
Chapter 28

Screened KKR

Krisztián Palotás and László Szunyogh

Abstract The concept of screening in the Korringa–Kohn–Rostoker (KKR) multiple
scattering electronic structure method for solids is briefly presented. The main advan-
tages of the screened KKR (SKKR) method and recent applications are highlighted.

28.1 Introduction

Since the publications of the seminal works of Korringa [1] and Kohn and Ros-
toker [2] with the aim at describing the electronic structure of periodic solids, the
Korringa–Kohn–Rostoker (KKR) Green-function-based multiple scattering method
has been considerably developed over the years [3–5]. This methodological progress
has been fueled by the steadily growing computational (hardware) facilities and con-
stantly developing efficiency in the software implementations of the KKR method.
An important step has been the introduction of the so-called screening transformation
[6, 7] that for systems with at best two-dimensional translational symmetry provides
a fast and, in principle, exact numerical solution through the casting of big (infi-
nite) matrices into a block-tridiagonal form. The Screened Korringa–Kohn–Rostoker
(SKKR) method has been invented in the 1990s in the groups of Peter Weinberger at
the Technical University of Vienna and László Szunyogh at the Technical University
of Budapest, where it is still hosted and being continuously developed.
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While a very detailed description of the SKKR method can be found in [8], in this
chapter we briefly present the underlying concept and highlight the main advantages
of the SKKR method together with selected recent applications.

28.2 The KKR Method

Unlike other popular electronic structure calculation methods using electron wave
functions, the KKR formalism relies on the Green’s function that has a conceptual
advantage of straightforward evaluation of physical properties. The basic ingre-
dients of the KKR method formulated within multiple scattering theory [4] are
the single-site scattering t–matrices and the structure constants. The single-site t-
matrix is an angular momentum representation of the single-site T –operator formally
obtained in the following way: Assuming that a single-particle Hamiltonian, com-
posed in the spirit of the Kohn–Sham formulation [9] of density functional theory,
is given as a sum of an unperturbed (H0) and a Hermitian perturbation (V ) part,
H = H0 + V , the corresponding resolvents (with z a complex energy argument,
and I the identity operator) are G0(z) = (z I − H0)

−1 and G(z) = (z I − H)−1.
They can be related to each other as G(z) = G0(z) + G0(z)T (z)G0(z) by defin-
ing the T –operator T (z) = V (I − G0(z)V )−1 = (I − V G0(z))

−1V , which implies
G0(z)T (z) = G(z)V and T (z)G0(z) = V G(z). If only a single scattering potential
centered at the lattice position Rn is present in the system then tn(z) represents the
single-site scattering t-matrix with respect to the product of the spherical Bessel
functions and spherical harmonics, jL(z, r) = jℓ(

√
zr)YL(r̂) with the abbreviation

L = (ℓ, m).
Generalizing the system by introducing non-overlapping potentials at various

positions in space, e.g., at atomic sites, that individually act as single-site scatter-
ers, their common effect is described by multiple scattering theory. The multi-site
T –operator describes all possible scattering events: T =

∑

n tn +
∑

nm tnG0(1 −
δnm)tm +

∑

nmo tnG0(1 − δnm)tm G0(1 − δmo)t
o + . . ., which can be recast to T =

∑

nm τ nm by introducing τ the so-called scattering path operator [3]. This implies
that the multiple scattering can be taken into account as simple as G = G0 +
∑

nm G0τ
nm G0. The real-space structure constants, Gnm

0,L L ′(z), result from the two-
center expansion of G0(z), i.e. for n �= m and r = rn + Rn and r′ = r′

m + Rm :
G0(z; rn + Rn, r′

m + Rm) =
∑

L L ′ jL(z, rn)G
nm
0,L L ′(z) jL ′(z, r′

m)×, where the super-
script × denotes that only the spherical harmonics are conjugated. Using a site-
angular momentum supermatrix representation, the matrix of the structure constants
is denoted by G

0
(z) = Gnm

0 (z)(1 − δnm), while the t-matrices can also be structured
in a site-angular momentum supermatrix, t(z) = tn(z)δnm , i.e. block-diagonal in the
site index.

The fundamental KKR equation defines the site-angular momentum supermatrix
representation of the scattering path operator, τ (z), in terms of the single-site t-matrix
and the structure constant matrix as
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τ (z) =
(

t(z)−1 − G
0
(z)

)−1
. (28.1)

Finally, the single-particle Green’s function is obtained from the scattering path
operator as

G(z; rn + Rn, r′
m + Rm) =

∑

L L ′

Zn
L(z, rn)τ

nm
L L ′(z)Zm

L ′(z, r′
m)× −

δnm

∑

L

Zn
L(z; rn,<)J n

L (z; rn,>)× ,
(28.2)

where Zn
L and J n

L are properly normalized regular and irregular scattering solutions,
respectively, and r< = min(r, r ′) and r> = max(r, r ′). From the above Green’s func-
tion the physical quantities can straightforwardly be calculated.

28.3 Screening Transformations in the KKR Method

Solving the KKR equation (28.1) for systems in reduced dimension requires the
inversion of a big matrix, and its computational time scales with N 3 (N being the
size of the system in real space). This is highly unfavorable at a large number of
scatterers (atoms) and one possible way to overcome the problem is to use a screening

transformation. Here, a reference potential, Vr , is added to the Hamiltonian of the
unperturbed system, H ′

0 = H0 + Vr , such that H = H0 + V = (H0 + Vr ) + (V −
Vr ) = H ′

0 + V ′ with V ′ = V − Vr . The resolvent of H can then be expressed as
G(z) = G0(z)(I + V G(z)) = G ′

0(z)(I + V ′G(z)), where G ′
0(z) = (z I − H ′

0)
−1 =

(z I − H0 − Vr )
−1. Once the potential Vr is repulsive, G ′

0(z) gets localized in real
space for ℜ(z) < Vr , which makes the calculation of G0(z) feasible.

Turning to multiple scattering, such a reference potential is written as a superposi-
tion of non-overlapping potentials Vr =

∑

n V n
r (rn). If the corresponding single-site

t-matrices are tn
r (z) then the Green’s function matrix of the reference system, termed

as screened structure constant, is obtained as

G
r
(z) = G

0
(z)

(

I − t
r
(z)G

0
(z)

)−1
. (28.3)

By defining the screened t-matrix as the difference, t
∆
(z) = t(z) − t

r
(z), a formally

equivalent equation to (28.1) can be obtained,

τ
∆
(z) =

(

t
∆
(z)−1 − G

r
(z)

)−1
, (28.4)

related to τ as

τ (z) = t(z)
(

t
∆
(z)−1τ

∆
(z)t

∆
(z)−1 +

(

t(z)−1 − t
∆
(z)−1

))

t(z) . (28.5)
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By using repulsive V n
r screening potentials, (28.3) can be solved so that Gnm

r (z) ≃
0 for all |Rn − Rm | > d, where d is a distance of some atomic spacings, i.e., the
structure constants in (28.4) are indeed screened and their solution reduces to the
inversion of a sparse matrix [6, 7]. In case of layered systems, the corresponding
matrix gets block-tridiagonal and the required computational time scales with N

[10]. Using (28.5), the τ -matrix in screened representation can be transformed to the
physical representation and the Green’s function is obtained from (28.2).

28.4 Suitability of the SKKR Method

The above described strategy of the SKKR method can uniformly be used for a
non-relativistic or fully relativistic angular momentum expansion, for spin-polarized
systems and for scattering potentials of spherically symmetrical or arbitrary (full-
potential) shape. The SKKR method has traditionally been used for layered sys-
tems, i.e., materials with two-dimensional translational symmetry, like thin films,
multilayers, surfaces and interfaces [8]. This combined with the Coherent Potential
Approximation (CPA) [3] enables the investigation of substitutionally disordered
random alloys described by an effective medium. The Embedded Cluster Method
(ECM) [11] enables the investigation of real-space nanostructures, like impurities,
surface islands, atomic contacts. The SKKR within a fully relativistic spin-polarized
description is extremely suitable to study diverse magnetic properties, like local
spin/orbital moments, magnetic anisotropy (MAE), domain walls [12, 13], interlayer
exchange coupling (IEC), tensorial exchange interactions [14], spin wave (magnon)
spectroscopy [14, 15]. Combined with the linear response Kubo-Greenwood the-
ory, electrical (e.g., conductance, magnetoresistance) and magneto-optical transport
(e.g., Kerr spectroscopy) properties can be studied at a fully relativistic first prin-
ciples level. For a more detailed and structured overview the reader is referred to
[8].

It is important to note that the massively parallelized kkrnano program package
[16], developed mainly in the Research Center Jülich in Germany, takes advantage
of the SKKR concept to provide an order-N electronic structure code suitable for
studying solid-state systems consisting of tens of thousands of atoms. For more
details, the reader is referred to Chap. 17 of this book.

28.5 Using SKKR to Explore Complex Magnetism

of Nanostructures

Recent advancements in experimental techniques of imaging complex magnetic
structures in real space above surfaces using spin-polarized scanning tunneling
microscopy [17] require theoretical efforts for the understanding of the formation of
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complex magnetic patterns in thin films. Based on the SKKR method, the parameters
of a classical spin Hamiltonian, including tensorial exchange interactions, can be
extracted using either the relativistic torque method (RTM) [14] or the spin cluster
expansion (SCE) technique [18]. A suitable spin Hamiltonian is

H = −1

2

∑

i �= j

1

mi m j

mi J
i j

m j +
∑

i

1

m2
i

mi K
i
mi −

∑

i

mi · bext , (28.6)

with mi the classical spin moment of atom i , J
i j

the exchange tensor, K
i

the on-site

anisotropy matrix, and bext the external magnetic field. Based on this, the magnetic
ground state can be estimated in the following way: The energy of a spin spiral with
propagation vector q corresponds to the maximal eigenvalue of the Fourier transform
of the exchange tensor. When calculating spin spiral energies by sweeping q in the
Brillouin zone, the maximal obtained value corresponds to the estimated magnetic
ground state. Another method to find the ground state magnetic structure is based
on the zero temperature (deterministic) Landau–Lifshitz–Gilbert (LLG) equation of
atomistic spin dynamics,

∂mi

∂t
= − γ

1 + α2
mi × bi − αγ

(1 + α2)mi

mi × (mi × bi ) , (28.7)

where γ is the gyromagnetic ratio, α the Gilbert damping, and the effective field is
bi = −∂H/∂mi .

Following this multiscale approach based on the spin Hamiltonian parameters
obtained within the SKKR method, the complex ground states of a variety of magnetic
thin films have been obtained ranging from spin spirals to skyrmions, for example:
1–4 monolayers (ML) of Fe on Ir(001) surface [19]; 1 ML Fe on different substrates
composed of 5d elements [20]; PdFe double layer on Ir(111) [21]; 1 ML Fe on
Rh(001) surface [22]; 1 ML Fe on W(110) and Ta(110) substrates [23]. Theoretical
analysis provides information on the relative importance and competition of isotropic
exchange, Dzyaloshinskii–Moriya, and in certain cases of biquadratic and higher
order spin interactions, partly considering the effect of layer relaxations as well.
Extending the LLG equation (28.7) to include thermal effects on the effective field
[24, 25], temperature dependence of the magnetic states can also be studied [23, 26,
27].

The above examples illustrate the importance of the SKKR method to contribute
to the theoretical understanding of complex magnetism at the atomic scale.
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