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We present combined spin model and first-principles electronic-structure calculations to study the weak
ferromagnetism in bulk Mn3Z (Z = Sn, Ge, Ga) compounds. The spin-model parameters were determined from
a spin-cluster expansion technique based on the relativistic disordered local moment formalism implemented in
the screened Korringa–Kohn–Rostoker method. We describe the magnetic ground state of the system within a
three-sublattice model and investigate the formation of the weak ferromagnetic states in terms of the relevant
model parameters. First, we give a group-theoretical argument how the point-group symmetry of the lattice leads
to the formation of weak ferromagnetic states. Then we study the ground states of the classical spin model
and derive analytical expressions for the weak ferromagnetic distortions by recovering the main results of the
group-theoretical analysis. As a third approach, we obtain the weak ferromagnetic ground states from self-
consistent density-functional calculations and compare our results with previous first-principles calculations and
with available experimental data. In particular, we demonstrate that the orbital moments follow a decomposition
predicted by group theory. For a deeper understanding of the formation of weak ferromagnetism, we selectively
trace the effect of the spin-orbit coupling at the Mn and Z sites. In addition, for the case of Mn3Ga, we gain
information on the role of the induced moment of Ga from constrained local density-functional calculations.
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I. INTRODUCTION

The Mn3Z (Z= Sn, Ge, Ga) compounds, known to be
weak ferromagnetic (WF) at low temperatures [1–3], are in the
focus of current research interest due to the exotic topological
properties of their band structure. They show large anomalous
Hall conductivity due to the nonvanishing Berry curvature
induced by the noncollinear triangular ground-state spin struc-
ture [4–6] and are topological Weyl semimetals because of
emerging Weyl nodes in the band structure near the Fermi
level [7,8]. The Mn3Z compounds are also possible candidates
to replace the expensive IrMn-based antiferromagnets in mag-
netic sensors based on the GMR effect [9].

The Mn3Z compounds have three different structural
phases: a hexagonal phase with DO19 structure, a tetragonal
phase with DO22 structure, and a cubic phase with a standard
Heusler structure. These phases and the transitions between
them have been the subject of recent research [10,11]. In this
paper, we are going to investigate the magnetic properties
in the hexagonal phase of these compounds. The atomic
positions in the DO19 hexagonal phase are sketched in Fig. 1.
The Mn sites in each layer form a kagome lattice, i.e., a two-
dimensional network of corner-sharing equilateral triangles.
The atomic layers are shifted alternately with 2

3 (�a + �b) and
1
3 (�a + �b), where �a and �b are the primitive vectors of the
kagome lattice. The unit cell marked by the black rhombus in
Fig. 1 contains two layers built up from six manganese atoms
and two nonmagnetic Z atoms.

The magnetic structure of these materials was measured
with polarized neutron-diffraction experiments showing that
the low-energy magnetic states of these compounds in the

hexagonal phase are chiral antiferromagnetic (AFM) states
[1–3] as illustrated in Fig. 2, with a small distortion producing
a tiny net magnetic moment. A simple spin-model analysis
in Ref. [1] proved the magnetocrystalline anisotropy to be
the microscopic mechanism responsible for the WF distortion,
whereas the Dzyaloshinsky–Moriya (DM) interaction [12,13]
was shown to lift the chiral degeneracy of the �3 and �5 states.

The electronic and magnetic structure of these compounds
was also investigated theoretically in terms of self-consistent
field density-functional calculations in the local density ap-
proximation (LDA) [4,10,11,14,15]. In the hexagonal phase,
the chiral �5 state with a WF distortion and a small net
magnetic moment was found as ground state [4,10,15]. In
particular, Ref. [15] discussed symmetry considerations and
the role of orbital polarization on the formation of weak
ferromagnetism in Mn3Sn. It should be noted that in Ref. [10]
the tetragonal phase of Mn3Sn was found lower in energy
than the hexagonal phase and the stability of the hexagonal
phase according to experiments was attributed to structural
disorder or off-stoichiometric compositions. The influence of
these effects on the magnetic ordering in the Mn3Ga alloy has
been studied in Ref. [11].

In this paper, we present a detailed theoretical investi-
gation of the magnetic ground state of the Mn3Z alloys in
the hexagonal phase. We employ the relativistic Screened
Korringa–Kohn–Rostoker (SKKR) method [16,17] to calcu-
late the electronic structure and the magnetic properties. In
particular, we set up a classical spin model with parameters
obtained from the combination of the spin-cluster expansion
(SCE) and the relativistic disordered local moment (RDLM)
method [18]. Using the point-group symmetry of the lattice,
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we determine the general parametric form of the exchange
interaction matrices of a three-sublattice model and we pro-
vide the group theoretical reason behind the formation of the
WF state. By solving the spin model we quantify the WF
distortion in terms of the model parameters. Our results are
clearly consistent with the original spin-model description of
weak ferromagnetism in Mn3Sn [1]; however, we exceed this
approach by quantitative estimates on the WF distortion being
in fairly good agreement with the experiments. We also obtain
the magnetic ground states of the Mn3Z compounds from un-
constrained self-consistent LDA calculations and investigate
the effect of spin-orbit coupling (SOC) on the Mn and Z
sites selectively. Finally, we give a hint to the effect of the
induced moment at the Z site by performing constrained LDA
calculations for the case of the Mn3Ga alloy.

II. METHODS

A. Spin model

To study the magnetic properties of the Mn3Z alloys in the
hexagonal phase, we use a classical Heisenberg model for the
Mn spins represented with a set of unit vectors {�e} and neglect
the effect of the induced spin moment on the Z sites. The spin
model in second order of the spin variables is given by

H ({�e}) =
∑

i

�eiKi�ei − 1

2

∑
i �= j

�eiJi j �e j , (1)

where the i and j indices are confined to the Mn sites, Ki

are the second order on-site anisotropy matrices, and Ji j are
the tensorial exchange couplings. The exchange matrix can be
decomposed as

Ji j = Ji jI + 1
2

(
Ji j − JT

i j

) + 1
2

(
Ji j + JT

i j − 2Ji jI
)

, (2)

where I is the unit matrix and T denotes the transpose of
a matrix. In the above decomposition, Ji j = 1

3 TrJi j defines
the isotropic Heisenberg coupling between two spins, the
antisymmetric part of the exchange tensor can be related to
the Dzyaloshinsky–Moriya interaction,

�ei
1
2

(
Ji j − JT

i j

)
�e j = �Di j (�ei × �e j ), (3)

and the traceless symmetric part of Ji j corresponds to the two-
site anisotropy.

From previous experimental [1–3] and theoretical [15,19]
works it turns out that the ground-state magnetic structure
of the Mn3Z compounds can be well described in terms
of an effective spin model related to three Mn sublattices.
This means that the A–a, B–b, and C–c sublattice pairs (cf.
Fig. 1) are strongly coupled ferromagnetically, ensuring that
the corresponding Mn moments are parallel to each other.
Consequently, we only have to consider three independent
sublattices to explore the low-energy magnetic configurations.
As will be shown in Sec. III A, our calculated exchange
interactions clearly support this observation, which leads to
the following simplified Hamiltonian:

H = −1

2

3∑
α,β=1

�eαJαβ �eβ , (4)

FIG. 1. The atomic positions in the hexagonal phase of the Mn3Z
compounds: large and small circles, labeled by capital and small
letters, denote sites in the atomic layers at z = c/4 and at z = 3c/4,
respectively, while grey and black circles stand in order for Mn and
Z atoms. The rhombus encloses a possible unit cell of the system.

where the Jαβ matrices are the effective sublattice inter-
actions. The Jαβ matrices can be related to the exchange
matrices in Eq. (1) as

Jαβ =
∑

n

J0α,nβ − 2δαβKα , (5)

where the index 0 stands for a fixed site in sublattice α,
while n goes through the sites in sublattice β. Note that due
to translation invariance, the on-site anisotropy matrices at
all sites in a given sublattice are identical, which explains
the notation Kα in Eq. (5). By collecting the spin variables
of the three sublattices into a nine-dimensional composite
variable, �e = (�e1, �e2, �e3) and the sublattice interactions into a
composite matrix,

J =
⎛
⎝J11 J12 J13

J21 J22 J23

J31 J32 J33

⎞
⎠ , (6)

Eq. (4) can be rewritten into the simple form

H = − 1
2 �e J �e . (7)

The structure of the matrices Eq. (5) can be obtained by
using the D3h point-group symmetry of the lattice. This is
provided by the invariance of the energy of the spin system
Eq. (4) against any point-group element g ∈ D3h. Denoting
the 9 × 9 matrix representation of g by Rg, this implies the

FIG. 2. Low-energy chiral magnetic structures of the Mn3Z
compounds.
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TABLE I. The experimental lattice constants for the Mn3Z
compounds.

Mn3Sn [20] Mn3Ge [21] Mn3Ga [3]

a2d[Å] 5.665 5.36 5.36

c/a 0.79982 0.80598 0.807

relationships

J = RT
g JRg . (8)

Note that the permutation of the sublattices under the oper-
ation g is also included in the representation Rg. Performing
the corresponding analysis, we obtain two different types of
sublattice interaction matrices: the three sublattice-diagonal
matrices are connected via the C3 rotation, while the six
sublattice off-diagonal matrices are related to each other either
by C3 rotation or by transposition. One representative element
for each set is given by

JAA =
⎛
⎝

−Kx+3Ky

2 0 0

0 3Kx−Ky

2 0
0 0 −Kx − Ky

⎞
⎠ (9)

and

JBC =
⎛
⎝J + Jx D 0

−D J + Jy 0
0 0 J − Jx − Jy

⎞
⎠ , (10)

respectively. The sublattice model therefore has six inde-
pendent parameters: two sublattice-diagonal anisotropy con-
stants, Kx and Ky, two sublattice-off-diagonal anisotropy
constants, Jx and Jy, one Dzyaloshinsky–Moriya parameter,
D, describing an effective DM vector parallel to the z axis,
and an isotropic coupling between different sublattices, J .
Note that in principle there is an isotropic coupling param-
eter for the sublattice-diagonal matrices, but it only adds a
constant to the energy, thus it has no effect on the magnetic
ordering in the system.

B. Ab initio calculations

We performed self-consistent electronic-structure calcula-
tions for the Mn3Z compounds in terms of the relativistic
SKKR method [16,17]. The lattice constants of the different
compounds were set to the experimental values shown in
Table I.

We used the local spin-density approximation parametrized
according to Vosko et al. [22] and we employed the atomic
sphere approximation with an angular momentum cutoff of
�max = 2. We used 16 energy points on a semicircular path on
the upper complex half-plane for the energy integrations and
144 points in the 2D Brillouin zone (2DBZ) for k integrations.

To obtain the parameters of the tensorial Heisenberg model
Eq. (1), we employed the SCE developed originally by
Drautz and Fähnle [23,24] combined with the RDLM method
[25–27]. The RDLM method provides a first-principles de-
scription of a paramagnetic system according to the adiabatic
decoupling of the electronic and spin degrees of freedom,
while the SCE enables a systematic parametrization of the

TABLE II. Calculated isotropic couplings in the Mn3Z com-
pounds. The interactions given in units of meV are indexed according
to increasing distances of the pairs, while interactions with and
without prime stand for inequivalent pairs with the same distance
(see Fig. 3). For better understanding, in the second row, the in-plane
and out-of-plane couplings are denoted by ip and oop, respectively.

J1 J2 J ′
2 J3 J ′

3 J4 J5

oop ip ip oop oop oop oop

Mn3Sn −15.3 −3.2 4.5 13.8 11.3 −2.87 −4.08
Mn3Ge −22.6 −7.4 10.1 5.9 7.1 −2.54 −4.39
Mn3Ga −23.7 −15.9 0.9 10.7 5.5 −3.82 −4.42

adiabatic energy surface. For the details of the SCE-RDLM
method, see Ref. [18]. In the SCE calculations, we used 16
energy points on a semicircular path on the upper complex
half-plane with approximately 20 000 k points in the 2DBZ
near the Fermi energy.

III. RESULTS

A. Spin model parameters

We applied the SCE-RDLM method to obtain the ab initio
spin model parameters in the paramagnetic phase of each
compound. First, we discuss the isotropic couplings. In
Table II, we show the first five nearest-neighbor interactions
as visualized in Fig. 3. For all three compounds, we find a
similar structure of the isotropic interactions. The nearest-
neighbor interactions J1 couple sites that belong to different
sublattices and different atomic layers. They are AFM and
the largest in magnitude among the isotropic couplings. By
contrast, the third nearest-neighbor out-of-plane interactions,
J3 and J ′

3, that connect sites in the same sublattice are strongly
ferromagnetic. These interactions thus force aligning the mo-
ments in the same sublattice irrespective of the atomic-layer
positions. On top of this, the AFM first nearest-neighbor
couplings cause frustration on the kagome lattice and stabilize
the triangular states as shown in Fig. 2. The (in-plane) second-
nearest-neighbor AFM interactions, J2, also contribute to the

FIG. 3. Schematic view of the first five nearest-neighbor inter-
actions. Different interactions for the same distance are denoted with
and without primes. The J4 interaction connects two sites in the same
sublattice from neighboring unit cells shifted along the z axis, thus,
we could not illustrate it in the figure.
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FIG. 4. The cutoff dependence of the relativistic interactions in
the sublattice matrices Eqs. (9) and (10) for Mn3Sn. Note that the
DM parameter D is about one order of magnitude larger than the
anisotropy parameters. The isotropic coupling J (not presented here)
shows a similar cutoff dependence.

stabilization of the triangular spin structures, though the other
type of these interactions, J ′

2, is ferromagnetic, destabilizing
the triangular state to some extent. By using the ab initio
tensorial spin model, we solved the Landau–Lifshitz–Gilbert
equations at zero temperature (with damping term only) and
for all three compounds we indeed obtained a ground state
close to the �5 state. As we will demonstrate later, it is the DM
interaction which selects between the �3 and �5 spin states.

From the Ji j and Ki matrices we can calculate the Jαβ

matrices as defined in Eq. (5). We checked that the obtained
matrices satisfy to high accuracy the analytic forms Eqs. (9)
and (10) we deduced from symmetry principles, so the six
parameters of the sublattice model can be read off. The values
of these parameters depend on the cutoff distance of pairs
in the sum in Eq. (5). The dependence of the DM and the
anisotropy parameters for Mn3Sn is shown in Fig. 4. Clearly,
all parameters converge well beyond a distance of about 2 a2d.
The other two compounds show similar behavior. Based on
these results, in all cases we used a cutoff of 2.51 a2d for the
calculation of the sublattice model parameters.

The calculated parameters of the sublattice model, see
Eqs. (9) and (10), are summarized in Table III. In each case,
a large AFM isotropic coupling was obtained, which again
explains the formation of the low-energy frustrated triangu-
lar configurations. The DM parameter being two orders of

TABLE III. Calculated sublattice model parameters, see Eqs. (9)
and (10), for the Mn3Z compounds based on the SCE-RDLM
method.

J[meV] D[meV] Kx[μeV] Ky[μeV] Jx[μeV] Jy[μeV]

Mn3Sn −46.7 −0.547 11 39 −85 86
Mn3Ge −51.6 −0.246 −64 123 −108 92
Mn3Ga −77.0 −0.447 −8 129 −65 135

FIG. 5. The irreducible representations corresponding to the low-
energy spin configurations within the nine-dimensional subspace of
the three Mn sublattices.

magnitude less than J has negative sign, thus, it prefers the
�5 state against the �3 state for all of the compounds. The
anisotropy constants are typically one order of magnitude
less than the DM parameters. Remarkably, the anisotropy
parameters indexed by x are positive and those indexed by
y are negative. The only exception is observed for Kx in case
of Mn3Sn, which is negative in sign.

B. Group-theoretical argument

The representation Rg of the D3h point group on the nine-
dimensional space defined within the three-sublattice model,
see Eqs. (7) and (8), can be decomposed according to irre-
ducible representations as

Rg = A′
1 ⊕ A′

2 ⊕ 2E ′ ⊕ A′′
2 ⊕ E ′′ , (11)

where A′
1, A′

2, and A′′
2 are one-dimensional, while E ′ and E ′′

are two-dimensional irreducible representations. After pro-
jecting to irreducible subspaces, we found that the low-energy
chiral states and the ferromagnetic states correspond to the A′

1,
A′

2, and the 2E ′ irreducible representations as shown in Fig. 5.
Here we distinguish the states �3,x, �3,y and �5,x, �5,y based
on the orientation of the spin on the A sublattice.

From Fig. 5, we can conclude that the states �3,x and �3,y

correspond to different one-dimensional irreducible represen-
tations, therefore, they are not degenerate by symmetry. So
the energy of the �3 states changes under in-plane global
rotations. In contrast, the �5,x and �5,y states and also the FMx

and FMy states form the basis of the same two-dimensional
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irreducible representation (E ′), thus, they are pairwise degen-
erate. This means that the �5 and FM states are energetically
insensitive to in-plane global rotations. Furthermore, sharing
the same symmetry, the �5,x and the FMx states are coupled
and the same applies to the �5,y and the FMy states. To obtain
the ground state of the model, we have to diagonalize the
Hamiltonian Eq. (7) in the corresponding subspaces, which
leads to the diagonalization of the following matrix:(�e�5,ξ

J �e�5,ξ �e�5,ξ
J �eFMξ

�eFMξ
J �e�5,ξ �eFMξ

J �eFMξ

)
, (12)

where ξ ∈ {x, y}. The four resulting eigenstates can be cast
into two degenerate WF states that are slight distortions of the
�5 states and two degenerate states that are modulations of the
FM states. The low-energy WF eigenstates can be written as

�eWFx = μ �e�5,x + ν �eFMx , (13)

�eWFy = μ �e�5,y − ν �eFMy , (14)

where μ2 + ν2 = 1 and the explicit analytical expression for
the ν parameter in terms of the sublattice model parameters
indicates that

ν ∝ (Jx − Jy) + 2(Kx − Ky) . (15)

This result also suggests that the two different WF states
possess a net magnetization of ±ν coming from their FM
component, indicating that the direction of this WF moment
with respect to the A moment is different in the x and y
cases. Moreover, the WF moment appears only if the x and
y on-site and/or two-site anisotropy parameters differ from
each other, but it does not occur if only the DM interaction
(DMI) is present in the system on top of the AFM isotropic
interactions. Thus, in terms of group theoretical analysis, we
regained the result of Tomiyoshi and Yamaguchi [1], stating
that the formation of the weak ferromagnetism in the Mn3Sn
compound happens due to magnetic anisotropy rather than
DMI. We note that the WF states Eqs. (13) and (14) are
stationary states of the Hamiltonian Eq. (7) with the lowest
energy, but they do not refer to a set of spin vectors of unit
length assumed in the classical Heisenberg model. In the next
section, we therefore revisit our investigation of the WF states
within the space of classical spin states.

C. Classical spin-model study

As discussed in the previous section in terms of group-
theoretical arguments, the energy of the �3 state shows
anisotropic behavior under global rotations around the z axis,
while the energy of the �5 state is invariant to such rotations.
This can be easily shown by calculating the rotational energies
directly from Eq. (4) and using the parametric forms of the
sublattice exchange matrices, Eqs. (9) and (10). For the �3

state, this gives

E�3 (φ) = 3

2

(
J −

√
3D + 3Jx − Jy

2
− 3Kx − Ky

2

)

+ 3(Kx − Ky − Jx + Jy) sin2 φ , (16)

where φ is the rotation angle around the z axis with respect
to the y direction of the magnetic moment at the A atom (see

FIG. 6. Weak ferromagnetic distortions of the �5 states: the WFx

state on the left and the WFy state on the right. The shaded arrows
show the spin directions in the original �5 state. The distortion is
parametrized by the tilting angle 
φ.

the left panel of Fig. 2). From the data of Table III, it can be
inferred that the in-plane anisotropy constant defined as the
coefficient of the sin2 φ term is positive, so the φ = 0 state
(�3,y) is the lowest in energy. For the energy of the �5 states,
we get a constant indeed:

E�5 = 3

2

(
J +

√
3D + Jx + Jy

2
− Kx + Ky

2

)
. (17)

The energy difference between the �5 and the �3,y states is
then given by

E�5 − E�3,y = 3
√

3D + 3

2
(Kx − Ky − Jx + Jy) . (18)

Since for all considered Mn3Z compounds the DMI is neg-
ative and is much larger in magnitude than the in-plane
anisotropy term entering Eq. (18), in each case the �5 state
has lower energy than the �3 state. This should be contrasted
with the L12-type Mn3Ir alloy, where the �3 state is stabilized
due to the magnetic anisotropy of about 10 meV [28].

Within the classical spin model, the WF distortions can be
parametrized by a tilting angle 
φ for two of the sublattices
as illustrated in Fig. 6. The WF moment is then related to

φ as

mWF(
φ) = 1 − 2 sin
(π

6
− 
φ

)
. (19)

We calculated the energy of the WF states as a function
of the tilting angle 
φ based on the sublattice spin model.
The corresponding energy curves are shown in Fig. 7 for both
the WFx and WFy distortions and for all three compounds.
As expected, for each alloy, a clear parabolic minimum is ob-
tained with positive 
φ for WFx distortions and with negative

φ for WFy distortions (cf. Fig. 6). The WF moments and
the distortion angles obtained from the minima of the energy
curves in Fig. 7 are summarized in Table IV. Interestingly, the
magnitudes of the WFx tilting angle are systematically smaller
than those for WFy, although the relative difference is about
or less than 1%. Correspondingly, the size of the WF moments
also somewhat differ for the two kinds of WF distortions,
which contradicts the prediction of the group-theoretical anal-
ysis. It should be recalled again that the ground state obtained
from group theory is outside the space of classical spin states.

We also note that the WFx and WFy states are no longer
degenerate within the classical spin model. Our numerical
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FIG. 7. Calculated energy curves for the Mn3Z compounds as a
function of the 
φ weak ferromagnetic distortion angle. Left: WFx

state, right: WFy state. For all three alloys, both energy curves are
shifted by the minimum of the corresponding WFx curve, EWFx .

calculations showed that the WFy state is deeper in energy
than the WFx state. The reason for this is that the local easy
axes of the Mn atoms correspond to the spin directions in
the �3,y state, see Fig. 6, as the magnetic anisotropy constant
per Mn atom Kx − Ky − Jx + Jy is positive for all the three
compounds. According to our numerical calculations, see also
Fig. 7, the energy difference between the two WF states is,
however, in the order of 10−9 eV/f.u.

To gain deeper insight into the results obtained above
and on the relationship of the WF distortion angle and the
parameters of the spin model, we repeated the search for
the minimum of the WF distortion energy analytically. The
energy of the WFx distortion can be expressed as

EWFx (
φ) = J (cos(2
φ − π/3) + 2 cos(
φ + π/3))

− D(sin(2
φ − π/3) − 2 sin(
φ + π/3))

+ Jx

2
(cos(2
φ − π/3) + 2 cos(
φ) − 1)

+ Jy

2
(cos(2
φ − π/3) − 2

√
3 sin(
φ) + 1)

− (Kx − Ky) cos(2
φ + π/3) − Kx

4
− 5Ky

4
,

(20)

and similar for EWFy (
φ) by interchanging indices x and y.
After expanding the above expression up to second order in

φ, it is easy to find its minimum, yielding


φx = −
√

3

2

Jx − Jy + 2(Kx − Ky)

−3J − 3
√

3D − 2Jx − Jy + 2Kx − 2Ky

(21)
and again similar for 
φy by interchanging the indices x and y.

TABLE IV. Calculated weak ferromagetic distortions and net
magnetic moments for the Mn3Z compounds from the sublattice spin
model with parameters obtained using the SCE-RDLM method.


φx[deg] mWFx [10−3] 
φy[deg] mWFy [10−3]

Mn3Sn 0.0785 2.37 −0.0795 −2.40
Mn3Ge 0.1821 5.51 −0.1825 −5.51
Mn3Ga 0.1009 3.05 −0.1018 −3.06

This result has some important implications. First, the
numerator on the right-hand side of Eq. (21) changes signs
between the WFx and WFy distortions, while the denominator
is always positive due to the large negative J and D param-
eters, which uniquely explains the sign change between the
distortion angles 
φx and 
φy. In addition, there is a small
change in the denominator for the x and y cases, so we also
found an analytic explanation for the deviation in the size
of the corresponding tilting angles in Table IV. Second, the
numerator is identical to the multiplicative factor we obtained
from group theory for the WF moment, see Eq. (15). If we
expand Eq. (19) around 
φ = 0, we can see that for small
distortions the WF moment mWF is proportional to 
φ, thus
also with Jx − Jy + 2(Kx − Ky) as proposed by group theory.
The weak ferromagnetism in the Mn3Z alloys is, therefore,
qualitatively explained in the same way from group theory
and from the classical spin model as being the consequence
of nonzero on-site and/or two-site anisotropies, Kx − Ky and
Jx − Jy, respectively.

D. Self-consistent calculations

We also performed self-consistent calculations to deter-
mine the ground states of the Mn3Z alloys by using the
relativistic SKKR approach. We use the setup for the SKKR
calculations discussed in Sec. II B and we let the magnetic
moments relax from the �5,x and �5,y states to the correspond-
ing WF states. This way, we include the effect of the induced
moment on the Z sites and also orbital-polarization effects into
the calculations similar to the work of Sandratskii and Kübler
[15], who investigated the weak ferromagnetism of Mn3Sn
from ab initio calculations.

In Table V, we summarize the main results of the SKKR
calculations for the WF states of the Mn3Z compounds. First,
we observe that the distortion of the spin vectors for Mn3Sn
is opposite for both the WFx and WFy states as proposed
by the spin model, see Table IV. Regarding the expressions
we derived for the distortion angles, Eq. (21), this would
mean that the self-consistent calculations predicted a mag-
netic anisotropy of opposite sign as compared to the spin
model obtained from the SCE method. From Fig. 8 presenting
the spin and orbital contributions to the WF moments we,
however, see that in case of Mn3Sn, the WF moment is
dominated by the orbital moment to which the spin model
does not apply. In this case, the tilting of spin moments
seems to follow that of the orbital moments. Reassuringly,
Sandratskii and Kübler [15] also obtained distortions of the
same rotational sense for the WFx and WFy states, resulting
in a net moment antiparallel and parallel with the moment of
the A atom, respectively. In contrast to our work, the spin-
moment contribution reported in Ref. [15] is almost twice as
large as the orbital contribution, though the total WF moment,
0.004 μB, is very close to our value (0.003 μB). Remarkably,
the distortion angle of the orbital moments is about two orders
of magnitude larger than that of the spin moments, which,
at least to a somewhat smaller extent, was also found in
Ref. [15]. It is worth it to note that the SKKR codes rely on the
solution of the Kohn–Sham–Dirac equation, while in Ref. [15]
the SOC is treated as an additive term to a scalar-relativistic
Hamiltonian [32].
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TABLE V. The properties of the self-consistent weak ferromagnetic ground states of the Mn3Z compounds calculated from the SKKR
method. The experimental results are taken from Refs. [3,21,31] for Mn3Sn, Mn3Ge, and Mn3Ga, respectively. The sign of the weak
ferromagnetic moments refers to their orientation relative to the orientation of the moments in the A sublattice, see Fig. 6.

Mn3Sn Mn3Ge Mn3Ga


φx spin: −0.006◦ orbital: −0.74◦ spin: 0.052◦ orbital: 6.9◦ spin: 0.22◦ orbital: 10.5◦


φy spin: 0.010◦ orbital: 0.78◦ spin: −0.065◦ orbital: −5.9◦ spin: −0.39◦ orbital: −8.9◦

mMn
s [μB] 3.15 (3.17 ± 0.07 exp.) 2.61 (2.4 ± 0.2 exp.) 2.60 (2.4 ± 0.2 exp.)

mWF[μB] x: −0.003, y: 0.003 (0.009 exp.) x: 0.016, y: −0.017 (0.06 exp.) x: 0.030, y: −0.041 (0.045 exp.)

EWFx − EWFy [eV/f.u.] 8.9 · 10−8 −3 · 10−9 −4.7 · 10−6

For Mn3Ge and Mn3Ga, the self-consistent calculations
yield WF distortions of the same direction as found in the
spin-model studies although, for Mn3Ge, the orbital con-
tribution is still nearly three times larger than the orbital
contribution, see Fig. 8. Only in the case of Mn3Ga, the
spin-moment contributions become dominant and, curiously,
this contribution shows a large difference between the WFx

and WFy states which cannot be understood based on the
sublattice spin model. By contrast, the orbital contributions
do not show this asymmetry for any of the systems under
investigation, even though the quite enhanced distortion an-
gles of the orbital moments for Mn3Ge and Mn3Ga display
a remarkable anisotropy. As also indicated in Table V, our
ab initio calculations can not resolve with a reliable accuracy
which of the two kinds of WF states is energetically preferred.
In case of Mn3Ga, the WFx seems to be lower in energy, but
from the very small energy difference of 4.7 · 10−6 eV/f.u.,
we rather conclude that the two WF states are degenerate
within the precision of the method we use.

A comparison with the experimental results is also shown
in Table V. The calculated spin moments of the Mn atoms are
within the error range of the experiments. We note that the
Mn moments slightly differ on the A and B (or C) sublattices
as also reported in Ref. [15]. The calculated WF moments
are also in the range of the experimental values. The smallest

FIG. 8. Self-consistently calculated spin and orbital contribu-
tions to the weak ferromagnetic moments for the Mn3Z alloys. The
moments are shown for both the WFx and WFy states.

value is obtained for Mn3Sn as in the experiment, while for
Mn3Ga we find a very good quantitative agreement with the
measured value. The largest deviation from the experiment
is found in the case of Mn3Ge. A fair comparison between
theory and experiment is, however, hardly possible for this
alloy, since only off-stoichiometric samples could be prepared
[21], where Mn atoms can occupy Z positions leading to
an enhanced net magnetic moment. Zhang et al. [10] also
performed density-functional calculations using VASP [29] for
the hexagonal Mn3Z alloys. As compared to their results,
our calculated Mn spin moments are systematically larger
by about 0.1 μB, which might be attributed to the fact that
in Ref. [10], slightly smaller, optimized lattice constants and
the generalized gradient approximation for the exchange-
correlation functional [30] were used as opposed to the exper-
imental lattice constants and the local density functional we
employed, respectively. Reassuringly, however, they reported
the WF moments, 0.01 μB for Mn3Sn and Mn3Ge and 0.03 μB

for Mn3Ga, that are consistent with our values.
As we noted already, the orbital moments have a significant

weight in the WF moment. Interestingly, the orbital moments
of the Mn atoms show the behavior we found from group
theory, namely that the WF state can be decomposed as the
linear combination of a �5 and an FM state with the same
mixing coefficients for the x and y state as given in Eqs. (13)
and (14). In correspondence with these relationships, the net
orbital moments for the WFx and WFy states are mMn

� = 3ν

and mMn
� = −3ν, respectively, while subtracting �mMn

� /3 from
the orbital moments of each sublattice, a perfect �5 state is
obtained with local orbital moments of μ. The corresponding
parameters for the three alloys are collected in Table VI.
The opposite sign of ν for Mn3Sn as compared to Mn3Ge
and Mn3Ga reflects the opposite sign of the tilting angle as
discussed above. Moreover, the increased magnitudes of ν/μ

for Mn3Ge and Mn3Ga correspond to the enhanced tilting
angles for these alloys with respect to Mn3Sn, see Table V.

TABLE VI. The μ and ν parameters for the self-consistently cal-
culated orbital moments, see Eqs. (13) and (14), using the convention
where the �5 and FM states are constructed from dimensionless unit
vectors and the parameters are measured in units of 10−3μB.

Mn3Sn Mn3Ge Mn3Ga

μ 40 33 26
ν −0.6 4.3 x: 5.07 y: −5.10
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TABLE VII. Self-consistently calculated net magnetic moments of the weak ferromagnetic states in the Mn3Z alloys decomposed into spin
and orbital contributions, as well as into contributions related to the Mn and Z atoms. All values are given in units of 10−3μB. Both the WFx

and WFy states are considered (see the second column). The cases when the SOC is included on all sites, only on the Mn sites and only on the
Z sites, are indicated in the third column by all, Mn, and Z , respectively (Z = Sn, Ge, Ga).

SOC mMn
s mZ

s ms mMn
� mZ

� m�

all −0.13 −0.01 −0.14 −1.80 −1.04 −2.84
WFx Mn 1.58 −0.03 1.56 9.73 −0.99 8.74

Sn 0.24 0.01 0.25 −11.47 −0.07 −11.53Mn3Sn
all 0.49 0.01 0.49 1.80 1.04 2.85

WFy Mn −1.66 0.03 −1.63 −9.73 0.99 −8.74
Sn −0.24 −0.01 −0.25 11.47 0.07 11.53

all 4.43 −0.08 4.36 12.79 −1.32 11.47
WFx Mn 6.13 −0.09 6.04 18.65 −1.23 17.42

Ge −0.14 0.00 −0.13 −5.89 −0.09 −5.98Mn3Ge
all −5.39 0.10 −5.30 −12.81 1.32 −11.49

WFy Mn −7.98 0.11 −7.86 −18.69 1.23 −17.45
Ge 0.11 −0.00 0.11 5.89 0.09 5.98

all 16.33 −0.33 16.00 15.22 −1.11 14.11
WFx Mn 24.38 −0.50 23.88 20.41 −1.03 19.38

Ga 33.83 −0.70 33.13 −5.21 −0.08 −5.29
Mn3Ga all −27.57 0.55 −27.02 −15.33 1.11 −14.22

WFy Mn −38.97 0.77 −38.20 −20.57 1.03 −19.54
Ga −21.69 0.43 −21.26 5.21 0.08 5.29

Note that for Mn3Ga, we found a slight deviation from the
decomposition based on Eqs. (13) and (14). We believe that
this impressive agreement between the distortion of the orbital
moments and the group-theoretical prediction is due to the
strongly nonrigid character of the orbital moments. The lack
of a constraint of a constant magnitude allows the orbital
moments to assume the superimposed WF configuration pre-
ferred by group theory.

Within the KKR formalism, it is possible to scale down
the SOC selectively on different sites using a scalar relativis-
tic framework for the treatment of the single-site scattering
[32,33]. To gain more insight into the effect of the spin-orbit
coupling, we performed self-consistent calculations for each
compound where we switched off the SOC either on the Z or
on the Mn sites. The results for the calculated spin and orbital
parts of the net moments and their resolution into the Mn- and
Z-atom contributions are summarized in Table VII together
with the case where the SOC is included at all sites.

First, Table VII indicates that net orbital moments induced
by the SOC at the Mn and at the Z atoms add up almost
perfectly when the SOC is switched on at each of the sites.
Moreover, this is valid for the site-resolved contributions of
the net orbital moments. Apparently, such an additivity of the
SOC induced net spin moments can not be established.

In the case of Mn3Sn, the SOC at the Mn sites induces
a sizable net spin moment mainly with contributions from
the Mn atoms, but superimposed with the SOC of Sn, this
spin moment considerably reduces in size and it also changes
signs. By contrast, the SOC of Sn raises an orbital moment of
about 0.01 μB in size, originating from the Mn atoms, which
is, however, largely compensated by the orbital moment of
opposite sign induced by the SOC of the Mn atoms. Although
some orbital moment is induced also at the Sn sites being

parallel to the orbital moment of the Mn atoms induced by
the SOC of Sn, the total orbital moment remains parallel to
that induced by the SOC of Mn. This peculiar cancellation
of the orbital moments was also noticed and discussed by
Sandratskii and Kübler [15].

In the case of the Mn3Ge and the Mn3Ga alloys, it remains
valid that both the net spin and orbital moments mostly have
contributions from the Mn atoms, while the Ge and Ga atoms
add a negligible amount especially to the spin moment. The
SOC of Mn plays a dominant role in the formation of the
net moments in Mn3Ge and this effect is only compensated
in about 30% by the SOC of Ge. This explains the opposite
direction of the WF distortion and, correspondingly, the oppo-
site direction of the net moment as compared to Mn3Sn, where
the effect of the SOC of Sn dominates. The SOC of both the
Mn and Ga atoms have a large effect in inducing a net spin
moment in Mn3Ga, but, interestingly, when switching on the
SOC simultaneously on both sites, the total spin moment is
much less than the sum of the spin moments for selectively
switched SOC. Moreover, the size of the spin moments in-
duced by the SOC of Mn and Ga follow an opposite order for
the WFx and WFy states, which might be connected with the
large asymmetry of the spin moments for these WF states in
Mn3Ga.

The origin of the large asymmetry of the WF spin moments
for the WFx and WFy states obtained from the self-consistent
density-functional calculations is an unresolved issue. The
largest anisotropy is found for Mn3Ga, where also the largest
induced spin moment at the Z atom is observed, likewise
with a remarkably large asymmetry. To see whether there
is a connection between these two effects, we performed
self-consistent calculations by applying a longitudinal con-
straining field at the Ga site by which the spin moment of
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FIG. 9. Magnitudes of the spin and the orbital contributions to
the weak ferromagnetic moment in Mn3Ga as a function of the
induced spin moment at the Ga site in Mn3Ga obtained from self-
consistent constraining field calculations.

Ga could be set arbitrarily. In Fig. 9, we plotted the net spin
and orbital moments as a function of the induced spin moment
on the Ga site. Or results indicate that the induced moment of
Ga affects the net orbital moment only very moderately. By
contrast, the net spin moments increase nearly linearly with
the induced moment of Ga. The corresponding lines for the
WFx and WFy states have a different slope, which implies
that the asymmetry is also increasing with increasing induced
moment of Ga. Extrapolating the lines to mGa

s = 0 there still
remains a difference, mWFy − mWFx 
 10−2μB, therefore, we
can at best conclude that the induced moment of Ga is one of
the sources of the asymmetry of the WF moment in Mn3Ga.
The linear increase of the net spin moment with mGa

s can
qualitatively be understood in terms of an isotropic exchange
coupling between the Mn and Ga spin moments, while the
asymmetry of the net spin moments can be attributed to the
anisotropy, i.e., to the tensorial nature of this coupling.

IV. CONCLUSIONS

We studied the weak ferromagnetism in the Mn3Z (Z =
Sn, Ge, Ga) alloys using a combination of ab initio and spin
model calculations. Using the point-group symmetry of the

systems, we set up a model for the three Mn sublattices
including the relativistic terms of the Heisenberg Hamiltonian.
The parameters of this model were obtained from ab initio
calculations relying on a SCE. Based on a group-theoretical
analysis we showed that there are two degenerate ground
states, WFx and WFy, being the mixture of the �5 and FM
states. The analytical forms of the mixing coefficients imply
that the WF states will only form if the anisotropy parameters
distinguish between the x and y spin directions. We recov-
ered this result from analytical expressions for the energy
within the classical spin model. Our presented results are fully
consistent with the original spin model description of weak
ferromagnetism in Mn3Sn by Tomiyoshi and Yamaguchi [1].

We also performed self-consistent relativistic local density-
functional calculations to investigate the WF states in a more
involved way. In agreement with the seminal work for Mn3Sn
by Sandratskii and Kübler [15], our results highlighted the
significance of the orbital moments in the weak ferromag-
netism of the Mn3Z alloys. A key observation from our cal-
culations is that, as opposed to the spin moments, the orbital
moments almost strictly follow the decomposition according
to irreducible representations as predicted by group theory.
As far as the spin moments of the Mn atoms and the WF
moments are concerned, we found a good agreement with the
experiments for all the three alloys. The only exception is the
net magnetic moment of Mn3Ge, where presumably due to
the off-stoichiometry of the samples the measured moment is
significantly higher than the theoretical one [10]. By switch-
ing on the SOC at different sites selectively, we discussed
the role of the SOC on the formation of WF moments and
recovered the peculiar cancellation of orbital moments for
Mn3Sn reported in Ref. [15], while we also found an argument
for the opposite WF distortion as compared to Mn3Ge and
Mn3Ga. By using constrained local density-functional calcu-
lations, we established that the induced spin moment of Ga
plays an important role in the formation of the WF moment in
Mn3Ga and also is one of the reasons for the observed large
asymmetry of the net moment concerning the WFx and WFy

states.
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