.org/10.1002/jcc.21057
https://doi.org/10.1002/jcc.21057
https://doi.org/10.1103/PhysRevLett.116.177202
https://doi.org/10.1103/PhysRevLett.116.177202
https://doi.org/10.1103/PhysRevLett.116.177202
https://doi.org/10.1103/PhysRevLett.116.177202
https://doi.org/10.1103/PhysRevB.72.024452
https://doi.org/10.1103/PhysRevB.72.024452
https://doi.org/10.1103/PhysRevB.72.024452
https://doi.org/10.1103/PhysRevB.72.024452
https://doi.org/10.1016/0304-8853(91)90404-X
https://doi.org/10.1016/0304-8853(91)90404-X
https://doi.org/10.1016/0304-8853(91)90404-X
https://doi.org/10.1016/0304-8853(91)90404-X
https://doi.org/10.1209/0295-5075/99/17001
https://doi.org/10.1209/0295-5075/99/17001
https://doi.org/10.1209/0295-5075/99/17001
https://doi.org/10.1209/0295-5075/99/17001

